|
1. Albouy, A., On a paper of Moeckel on central configurations. Regul. Chaotic Dyn. 8, 133–142 (2003).
2. Albouy, A., Cabral, H. E., Santos, A.A., Some problems on the classical n-body problem. Celest. Mech. Dyn. Astron. 113, 369–375 (2012)
3. Albouy, A., Chenciner, A.: Le probl`eme des n corps et les distances mutuelles. Invent. Math. 131, 151–184 (1998).
4. Albouy, A., Kaloshin, V., Finiteness of central configurations for five bodies in the plane. Ann. Math. 176, 535–588 (2012).
5. Chazy, J., Sur certaines trajectoires du probl`eme des n corps, Bull. Astronom. 35, 321–389 (1918).
6. Dias, T., Pan, BY., Generic finiteness for a class of symmetric planar central configurations of the six-body problem and the six-vortex problem. J. Dyn. Diff. Equations 32, 1579–1602 (2020).
7. Dziobek, O., ¨Uber einen merkw¨urdigen Fall des ielk¨orperproblems, Astron. Nach. 152, 33–46 (1900).
8. Euler. L., Considerationes de motu corporum coelestium. Novi commentarii academiae scientiarum Petropolitanae. V. 10. 1764. P. 544–558. Berlin acad.. april 1762. Also in Opera Omnia. V. 25, S. 2. P. 246–257. with corrections and comments by M. Sch¨urer.
9. Hampton, M., Finiteness of kite relative equilibria in the five-vortex and five- body problems, Qual. Theory Dyn. Syst. 8 349–356 (2009).
10. Hampton, M., Jensen, A., Finiteness of spatial central configurations in the five-body problem, Celest. Mech. Dyn. Astr. 109:321–332 (2011)
11. Hampton, M., Moeckel, R., Finiteness of relative equilibria of the four-body problem, Invent. Math. 163, 289–312 (2006).
12. Jensen, A., Leykin, A., Smale’s 6th problem for generic masses. Preprint 2023, arXiv:2301.02305.
13. Lagrange, J. L., Essai sur le probl´eme des trois corps. OEuvres. V. 6. 1772. pp.229–324.
14. Leandro, E., Finiteness and bifurcations of some symmetrical classes of central configurations. Arch. Rational Mech. Anal. 167, 147–177 (2003).
15. Moczurad, M., Zgliczy´nski, P., Central configurations in planar n-body problem with equal masses for n = 5, 6, 7. Celest. Mech. Dyn. Astr. 131, 46 (2019).
16. Moczurad, M., Zgliczy´nski, P., Central configurations in the spatial n-body problem for n = 5, 6 with equal masses Celest. Mech. Dyn. Astr. 132, 56 (2020).
17. Moeckel, R., On central configurations. Math. Zeit., 205, 499–517. (1990).
18. Moeckel, R., Generic finiteness for Dziobek configurations. Trans. Amer. Math. Soc. 353, 4673–4686.
19. Moeckel, R., Lectures on central configurations, 2014. http://www.math.umn.edu/~rmoeckel/notes/Notes.html
20. Moulton, F. R., The straight line solutions of the problem of N bodies. Ann. of Math. (2) 12, 1–17 (1910).
21. Roberts, G. E., A continuum of relative equilibria in the five-body problem Physica D 127, 141–145 (1999).
22. Smale, S., Mathematical problems for the next century, Math. Intelligencer 20, no. 2, 7–15 (1998).
23. Yu, X.; Zhu, S., Finiteness of central configurations of the Coulomb four-body problem. Preprint 2021.
24. Wintner, A., The Analytical Foundations of Celestial Mechanics, Princeton Math. Ser. 5, Princeton Univ. Press, Princeton, NJ, 1941.
25. Xia, Z., Central configurations with many small masses, J. Differential Equations 91, 168–179 (1991). |