帳號:guest(18.221.214.175)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃姝慈
作者(外文):Huang, Shu-Tzu
論文名稱(中文):高階馬可夫鏈及其於匯率預測之應用
論文名稱(外文):Higher-order Markov Chain and its Application in Exchange Rate Forecasting
指導教授(中文):林文偉
朱家杰
指導教授(外文):Lin, Wen-Wei
Chu, Chia-Chieh
口試委員(中文):黃聰明
李鉄香
口試委員(外文):Huang, Tsung-Min
Li, Tie-Xiang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:數學系
學號:105021613
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:27
中文關鍵詞:高階馬可夫鏈非負張量Z-特徵值問題匯率預測
外文關鍵詞:Higher-order Markov chainNonnegative tensorZ-eigenvalue problemExchange rate forecasting
相關次數:
  • 推薦推薦:0
  • 點閱點閱:338
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
國際匯率與經濟的關係密不可分,匯率的預測對於金融決策亦有重要價值。馬可夫鏈在各個領域都有廣泛的應用,也經常被用於金融與經濟中一系列現象的建模,藉由觀測過去一段時間的狀態變化,推測未來不同狀態的發生率。一階馬可夫鏈並不具有記憶性,其轉移矩陣僅能描述一步的狀態變化率。然而現實中的現象往往不僅與過去一步的狀態有關,因此我們引入更高階的馬可夫鏈。常規的高階馬可夫模型中,獨立參數的數量隨著階數的上升呈指數型成長,造成計算上的嚴重困難。為了避免此問題,我們使用調整後的模型,並將馬可夫矩陣轉換成一個非負張量,在求解其Z特徵值問題後,便得到平穩機率分布向量,此向量代表未來各個匯率值的可能機率,計算後的期望值即為預測的匯率結果。
Exchange rate forecasting is of great value to financial decisions. Markov chain is commonly used in many practical system including finance and economics. By observing the changing of states during the past time, it predicts the incidence possibility of each state. First-order Markov chain is memoryless whose transition probability matrix can only describe the change of one step. However, the phenomenon in reality is often not only related to the state of one step in the past. Therefore, we apply higher-order Markov chains. The number of independent parameters in a conventional higher-order Markov model increases exponentially with respect to the order, causing serious difficulties in computation. To avoid such problem, we used a modified model and turn transition matrix into an nonnegative tensor. After solving the Z-eigenvalue problem corresponding to this tensor, we find the stationary probability distribution which represents the possibility of any exchange rate in the future. The forecasting result is then computed by the expect value.
1 Introdution....................................1
1.1 Notation Proclaim...........................2
2 Background.....................................3
2.1 Markov chain................................3
2.2 Limiting properties of Markov chains........5
2.3 Tensor......................................6
3 Higher-order Markov chain......................8
3.1 Models......................................8
3.2 Parameter estimation.......................10
3.3 Conversion to Z-eigenvalue problem.........12
4 Z-eigenvalue problem for nonnegative tensor...14
4.1 Computing Z-eigenpair......................14
5 Numerical experiments.........................16
5.1 Database...................................16
5.1.1 Data preprocessing......................17
5.1.2 Data classification.....................17
5.2 Model construction.........................18
5.3 Measure of predictive power................19
5.4 Numerical results..........................19
6 Conclusions...................................25
[1] KC Chang and T Zhang. On the uniqueness and non-uniqueness of the positive z-eigenvector for transition probability tensors. Journal of Mathematical Analysis and Applications, 408(2):525–540, 2013.
[2] Kungching Chang, Liqun Qi, and Tan Zhang. A survey on the spectral theory of nonnegative tensors. Numerical Linear Algebra with Applications, 20(6):891–912, 2013.
[3] W.K. Ching, E.S. Fung, and M.K. Ng. A higher-order markov model for the newsboy’s problem. Journal of the Operational Research Society, 54(3):291–298, 2003.
[4] W.K. Ching, E.S. Fung, and M.K. Ng. Higher-order markov chain models for categorical data sequences. Naval Research Logistics, 51(4):557–574, 2004.
[5] W.K. Ching, E.S. Fung, and M.K. Ng. Higher-order multivariate markov chains and their applications. Linear Algebra and its Applications, 428(23):492–507, 2008.
[6] S. Hu, Z.-H. Huang, and L. Qi. Finding the spectral radius of a nonnegative tensor. arXiv preprint arXiv:1111.2138, 2011.
[7] S. Hu and L. Qi. Convergence of a second order markov chain. Applied Mathematics and Computation, 241:183–192, 2014.
[8] Zhexue Huang, Joe Ng, David W Cheung, Michael K Ng, and Wai-Ki Ching. A cube model for web access sessions and cluster analysis. In Proc. of WEBKDD, volume 2001, pages 47–57, 2001.
[9] Yueh-Cheng Kuo, Wen-Wei Lin, and Ching-Sung Liu. Continuation methods for computing z-/h-eigenpairs of nonnegative tensors. Journal of Computational and Applied Mathematics, 340:71–88, 2018.
[10] W. Li and M.K. Ng. On the limiting probability distribution of a transition probability tensor. Linear and Multilinear Algebra, 62(3):362–385, 2014.
[11] Lek-Heng Lim. Singular values and eigenvalues of tensors: a variational approach. arXiv preprint math/0607648, 2006.
[12] C.D. Meyer. Matrix analysis and applied linear algebra, volume 71. Siam, 2000.
[13] L. Qi. Eigenvalues of a real supersymmetric tensor. Journal of Symbolic Computation, 40(6):1302–1324, 2005.
[14] L. Qi. Eigenvalues and invariants of tensors. Journal of Mathematical Analysis and Applications, 325(2):1363–1377, 2007.
[15] A.E. Raftery. A model for high-order markov chains. Journal of the Royal Statistical Society. Series B (Methodological), pages 528–539, 1985.
[16] M. Rosvall, A.V. Esquivel, A. Lancichinetti, J.D. West, and R. Lambiotte. Memory in network flows and its effects on spreading dynamics and community detection. Nature communications, 5:4630, 2014.
[17] V. Salnikov, M.T. Schaub, and R. Lambiotte. Using higher-order markov models to reveal flow-based communities in networks. Scientific reports, 6:23194, 2016.
[18] I. Scholtes, N. Wider, R. Pfitzner, A. Garas, C.J. Tessone, and F. Schweitzer. Causality-driven slow-down and speed-up of diffusion in non-markovian temporal networks. Nature communications, 5:5024, 2014.
[19] V. Soloviev, V. Saptsin, and D. Chabanenko. Markov chains application to the financial-economic time series prediction. arXiv preprint arXiv:1111.5254, 2011.
[20] Michael S Waterman. Introduction to computational biology: maps, sequences and genomes. CRC Press, 1995.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *