帳號:guest(18.227.134.45)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):茒彥植
作者(外文):Maw, yen-chih
論文名稱(中文):動力傳播方程式的Strichartz估計
論文名稱(外文):Strichartz estimates for the Kinetic Transport equation
指導教授(中文):江金城
指導教授(外文):Jiang, Jin-Cheng
口試委員(中文):蔡東和
李明憶
口試委員(外文):Tsai, Dong-Ho
Lee, Ming-Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:數學系
學號:105021611
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:31
中文關鍵詞:動力傳播方程式估計
外文關鍵詞:Kinetic Transport equationStrichartz estimates
相關次數:
  • 推薦推薦:0
  • 點閱點閱:319
  • 評分評分:*****
  • 下載下載:48
  • 收藏收藏:0
本文探討動力方程式的Strichartz估計,有時候我們不容易看出滿足估計的區域,盡量找出最大滿足此估計的最大區域,再使用插值方法和動力方程式的特性去證明此區域滿足此估計。
1 Settings and Definitions . . . . . . . . . . . . . . 4
2 Some properties for kinetic transport equation . . . 5
3 Duality and $TT^∗$ method . . . . . . . . . . . . . . 7
4 Preparation for the main theorem . . . . . . . . . . 13
5 Main theorem . . . . . . . . . . . . . . . . . . . . 26
6 Reference . . . . . . . . . . . . . . . . . . . . . . 30
[1] A. Benedek and R. Panzone, The space Lp, with mixed norm, Duke Math. J., 28 (1961),pp. 301–324
[2] C. Bennett and R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129, Academic
Press, Boston, MA, 1988.
[3] J. Bergh and J. Lo"fstro"m , Interpolation Spaces. An Introduction, Grundlehren Math.
Wiss. 223, Springer-Verlag, Berlin, New York, 1976
[4] N. Bournaveas, V. Calvez, S. Guti'errez, and B. Perthame, Global existence for a kinetic
model of chemotaxis via dispersion and Strichartz estimates, Comm. Partial Differential Equations, 33 (2008), pp. 79–95.
[5] F. Castella and B. Perthame, Estimations de Strichartz pour les'equations de transport
cin´etique, C. R. Acad. Sci. Paris S'er. I Math., 322 (1996), pp. 535–540.
[6] E. Cordero and F. Nicola, Some new Strichartz estimates for the Schrodinger equation, J.
Differential Equations, 245 (2008), pp. 1945–1974.
[7] D. Foschi, Inhomogeneous Strichartz estimates, J. Hyperbolic Differ. Equ., 2 (2005), pp. 1–24.
[8] Z. Guo and L. Peng, Endpoint Strichartz estimate for the kinetic transport equation in one
dimension, C. R. Math. Acad. Sci. Paris, 345 (2007), pp. 253–256.
[9] L. Hormander , Estimates for translation invariant operators in Lp spaces, Acta Math., 104
(1960), pp. 93–140.
[10] T. Kato, An Lq,r-theory for nonlinear Schrodinger equations, in Spectral and Scattering Theory and Applications, Adv. Stud. Pure Math. 23, Math. Soc. Japan, Tokyo, 1994,pp. 223–238.
[11] M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), pp. 955–980.
[12] E. Ovcharov, Strichartz estimates for the kinetic transport equation, SIAM J. Math. Anal. 43 (2011) no.3, pp. 1282-1310.
[13] E. Y. Ovcharov, Global Regularity of Dispersive Equations and Strichartz Estimates, Ph.D.
Thesis, University of Edinburgh, 2009.
[14] E. Y. Ovcharov, Counterexamples to Strichartz estimates for the kinetic transport equation
based on Besicovitch sets, Nonlinear Anal., 74 (2011), pp. 2515–2522.
[15] B. Perthame, Mathematical tools for kinetic equations, Bull. Amer. Math. Soc. (N.S.), 41
(2004), pp. 205–244.
[16] S. Selberg, Lecture notes on nonlinear wave equations, Personal web site, http://www.math.
ntnu.no/~sselberg/ (2001).
[17] R. J. Taggart, Inhomogeneous Strichartz estimates, Forum Math., 22 (2010), pp. 825–853.
[18] M. Vilela, Inhomogeneous Strichartz estimates for the Schr¨odinger equation, Trans. Amer.
Math. Soc., 359 (2007), pp. 2123–2136.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *