|
1. J. Ali, R. Shivaji, K. Wampler, Population models with diffusion, strong Allee effect and constant yield harvesting, J. Math. Anal. Appl. 352 (2009) 907--913. 2. F. Brauer, C. Castillo-Chávez, Mathematical Models in Population Biology and Epidemiology, Texts in Applied Mathematics, 40, Springer-Verlag, New York, 2001. 3. A. Castro, S. Gadam, R. Shivaji, Positive solution curves of semipositone problems with concave nonlinearities, Proc. Roy. Soc. Edinburgh 127A (1997) 921--934. 4. A. Castro, S. Gadam, R. Shivaji, Evolution of positive solution curves in semipositone problems with concave nonlinearities, J. Math. Anal. Appl. 245 (2000) 282--293. 5. A. Castro, R. Shivaji, Nonnegative solutions for a class of nonpositone problems, Proc. Roy. Soc. Edinburgh 108A (1988) 291--302. 6. N. Chafee, E.F. Infante, A bifurcation problem for a nonlinear partial differential equation of parabolic type, Appl. Anal. 4 (1974) 17--37. 7. C.W. Clark, Mathematical Bioeconomics, The Optimal Management of Renewable Resources, John Wiley & Sons, Inc., New York, 1990. 8. A. Collins, M. Gilliland, C. Henderson, S. Koone, L. McFerrin, E.K. Wampler, Population models with diffusion and constant yield harvesting, Rose Hulman Undergrad. Math. J., 5 (2004), 19 pp. 9. M.G. Crandall, P.H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Ration. Mech. Anal. 52 (1973) 161--180. 10. S. Gadam, J.A. Iaia, Exact multiplicity of positive solutions in semipositone problems with concave-convex type nonlinearities, Electron. J. Qual. Theory Differ. Equ. (2001), 9 pp. 11. P. Girão, H. Tehrani, Positive solutions to logistic type equations with harvesting, J. Differential Equations 247 (2009) 574--595. 12. J. Goddard II, E.K. Lee, R. Shivaji, Population models with nonlinear boundary conditions, Electron. J. Differential Equations, Conference 19 (2010) 135--149. 13. J. Goddard II, E.K. Lee, R. Shivaji, Diffusive logistic equation with non-linear boundary conditions, J. Math. Anal. Appl. 375 (2011) 365--370. 14. J. Goddard II, E.K. Lee, R. Shivaji, Population models with diffusion, strong Allee effect, and nonlinear boundary conditions, Nonlinear Anal. 74 (2011) 6202--6208. 15. J. Goddard II, R. Shivaji, A population model with nonlinear boundary conditions and constant yield harvesting, Dynamic Systems and Applications, Vol. 6, 150--157, Dynamic, Atlanta, GA, 2012. 16. M. Guedda, L. Veron, Bifurcation phenomena associated to the p-Laplace operator, Trans. Amer. Math. Soc. 310 (1988) 419--431. 17. I.N. Herstein, Topics in Algebra, second ed., John Wiley & Sons Inc., New York, 1975. 18. K.-C. Hung, Exact multiplicity of positive solutions of a semipositone problem with concave-convex nonlinearity, J. Differential Equations 255 (2013) 3811--3831. 19. K.-C. Hung, Y.-N. Suen, S.-H. Wang, Structures and evolution of bifurcation diagrams for a diffusive generalized logistic problem with constant yield harvesting in one space variable, preprint, 2019. 20. P. Korman, Families of solution curves for some non-autonomous problems, Acta Appl. Math. 143 (2016) 165--178. 21. P. Korman, Y. Li, Exact multiplicity of positive solutions for concave-convex and convex-concave nonlinearities, J. Differential Equations 257 (2014) 3730--3737. 22. P. Korman, Y. Li, T. Ouyang, Exact multiplicity results for boundary-value problems with nonlinearities generalising cubic, Proc. Roy. Soc. Edinburgh, Ser. A 126 (1996) 599--616. 23. T. Laetsch, The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J. 20 (1970) 1--13. 24. S.-Y. Lee, S.-H. Wang, C.-P. Ye, Explicit necessary and sufficient conditions for the existence of a dead core solution of a p-Laplacian steady-state reaction-diffusion problem, Discrete Contin. Dyn. Syst., Supplement Volume (2005) 587--596. 25. S. Oruganti, J. Shi, R. Shivaji, Diffusive logistic equation with constant effort harvesting, I: Steady states, Trans. Amer. Math. Soc. 354 (2002) 3601--3619. 26. S. Oruganti, J. Shi, R. Shivaji, Logistic equation with the p-Laplacian and constant yield harvesting, Abstr. Appl. Anal. 2004 (2004) 723--727. 27. T. Ouyang, J. Shi, Exact multiplicity of positive solutions for a class of semilinear problems: II, J. Differential Equations 158 (1999) 94--151. 28. H.L. Royden, Real Analysis, Macmillan, New York, 1988. 29. J. Shi, R. Shivaji, Exact multiplicity of solutions for classes of semipositone problems with concave-convex nonlinearity, Discrete Contin. Dyn. Syst. 7 (2001) 559--571. 30. S. Takeuchi, Multiplicity result for a degenerate elliptic equation with logistic reaction. J. Differential Equations 173 (2001) 138--144. 31. S. Takeuchi, Y. Yamada, Asymptotic properties of a reaction-diffusion equation with degenerate p-Laplacian, Nonlinear Anal. 42 (2000) 41--61. 32. S.-H. Wang, Bifurcation of positive solutions of generalized nonlinear undamped pendulum problems, Bull. Inst. Math. Acad. Sinica 21 (1993) 211--227. 33. S.-H. Wang, Positive solutions for a class of nonpositone problems with concave nonlinearities, Proc. Roy. Soc. Edinburgh 124A (1994) 507--515. 34. R.L. Wheeden, A. Zygmund, Measure and Integral: An Introduction to Real Analysis, Marcel Dekker, New York, 1977. |