帳號:guest(18.219.89.148)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉明威
作者(外文):Liu, Ming-Wei
論文名稱(中文):橫向應變下晶界的形態不穩定性
論文名稱(外文):Morphological Instability of Grain Boundary under Lateral Applied Strains
指導教授(中文):吳國安
指導教授(外文):Wu, Kuo-An
口試委員(中文):張守一
陳宣毅
口試委員(外文):Chang, Shou-Yi
Chen, Hsuan-Yi
Gururajan, Mogadalai Pandurangan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:105022501
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:46
中文關鍵詞:相場晶體模型固體界面晶界界面不穩定性
外文關鍵詞:phase field crystal modelsolid-solid interfacegrain boundaryinterface instability
相關次數:
  • 推薦推薦:0
  • 點閱點閱:51
  • 評分評分:*****
  • 下載下載:11
  • 收藏收藏:0
透過相場晶體模型模擬,我們發現在受橫向應變的雙晶體系統中晶界會產生形態不穩定性。我們發現晶界結構轉變和位錯發射。定量上,我們研究擾動的增長率並確定了臨界應變量。另外,我們發現幅度依賴的增長率和在位錯發射之前形成的特定三角形輪廓,這些觀察結果通過重合點網格方法的分析,並可被搓板位勢模型預測。同時,我們構建了不穩定行為的相圖。為了理解潛在的機制,我們提出軟邊界模型並理論上分析此模型。此最簡理論定量地預測擾動的增長率和相圖中相界。它還表明此不穩定性應該是由彈性能量梯度驅動而此梯度是由不均勻的應變分佈所引起。最後,此理論預測的應變分佈與模擬觀察結果非常吻合。
Morphological instability of grain boundary is observed in bicrystal systems subject to lateral applied strains by using the simulation of phase field crystal model. The grain boundary structural transformation is discovered and the dislocation emission is observed. Quantitatively, we study the growth rate of perturbation and identify the critical applied strain. Furthermore, we discover the amplitude-dependent growth rate and the formation of the specific triangular profile right before dislocation emission. These observations are analyzed through coincidence site lattice approach and predicted by the washboard potential model. Plus, we construct the phase diagram of the instability behavior. To understand the underlying mechanism, we propose a soft boundary model and theoretically analyze it. The minimal theory quantitatively predicts the growth rate of perturbation and the boundaries in the phase diagram. It also shows that the instability should be primarily driven by the elastic energy gradient generated by the inhomogeneous strain distribution. And it turns out that the predicted strain distribution is in good agreement with the simulation observation.
Contents ii
List of Tables iii
List of Figures vii
1. Introduction 1
2. Phase Field Crystal Model 3
3. Simulation Result 8
4. Theoretical Calculation 25
5. Conclusion and Future Work 36
Appendix 38
Reference 41
[1] R. W. Balluffi A. P. Sutton. Interfaces in Crystalline Materials. OXFORD UNIV PR, 2007.
[2] Miguel Lagos and César Retamal. Grain dynamics and plastic properties of highly refined materials. Physica Scripta, 82(6), 2010.
[3] Rafael Cano-Crespo, Bibi Malmal Moshtaghioun, Diego Gómez García, Arturo Domínguez Rodríguez, César Retamal, and Miguel Lagos. Mechanical instability of stressed grain boundaries during plastic deformation of zirconium carbide. Journal of the European Ceramic Society, 36(9):2235 – 2240, 2016. CERMODEL 2015 Modelling and simulation meet innovation in Ceramics Technology.
[4] Miguel Lagos. Theory of superplasticity in polycrystalline materials: Stressinduced structural instabilities of grain boundaries. Physical Review B, 71(22), 2005.
[5] M. Neek-Amal and F. M. Peeters. Effect of grain boundary on the buckling of graphene nanoribbons. Applied Physics Letters, 100(10):101905, 2012.
[6] R. J. Asaro and W. A. Tiller. Interface morphology development during stress corrosion cracking: Part i. via surface diffusion. Metallurgical Transactions, 3(7):1789–1796, 1972.
[7] M. A. Grinfeld. The stress driven instability in elastic crystals: Mathematical models and physical manifestations. Journal of Nonlinear Science, 3(1):35–83, 1993. 41
[8] D. J. Srolovitz. On the stability of surfaces of stressed solids. Acta Metallurgica, 37(2):621–625, 1989.
[9] B. J. Spencer, P. W. Voorhees, and S. H. Davis. Morphological instability in epitaxially strained dislocation‐free solid films: Linear stability theory. Journal of Applied Physics, 73(10):4955–4970, 1993.
[10] P. Müller. Crystal growth and elasticity. The European Physical Journal Applied Physics, 43(3):271–276, 2008.
[11] X. L. Li. Thermodynamic analysis on the stability and evolution mechanism of self-assembled quantum dots. Applied Surface Science, 256(12):4023–4026, 2010.
[12] C. G. Gamage and Z. F. Huang. Nonlinear dynamics of island coarsening and stabilization during strained film heteroepitaxy. Phys Rev E Stat Nonlin Soft Matter Phys, 87(2):022408, 2013.
[13] G. K. Dixit and M. Ranganathan. Modeling elastic anisotropy in strained heteroepitaxy. J Phys Condens Matter, 29(37):375001, 2017.
[14] X. Liao, J. Xiao, Y. Ni, C. Li, and X. Chen. Self-assembly of islands on spherical substrates by surface instability. ACS Nano, 11(3):2611–2617, 2017.
[15] K. R. Elder, M. Katakowski, M. Haataja, and M. Grant. Modeling elasticity in crystal growth. Phys Rev Lett, 88(24):245701, 2002.
[16] K. R. Elder and M. Grant. Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. Phys Rev E Stat Nonlin Soft Matter Phys, 70(5 Pt 1):051605, 2004.
[17] R. Backofen and A. Voigt. A phase-field-crystal approach to critical nuclei. J Phys Condens Matter, 22(36):364104, 2010.
[18] G. I. Toth, G. Tegze, T. Pusztai, G. Toth, and L. Granasy. Polymorphism, crystal nucleation and growth in the phase-field crystal model in 2d and 3d.
J Phys Condens Matter, 22(36):364101, 2010. 42
[19] S. Tang, R. Backofen, J. C. Wang, Y. H. Zhou, A. Voigt, and Y. M. Yu. Three-dimensional phase-field crystal modeling of fcc and bcc dendritic crystal
growth. Journal of Crystal Growth, 334(1):146–152, 2011.
[20] S. Tang, Y. M. Yu, J. Wang, J. Li, Z. Wang, Y. Guo, and Y. Zhou. Phase-field-crystal simulation of nonequilibrium crystal growth. Phys Rev E Stat Nonlin Soft Matter Phys, 89(1):012405, 2014.
[21] P. K. Galenko, F. I. Sanches, and K. R. Elder. Traveling wave profiles for a crystalline front invading liquid states: Analytical and numerical solutions. Physica D-Nonlinear Phenomena, 308:1–10, 2015.
[22] T. Yang, Z. Chen, J. Zhang, Y. X. Wang, and Y. L. Lu. Unifying the crystallization behavior of hexagonal and square crystals with the phase-field-crystal model. Chinese Physics B, 25(3), 2016.
[23] M. Schmiedeberg, C. V. Achim, J. Hielscher, S. C. Kapfer, and H. Lowen. Dislocation-free growth of quasicrystals from two seeds due to additional phasonic degrees of freedom. Physical Review E, 96(1), 2017.
[24] S. Tang, J. Wang, J. Li, Z. Wang, Y. Guo, C. Guo, and Y. Zhou. Phase-field-crystal investigation of the morphology of a steady-state dendrite tip on the atomic scale. Phys Rev E, 95(6-1):062803, 2017.
[25] P. Y. Chan and N. Goldenfeld. Nonlinear elasticity of the phase-field-crystal model from the renormalization group. Phys Rev E Stat Nonlin Soft Matter Phys, 80(6 Pt 2):065105, 2009.
[26] N. Pisutha-Arnond, V. W. L. Chan, K. R. Elder, and K. Thornton. Calculations of isothermal elastic constants in the phase-field crystal model. Physical Review B, 87(1), 2013.
[27] C. Guo, J. Wang, Z. Wang, J. Li, Y. Guo, and S. Tang. Modified phase-field-crystal model for solid-liquid phase transitions. Phys Rev E Stat Nonlin Soft
Matter Phys, 92(1):013309, 2015.
[28] Claas Hüter, Martin Friák, Marc Weikamp, Jörg Neugebauer, Nigel Goldenfeld, Bob Svendsen, and Robert Spatschek. Nonlinear elastic effects in phase field crystal and amplitude equations: Comparison toab initio simulations of bcc metals and graphene. Physical Review B, 93(21), 2016.
[29] W. Q. Zhou, J. C. Wang, Z. J. Wang, Q. Zhang, C. Guo, J. J. Li, and Y. L. Guo. Size effects of shear deformation response for nano-single crystals examined by the phase-field-crystal model. Computational Materials Science, 127:121–127, 2017.
