|
[1] R. W. Balluffi A. P. Sutton. Interfaces in Crystalline Materials. OXFORD UNIV PR, 2007. [2] Miguel Lagos and César Retamal. Grain dynamics and plastic properties of highly refined materials. Physica Scripta, 82(6), 2010. [3] Rafael Cano-Crespo, Bibi Malmal Moshtaghioun, Diego Gómez García, Arturo Domínguez Rodríguez, César Retamal, and Miguel Lagos. Mechanical instability of stressed grain boundaries during plastic deformation of zirconium carbide. Journal of the European Ceramic Society, 36(9):2235 – 2240, 2016. CERMODEL 2015 Modelling and simulation meet innovation in Ceramics Technology. [4] Miguel Lagos. Theory of superplasticity in polycrystalline materials: Stressinduced structural instabilities of grain boundaries. Physical Review B, 71(22), 2005. [5] M. Neek-Amal and F. M. Peeters. Effect of grain boundary on the buckling of graphene nanoribbons. Applied Physics Letters, 100(10):101905, 2012. [6] R. J. Asaro and W. A. Tiller. Interface morphology development during stress corrosion cracking: Part i. via surface diffusion. Metallurgical Transactions, 3(7):1789–1796, 1972. [7] M. A. Grinfeld. The stress driven instability in elastic crystals: Mathematical models and physical manifestations. Journal of Nonlinear Science, 3(1):35–83, 1993. 41 [8] D. J. Srolovitz. On the stability of surfaces of stressed solids. Acta Metallurgica, 37(2):621–625, 1989. [9] B. J. Spencer, P. W. Voorhees, and S. H. Davis. Morphological instability in epitaxially strained dislocation‐free solid films: Linear stability theory. Journal of Applied Physics, 73(10):4955–4970, 1993. [10] P. Müller. Crystal growth and elasticity. The European Physical Journal Applied Physics, 43(3):271–276, 2008. [11] X. L. Li. Thermodynamic analysis on the stability and evolution mechanism of self-assembled quantum dots. Applied Surface Science, 256(12):4023–4026, 2010. [12] C. G. Gamage and Z. F. Huang. Nonlinear dynamics of island coarsening and stabilization during strained film heteroepitaxy. Phys Rev E Stat Nonlin Soft Matter Phys, 87(2):022408, 2013. [13] G. K. Dixit and M. Ranganathan. Modeling elastic anisotropy in strained heteroepitaxy. J Phys Condens Matter, 29(37):375001, 2017. [14] X. Liao, J. Xiao, Y. Ni, C. Li, and X. Chen. Self-assembly of islands on spherical substrates by surface instability. ACS Nano, 11(3):2611–2617, 2017. [15] K. R. Elder, M. Katakowski, M. Haataja, and M. Grant. Modeling elasticity in crystal growth. Phys Rev Lett, 88(24):245701, 2002. [16] K. R. Elder and M. Grant. Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. Phys Rev E Stat Nonlin Soft Matter Phys, 70(5 Pt 1):051605, 2004. [17] R. Backofen and A. Voigt. A phase-field-crystal approach to critical nuclei. J Phys Condens Matter, 22(36):364104, 2010. [18] G. I. Toth, G. Tegze, T. Pusztai, G. Toth, and L. Granasy. Polymorphism, crystal nucleation and growth in the phase-field crystal model in 2d and 3d. J Phys Condens Matter, 22(36):364101, 2010. 42 [19] S. Tang, R. Backofen, J. C. Wang, Y. H. Zhou, A. Voigt, and Y. M. Yu. Three-dimensional phase-field crystal modeling of fcc and bcc dendritic crystal growth. Journal of Crystal Growth, 334(1):146–152, 2011. [20] S. Tang, Y. M. Yu, J. Wang, J. Li, Z. Wang, Y. Guo, and Y. Zhou. Phase-field-crystal simulation of nonequilibrium crystal growth. Phys Rev E Stat Nonlin Soft Matter Phys, 89(1):012405, 2014. [21] P. K. Galenko, F. I. Sanches, and K. R. Elder. Traveling wave profiles for a crystalline front invading liquid states: Analytical and numerical solutions. Physica D-Nonlinear Phenomena, 308:1–10, 2015. [22] T. Yang, Z. Chen, J. Zhang, Y. X. Wang, and Y. L. Lu. Unifying the crystallization behavior of hexagonal and square crystals with the phase-field-crystal model. Chinese Physics B, 25(3), 2016. [23] M. Schmiedeberg, C. V. Achim, J. Hielscher, S. C. Kapfer, and H. Lowen. Dislocation-free growth of quasicrystals from two seeds due to additional phasonic degrees of freedom. Physical Review E, 96(1), 2017. [24] S. Tang, J. Wang, J. Li, Z. Wang, Y. Guo, C. Guo, and Y. Zhou. Phase-field-crystal investigation of the morphology of a steady-state dendrite tip on the atomic scale. Phys Rev E, 95(6-1):062803, 2017. [25] P. Y. Chan and N. Goldenfeld. Nonlinear elasticity of the phase-field-crystal model from the renormalization group. Phys Rev E Stat Nonlin Soft Matter Phys, 80(6 Pt 2):065105, 2009. [26] N. Pisutha-Arnond, V. W. L. Chan, K. R. Elder, and K. Thornton. Calculations of isothermal elastic constants in the phase-field crystal model. Physical Review B, 87(1), 2013. [27] C. Guo, J. Wang, Z. Wang, J. Li, Y. Guo, and S. Tang. Modified phase-field-crystal model for solid-liquid phase transitions. Phys Rev E Stat Nonlin Soft Matter Phys, 92(1):013309, 2015. [28] Claas Hüter, Martin Friák, Marc Weikamp, Jörg Neugebauer, Nigel Goldenfeld, Bob Svendsen, and Robert Spatschek. Nonlinear elastic effects in phase field crystal and amplitude equations: Comparison toab initio simulations of bcc metals and graphene. Physical Review B, 93(21), 2016. [29] W. Q. Zhou, J. C. Wang, Z. J. Wang, Q. Zhang, C. Guo, J. J. Li, and Y. L. Guo. Size effects of shear deformation response for nano-single crystals examined by the phase-field-crystal model. Computational Materials Science, 127:121–127, 2017. [30] Joel Berry, K. R. Elder, and Martin Grant. Melting at dislocations and grain boundaries: A phase field crystal study. Physical Review B, 77(22), 2008. [31] J. Mellenthin, A. Karma, and M. Plapp. Phase-field crystal study of grain boundary premelting. Physical Review B, 78(18), 2008. [32] A. Adland, A. Karma, R. Spatschek, D. Buta, and M. Asta. Phase-field-crystal study of grain boundary premelting and shearing in bcc iron. Physical Review B, 87(2), 2013. [33] J. Berry, M. Grant, and K. R. Elder. Diffusive atomistic dynamics of edge dislocations in two dimensions. Phys Rev E Stat Nonlin Soft Matter Phys, 73(3 Pt 1):031609, 2006. [34] P. Y. Chan, G. Tsekenis, J. Dantzig, K. A. Dahmen, and N. Goldenfeld. Plasticity and dislocation dynamics in a phase field crystal model. Phys Rev Lett, 105(1):015502, 2010. [35] Y. J. Gao, Q. Q. Deng, S. L. Quan, W. Q. Zhou, and C. G. Huang. Phase field crystal simulation of grain boundary movement and dislocation reaction. Frontiers of Materials Science, 8(2):176–184, 2014. [36] Y. J. Gao, L. L. Huang, Q. Q. Deng, W. Q. Zhou, Z. R. Luo, and K. Lin. Phase field crystal simulation of dislocation configuration evolution in dynamic recovery in two dimensions. Acta Materialia, 117:238–251, 2016. [37] S. Hu, Z. Chen, Y. Y. Peng, Y. J. Liu, and L. Y. Guo. Modeling and simulation of microcrack propagation behavior under shear stress using phase-field-crystal. Computational Materials Science, 121:143–150, 2016. 44 [38] K. A. Wu and A. Karma. Phase-field crystal modeling of equilibrium bcc-liquid interfaces. Physical Review B, 76(18), 2007. [39] K. R. Elder, N. Provatas, J. Berry, P. Stefanovic, and M. Grant. Phase-field-crystal modeling and classical density functional theory of freezing. Physical Review B, 75(6), 2007. [40] K. A. Wu and P. W. Voorhees. Stress-induced morphological instabilities at the nanoscale examined using the phase field crystal approach. Physical Review B, 80(12), 2009. [41] Z. F. Huang and K. R. Elder. Morphological instability, evolution, and scaling in strained epitaxial films: An amplitude-equation analysis of the phase-field-crystal model. Physical Review B, 81(16), 2010. [42] T. Frolov, D. L. Olmsted, M. Asta, and Y. Mishin. Structural phase transformations in metallic grain boundaries. Nat Commun, 4:1899, 2013. [43] Patrick R. Cantwell, Ming Tang, Shen J. Dillon, Jian Luo, Gregory S. Rohrer, and Martin P. Harmer. Grain boundary complexions. Acta Materialia, 62:1–48, 2014. [44] T. Frolov, M. Asta, and Y. Mishin. Phase transformations at interfaces: Observations from atomistic modeling. Current Opinion in Solid State and Materials Science, 20(5):308–315, 2016. [45] Timothy J. Rupert. The role of complexions in metallic nano-grain stability and deformation. Current Opinion in Solid State and Materials Science, 20(5):257–267, 2016. [46] Mohammad Aramfard and Chuang Deng. Mechanically enhanced grain boundary structural phase transformation in cu. Acta Materialia, 146:304–313, 2018. [47] W. Bollmann. The basic concepts of the 0-lattice theory. Surface Science, 31(Supplement C):1–11, 1972. 45 [48] J. J. Hoyt, D. Olmsted, S. Jindal, M. Asta, and A. Karma. Method for computing short-range forces between solid-liquid interfaces driving grain boundary premelting. Phys Rev E Stat Nonlin Soft Matter Phys, 79(2 Pt 1):020601, 2009. [49] P. L. Williams and Y. Mishin. Thermodynamics of grain boundary premelting in alloys. ii. atomistic simulation. Acta Materialia, 57(13):3786–3794, 2009. [50] S. J. Fensin, D. Olmsted, D. Buta, M. Asta, A. Karma, and J. J. Hoyt. Structural disjoining potential for grain-boundary premelting and grain coalescence from molecular-dynamics simulations. Phys Rev E Stat Nonlin Soft Matter Phys, 81(3 Pt 1):031601, 2010. |