|
[1] A. Benedek and R. Panzone, The space Lp, with mixed norm, Duke Math. J., 28 (1961),pp. 301–324 [2] C. Bennett and R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129, Academic Press, Boston, MA, 1988. [3] J. Bergh and J. Lo"fstro"m , Interpolation Spaces. An Introduction, Grundlehren Math. Wiss. 223, Springer-Verlag, Berlin, New York, 1976 [4] N. Bournaveas, V. Calvez, S. Guti'errez, and B. Perthame, Global existence for a kinetic model of chemotaxis via dispersion and Strichartz estimates, Comm. Partial Differential Equations, 33 (2008), pp. 79–95. [5] F. Castella and B. Perthame, Estimations de Strichartz pour les'equations de transport cin´etique, C. R. Acad. Sci. Paris S'er. I Math., 322 (1996), pp. 535–540. [6] E. Cordero and F. Nicola, Some new Strichartz estimates for the Schrodinger equation, J. Differential Equations, 245 (2008), pp. 1945–1974. [7] D. Foschi, Inhomogeneous Strichartz estimates, J. Hyperbolic Differ. Equ., 2 (2005), pp. 1–24. [8] Z. Guo and L. Peng, Endpoint Strichartz estimate for the kinetic transport equation in one dimension, C. R. Math. Acad. Sci. Paris, 345 (2007), pp. 253–256. [9] L. Hormander , Estimates for translation invariant operators in Lp spaces, Acta Math., 104 (1960), pp. 93–140. [10] T. Kato, An Lq,r-theory for nonlinear Schrodinger equations, in Spectral and Scattering Theory and Applications, Adv. Stud. Pure Math. 23, Math. Soc. Japan, Tokyo, 1994,pp. 223–238. [11] M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), pp. 955–980. [12] E. Ovcharov, Strichartz estimates for the kinetic transport equation, SIAM J. Math. Anal. 43 (2011) no.3, pp. 1282-1310. [13] E. Y. Ovcharov, Global Regularity of Dispersive Equations and Strichartz Estimates, Ph.D. Thesis, University of Edinburgh, 2009. [14] E. Y. Ovcharov, Counterexamples to Strichartz estimates for the kinetic transport equation based on Besicovitch sets, Nonlinear Anal., 74 (2011), pp. 2515–2522. [15] B. Perthame, Mathematical tools for kinetic equations, Bull. Amer. Math. Soc. (N.S.), 41 (2004), pp. 205–244. [16] S. Selberg, Lecture notes on nonlinear wave equations, Personal web site, http://www.math. ntnu.no/~sselberg/ (2001). [17] R. J. Taggart, Inhomogeneous Strichartz estimates, Forum Math., 22 (2010), pp. 825–853. [18] M. Vilela, Inhomogeneous Strichartz estimates for the Schr¨odinger equation, Trans. Amer. Math. Soc., 359 (2007), pp. 2123–2136.
|