[30] Joel Berry, K. R. Elder, and Martin Grant. Melting at dislocations and grain boundaries: A phase field crystal study. Physical Review B, 77(22), 2008.
[31] J. Mellenthin, A. Karma, and M. Plapp. Phase-field crystal study of grain boundary premelting. Physical Review B, 78(18), 2008.
[32] A. Adland, A. Karma, R. Spatschek, D. Buta, and M. Asta. Phase-field-crystal study of grain boundary premelting and shearing in bcc iron. Physical Review B, 87(2), 2013.
[33] J. Berry, M. Grant, and K. R. Elder. Diffusive atomistic dynamics of edge dislocations in two dimensions. Phys Rev E Stat Nonlin Soft Matter Phys, 73(3 Pt 1):031609, 2006.
[34] P. Y. Chan, G. Tsekenis, J. Dantzig, K. A. Dahmen, and N. Goldenfeld. Plasticity and dislocation dynamics in a phase field crystal model. Phys Rev Lett, 105(1):015502, 2010.
[35] Y. J. Gao, Q. Q. Deng, S. L. Quan, W. Q. Zhou, and C. G. Huang. Phase field crystal simulation of grain boundary movement and dislocation reaction. Frontiers of Materials Science, 8(2):176–184, 2014.
[36] Y. J. Gao, L. L. Huang, Q. Q. Deng, W. Q. Zhou, Z. R. Luo, and K. Lin. Phase field crystal simulation of dislocation configuration evolution in dynamic recovery in two dimensions. Acta Materialia, 117:238–251, 2016.
[37] S. Hu, Z. Chen, Y. Y. Peng, Y. J. Liu, and L. Y. Guo. Modeling and simulation of microcrack propagation behavior under shear stress using phase-field-crystal. Computational Materials Science, 121:143–150, 2016. 44
[38] K. A. Wu and A. Karma. Phase-field crystal modeling of equilibrium bcc-liquid interfaces. Physical Review B, 76(18), 2007.
[39] K. R. Elder, N. Provatas, J. Berry, P. Stefanovic, and M. Grant. Phase-field-crystal modeling and classical density functional theory of freezing. Physical Review B, 75(6), 2007.
[40] K. A. Wu and P. W. Voorhees. Stress-induced morphological instabilities at the nanoscale examined using the phase field crystal approach. Physical Review B, 80(12), 2009.
[41] Z. F. Huang and K. R. Elder. Morphological instability, evolution, and scaling in strained epitaxial films: An amplitude-equation analysis of the phase-field-crystal model. Physical Review B, 81(16), 2010.
[42] T. Frolov, D. L. Olmsted, M. Asta, and Y. Mishin. Structural phase transformations in metallic grain boundaries. Nat Commun, 4:1899, 2013.
[43] Patrick R. Cantwell, Ming Tang, Shen J. Dillon, Jian Luo, Gregory S. Rohrer, and Martin P. Harmer. Grain boundary complexions. Acta Materialia, 62:1–48, 2014.
[44] T. Frolov, M. Asta, and Y. Mishin. Phase transformations at interfaces: Observations from atomistic modeling. Current Opinion in Solid State and Materials Science, 20(5):308–315, 2016.
[45] Timothy J. Rupert. The role of complexions in metallic nano-grain stability and deformation. Current Opinion in Solid State and Materials Science, 20(5):257–267, 2016.
[46] Mohammad Aramfard and Chuang Deng. Mechanically enhanced grain boundary structural phase transformation in cu. Acta Materialia, 146:304–313, 2018.
[47] W. Bollmann. The basic concepts of the 0-lattice theory. Surface Science, 31(Supplement C):1–11, 1972. 45
[48] J. J. Hoyt, D. Olmsted, S. Jindal, M. Asta, and A. Karma. Method for computing short-range forces between solid-liquid interfaces driving grain boundary premelting. Phys Rev E Stat Nonlin Soft Matter Phys, 79(2 Pt 1):020601, 2009.
[49] P. L. Williams and Y. Mishin. Thermodynamics of grain boundary premelting in alloys. ii. atomistic simulation. Acta Materialia, 57(13):3786–3794, 2009.
[50] S. J. Fensin, D. Olmsted, D. Buta, M. Asta, A. Karma, and J. J. Hoyt. Structural disjoining potential for grain-boundary premelting and grain coalescence from molecular-dynamics simulations. Phys Rev E Stat Nonlin Soft Matter Phys, 81(3 Pt 1):031601, 2010.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *