帳號:guest(18.218.103.200)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王大維
作者(外文):Wang, Ta-Wei
論文名稱(中文):搭載含硼藥物微氣泡應用於硼中子捕獲治療可行性之研究
論文名稱(外文):Feasibility study of boron drug delivery using boron-carrying microbubbles with focused ultrasound for glioma in boron neutron therapy
指導教授(中文):葉秩光
指導教授(外文):Yeh, Chih-Kuang
口試委員(中文):周鳳英
蔡惠予
劉浩澧
王中信
口試委員(外文):Chou, Fong-In
Tsai, Hui-Yu
Liu, Hao-Li
Wang, Chung-Hsin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:核子工程與科學研究所
學號:105013523
出版年(民國):107
畢業學年度:107
語文別:中文
論文頁數:71
中文關鍵詞:硼中子捕獲治療微氣泡聚焦式超音波血腦障蔽血腫瘤障蔽腫瘤組織比
外文關鍵詞:Boron neutron capture therapy (BNCT)Microbubble (MBs)Focus Ultrasound (FUS)Blood brain barrier (BBB)Blood tumor barrier (BTB)T/N ratio
相關次數:
  • 推薦推薦:0
  • 點閱點閱:78
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
硼中子捕獲治療(Boron neutron capture therapy, BNCT)已被廣泛研究在治療神經膠質瘤(Glioblastoma miltiforme, GBM)上,治療方式是靜脈注射含硼藥物後,等待藥物自然被腦腫瘤吸收至足夠治療之劑量後,再照射中子射束驅動含硼藥物釋放放射性元素,殺死腫瘤細胞。目前臨床上所使用的含硼藥物,如BSH (Sodium Borocaptate),由於血腦障蔽(Blood-brain barrier, BBB)及血腫瘤障蔽(Blood-tumor barrier, BTB)的阻礙,僅能透過增強滲透滯留效應 (Enhanced permeability and retention effect, EPR effect)被動進入腫瘤中,需等待相當長的循環時間(~6小時)以達到治療所需的劑量,如此將提升其他健康組織額外吸收含硼藥物的風險;此外,此被動式藥物遞送方式將會因為個體差異所導致硼藥物在腦瘤累積量的不足、硼藥物的分布不均勻及達不到足夠的腫瘤正常組織比(Tumor/normal tissue ration, T/N ratio)進行治療。為改善上述問題,本研究提出利用含硼藥物負載之磷脂質微氣泡 (boron drug-loaded microbubbles, B-MBs)配合超音波激發之藥物遞送方法,利用超音波誘發微氣泡產生穴蝕效應,增加血腦障蔽通透性並同時將微氣泡負載的藥物遞送入腫瘤中,企圖在短時間內提升腫瘤組織比和腫瘤血液比(Tumor/Blood ratio, T/B ratio)。
本研究首先將含硼藥物(PEG-b-PMBSH)以靜電相吸的方式吸附在正電微氣泡(positive microbubble, pMBs)上,其濃度為5.5 ± 2.4 ppm,並且對其基本物理及聲學性質進行測量。後續在C57BL/6小鼠腦瘤模型上評估超音波與微氣泡對腦部之傷害,再以伊凡藍染色(Evans blue, EB)進行開啟血腦障蔽之可行性測試與最佳超音波參數評估,最後再以感應藕荷電漿質譜儀(Inductively couple plasma mass spectrometry, ICP-MS)和雷射剝蝕感應藕荷電漿質譜儀(Lasar ablation inductively couple plasma mass spectrometry, LA-ICP-MS)定量分析含硼藥物遞送後腫瘤、血液和對側腦組織之硼元素濃度和分布。
結果顯示B-MBs配合參數0.5 MPa、duty cycle 0.5 %、照射時間1分鐘的超音波的作用下,可在不傷害腦組織的情況下達到最佳的BTB通透性;腫瘤內部的硼藥物濃度在超音波照射結束後即達到最高的T/N ratio (4.4 ± 1.4),而含硼藥物與微氣泡分開注射的組別則須等待60分鐘才可達到接近劑量(0.55 ppm);此外,將藥物包覆之微氣泡中可大幅減少血液中的硼濃度,提供較高的T/B ratio (1.4 ± 0.6 v.s 0.08 ± 0.01)。
未來工作包括延長超音波照射的時間及提升微氣泡上的藥物負載量以增加腫瘤中的藥物累積量,達到治療劑量後將實際照射中子應用在硼中子捕獲治療上觀察其療效。
Boron neutron capture therapy (BNCT) is the mainstay radiotherapy for treating glioblastoma multiforme (GBM). However, the penetration of current clinical drug (i.e. BSH) for BNCT into brain tumor is limited by the cerebral vesicular protective structures, blood-brain barrier (BBB) and blood-tumor barrier (BTB). In order to achieve sufficient tumor/normal tissue (T/N) ratio of BSH for BNCT treatment, it is necessary to wait BSH natural diffusion into tumor for several hours (~6 h) via ERP effect, probably inducing greatly different deposition within tumor. This study proposed the boron drug (PEG-b-PMBSH) loaded cationic microbubbles (B-MBs). With focused ultrasound (FUS) sonication, B-MBs could simultaneously achieved BTB-opening and boron drug delivery into tumor tissue, improving the T/N ratio in 30 min. B-MBs (5.5 ± 2.4 ppm) were prepared by loading PEG-b-PMBSH (300 ± 9 nm) onto the lipid-shell of cationic MBs (1 ± 0.2 µm) by electrostatic force. FUS (frequency = 1 MHz, energy = 0.3-0.7 MPa, duty cycle = 0.5%, sonication = 1 min) was applied following B-MB IV injection. The permeability of BTB was estimated by Evans blue staining. The 10B deposition within tumor tissue were quantified and mapped by inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), respectively. B-MBs with FUS (0.5 MPa) provided sufficient BBB-opening area for enhanced Evans blue within tumor lesions without occurrence of brain damage. Compared with the group of MBs with PEG-b-PMBSH separately administration, the T/N ratio was immediately increase into the tumor by B-MBs (4.4 ± 1.4 vs 1.3 ± 0.001 ) within 30 min. In addition, the tumor/blood tissue (T/B ratio) were largely increase following the encapsulation of PEG-b-PMBSH into MBs (1.4 ± 0.6 vs 0.08 ± 0.01). The LA-ICP-MS also confirmed that the treatment of B-MBs with FUS not only enhanced the permeability of BBB, but also largely delivered 10B into the tumor.
The T/N ratio could be improved 3 fold by the proposed drug delivery platform within 30 min. The Boron concentration within blood could be decreased 20 fold by the encapsulation of MBs. Future work including: (1) increasing the amount of drug accumulation (elongating the FUS irradiation time and improving the amount of drug encapsulation); (2) combing with BNCT for brain tumor treatment with low side-effects.
第一章 緒論 1
1.1 神經膠質母細胞瘤 1
1.1.1 腦瘤治療與現今治療瓶頸 1
1.1.2 硼中子捕獲治療 (Boron neutron capture therapy, BNCT) 2
1.1.3 含硼藥物 3
1.2 血腦障蔽 (BLOOD BRAIN BARRIER, BBB) 4
1.2.1 增加血腦障蔽通透性的方法 5
1.3 聚焦式超音波 6
1.3.1 超音波對比劑微氣泡 7
1.3.2 超音波和生物組織之相互效應 7
1.3.2.1 熱效應 7
1.3.2.2 機械效應 8
1.3.2.3 穴蝕效應 8
1.3.2.4 微氣泡與超音波之協同作用 9
1.4 載藥微氣泡 10
1.5 BNCT藥物遞送方法 12
1.6 研究動機與目的 13
第二章 材料與方法 15
2.1 概論 15
2.2 包覆硼藥物微氣泡製備(B-MBS) 15
2.2.1 造影用微氣泡製作 16
2.2.2 光學定性分析 16
2.2.3 濃度、粒徑、表面電位量測分析 16
2.2.4 B-MBs 載藥量定量 17
2.2.5 仿體製備 17
2.2.6 聲學穩定度分析 17
2.3 體外聲學實驗 18
2.3.1 慣性穴蝕效應量測 19
2.3.2 擊破閥值量測 21
2.4 細胞實驗 23
2.4.1 細胞培養繼代 23
2.4.2 細胞存活率實驗 23
2.4.3 微氣泡配合超音波細胞傷害之測試 24
2.5 動物實驗架構 25
2.5.1 聚焦式超音波探頭校正與聲場掃描 26
2.5.2 實驗動物 28
2.5.3 體內存活率 28
2.5.4 腦瘤腫瘤模型 29
2.5.5 治療參數及開啟血腦障蔽之評估 30
2.5.5.1 組織切片與染色 31
2.5.5.2 H & E染色 31
2.5.5.3 傷害評估 32
2.5.5.4 血腦障蔽通透性量測 33
2.5.5.5 開啟血腫瘤障蔽之時效性 33
2.5.6 雷射剝蝕電漿耦合質譜儀-硼分布圖譜 34
2.5.7 藥物遞送評估 35
2.5.7.1 血液樣品及組織樣品消化與硼濃度量測 35
2.5.8 微氣泡代謝路徑分布評估 36
2.5.8.1 螢光微氣泡製備 36
2.5.8.2 非侵入式分子影像系統造影 36
2.6 統計分析 37
第三章 結果與討論 38
3.1 概述 38
3.2 B-MBS性質量測 38
3.2.1 B-MBs載藥量之量測 38
3.2.2 B-MBs光學性質 39
3.2.3 B-MBs粒徑分布 40
3.2.4 B-MBs聲學穩定性 41
3.3 聲學性質量測 42
3.3.1 慣性穴蝕效應量測 42
3.3.2 擊破閥值量測 43
3.4 細胞實驗 44
3.4.1 細胞毒性測試 44
3.4.2 超音波搭配B-MBs瞬間傷害評估 45
3.5 GL261腦腫瘤生長曲線 46
3.6 體內穩定性 47
3.7 超音波校正與聲場掃描 48
3.8 超音波治療參數評估 50
3.8.1 以B-MBs開啟血腫瘤障蔽之傷害評估 50
3.8.2 血腫瘤障蔽通透性量測 52
3.8.3 開啟血腫瘤障蔽之時效性 53
3.9 藥物動力學 54
3.10 雷射剝蝕電漿耦合質譜儀-硼分布圖譜 58
3.11 微氣泡之生物分佈評估 59
第四章 結論與未來展望 61
4.1 結論 61
4.2 未來工作 62
4.2.1 拉長超音波照射時間及多次注射 62
4.2.2 製程改善 63
4.2.3 微氣泡生物分佈與代謝途徑 64
第5章 參考文獻 66
[1]Louis, D.N., et al., The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol, 2016. 131(6): p. 803-20.
[2]Parsa, J.R.A., Current understanding and treatment of glioma. Cancer Treatment and Research, 2015.
[3]Barth, R.F., et al., Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer. Radiat Oncol, 2012. 7: p. 146.
[4]Kankaanranta, L., et al., L-boronophenylalanine-mediated boron neutron capture therapy for malignant glioma progressing after external beam radiation therapy: a Phase I study. Int J Radiat Oncol Biol Phys, 2011. 80(2): p. 369-76.
[5]Capala, J., et al., Boron neutron capture therapy for glioblastoma multiforme: clinical studies in Sweden. Journal of Neuro-oncology, 2003. 62(1-2): p. 135-144.
[6]Yokoyama, K., et al., Pharmacokinetic study of BSH and BPA in simultaneous use for BNCT. J Neurooncol, 2006. 78(3): p. 227-32.
[7]Capala, J., et al., Boronated epidermal growth factor as a potential targeting agent for boron neutron capture therapy of brain tumors. Bioconjug Chem, 1996. 7(1): p. 7-15.
[8]Wu, G., et al., Molecular targeting and treatment of an epidermal growth factor receptor-positive glioma using boronated cetuximab. Clin Cancer Res, 2007. 13(4): p. 1260-8.
[9]Yang, W., et al., Convection enhanced delivery of boronated EGF as a molecular targeting agent for neutron capture therapy of brain tumors. J Neurooncol, 2009. 95(3): p. 355-365.
[10]Yang, W., et al., Molecular targeting and treatment of EGFRvIII-positive gliomas using boronated monoclonal antibody L8A4. Clin Cancer Res, 2006. 12(12): p. 3792-802.
[11]Yang, W., et al., Molecular targeting and treatment of composite EGFR and EGFRvIII-positive gliomas using boronated monoclonal antibodies. Clin Cancer Res, 2008. 14(3): p. 883-91.
[12]Iguchi, Y., et al., Tumor-specific delivery of BSH-3R for boron neutron capture therapy and positron emission tomography imaging in a mouse brain tumor model. Biomaterials, 2015. 56: p. 10-7.
[13]John s. Hill, S.B.K., etal., Selective tumor uptake of a boronated porphyrin in an animal model of cerebral glioma. Proceedings of the National Academy of Sciences, 1992. 89: p. 1785-1789.
[14]Ol'shevskaya, V.A., et al., Boronated porphyrins and chlorins as potential anticancer drugs. Bulletin of the Korean Chemical Society, 2007. 28(11): p. 1910-1916.
[15]Ozawa, T., et al., Toxicity, biodistribution, and convection-enhanced delivery of the boronated porphyrin BOPP in the 9L intracerebral rat glioma model. Int J Radiat Oncol Biol Phys, 2005. 63(1): p. 247-52.
[16]Futamura, G., et al., Evaluation of a novel sodium borocaptate-containing unnatural amino acid as a boron delivery agent for neutron capture therapy of the F98 rat glioma. Radiat Oncol, 2017. 12(1): p. 26.
[17]Morris, G.M., et al., Response of the central nervous system to boron neutron capture irradiation: evaluation using rat spinal cord model. Radiotherapy and Oncology, 1994. 32(3): p. 249-255.
[18]Kuthala, N., et al., Engineering Novel Targeted Boron-10-Enriched Theranostic Nanomedicine to Combat against Murine Brain Tumors via MR Imaging-Guided Boron Neutron Capture Therapy. Adv Mater, 2017. 29(31).
[19]Yinghuai, Z., et al., Recent Developments in Boron Neutron Capture Therapy (BNCT) Driven by Nanotechnology. Current Chemical Biology, 2007. 1(2): p. 141-149.
[20]Altieri, S., et al., Carborane derivatives loaded into liposomes as efficient delivery systems for boron neutron capture therapy. J Med Chem, 2009. 52(23): p. 7829-35.
[21]Doi, A., et al., Tumor-specific targeting of sodium borocaptate (BSH) to malignant glioma by transferrin-PEG liposomes: a modality for boron neutron capture therapy. J Neurooncol, 2008. 87(3): p. 287-94.
[22]Koganei, H., et al., Development of high boron content liposomes and their promising antitumor effect for neutron capture therapy of cancers. Bioconjug Chem, 2013. 24(1): p. 124-32.
[23]Martini, S., et al., Boronphenylalanine insertion in cationic liposomes for Boron Neutron Capture Therapy. Biophys Chem, 2004. 111(1): p. 27-34.
[24]Nakamura, H., Liposomal Boron Delivery System for Neutron Capture Therapy. Yakugaku Zasshi, 2008. 128(2): p. 193-208.
[25]Takeuchi, I., et al., PEGylated liposomes prepared with polyborane instead of cholesterol for BNCT: characteristics and biodistribution evaluation. Colloid and Polymer Science, 2016. 294(10): p. 1679-1685.
[26]Gaumet, M., et al., Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm, 2008. 69(1): p. 1-9.
[27]Hobbs, S.K., et al., Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment. Proceedings of the National Academy of Sciences, 1998. 95(8): p. 4607-4612.
[28]Aryal, M., et al., Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system. Adv Drug Deliv Rev, 2014. 72: p. 94-109.
[29]Vykhodtseva, N., N. McDannold, and K. Hynynen, Progress and problems in the application of focused ultrasound for blood-brain barrier disruption. Ultrasonics, 2008. 48(4): p. 279-96.
[30]Rapoport, S.I., et al., Osmotic Opening of the Blood–Brain Barrier Principles, Mechanism, and Therapeutic Applications. Cellular and Molecular Neurobiology, 2000. 20(2): p. 217-230.
[31]Barth, R.F., et al., Neutron capture therapy of intracerebral melanoma: enhanced survival and cure after blood-brain barrier opening to improve delivery of boronophenylalanine. International Journal of Radiation Oncology Biology Physics, 2002. 52(3): p. 858-868.
[32]Barth, R.F., et al., Boron neutron capture therapy of brain tumors: enhanced survival and cure following blood–brain barrier disruption and intracarotid injection of sodium borocaptate and boronophenylalanine. International Journal of Radiation Oncology* Biology* Physics, 2000. 47(1): p. 209-218.
[33]Barth, R.F., et al., Boron neutron capture therapy of brain tumors: enhanced survival following intracarotid injection of either sodium borocaptate or boronophenylalanine with or without blood-brain barrier disruption. Cancer Research, 1997. 57(6): p. 1129-1136.
[34]Yang, W., et al., Enhanced survival of glioma bearing rats following boron neutron capture therapy with blood-brain barrier disruption and intracarotid injection of boronophenylalanine. Journal of neuro-oncology, 1997. 33(1): p. 59-70.
[35]Guerin C1, O.A., et al., Recent Advances in Brain Tumor Therapy Local Intracerebral Drug Delivery by Polymers. Invest New Drugs. 22(1): p. 27-37.
[36]Pardridge, W.M., The blood-brain barrier: bottleneck in brain drug development. NeuroRx, 2005. 2(1): p. 3-14.
[37]Izadifar, Z., P. Babyn, and D. Chapman, Mechanical and Biological Effects of Ultrasound: A Review of Present Knowledge. Ultrasound Med Biol, 2017. 43(6): p. 1085-1104.
[38]Vykhodtseva, N.I., K. Hynynen, and C. Damianou, Histologic effects of high intensity pulsed ultrasound exposure with subharmonic emission in rabbit brain in vivo. Ultrasound in Medicine & Biology, 1995. 21(7): p. 969-979.
[39]Mesiwala, A.H., et al., High-intensity focused ultrasound selectively disrupts the blood-brain barrier in vivo. Ultrasound Med Biol, 2002. 28(3): p. 389-400.
[40]Liu, H.L., et al., Combining microbubbles and ultrasound for drug delivery to brain tumors: current progress and overview. Theranostics, 2014. 4(4): p. 432-44.
[41]Chen, H. and E.E. Konofagou, The size of blood-brain barrier opening induced by focused ultrasound is dictated by the acoustic pressure. J Cereb Blood Flow Metab, 2014. 34(7): p. 1197-204.
[42]Choi, J.J., et al., Noninvasive and localized blood-brain barrier disruption using focused ultrasound can be achieved at short pulse lengths and low pulse repetition frequencies. J Cereb Blood Flow Metab, 2011. 31(2): p. 725-37.
[43]Chopra, R., N. Vykhodtseva, and K. Hynynen, Influence of exposure time and pressure amplitude on blood-brain-barrier opening using transcranial ultrasound exposures. ACS Chem Neurosci, 2010. 1(5): p. 391-398.
[44]Samiotaki, G. and E.E. Konofagou, Dependence of the reversibility of focused-ultrasound-induced blood-brain barrier opening on pressure and pulse length in vivo. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2013. 60(11): p. 2257-2265.
[45]Vlachos, F., Y.S. Tung, and E. Konofagou, Permeability dependence study of the focused ultrasound-induced blood-brain barrier opening at distinct pressures and microbubble diameters using DCE-MRI. Magn Reson Med, 2011. 66(3): p. 821-30.
[46]Lentacker, I., S.C. De Smedt, and N.N. Sanders, Drug loaded microbubble design for ultrasound triggered delivery. Soft Matter, 2009. 5(11).
[47]Ting, C.Y., et al., Concurrent blood-brain barrier opening and local drug delivery using drug-carrying microbubbles and focused ultrasound for brain glioma treatment. Biomaterials, 2012. 33(2): p. 704-12.
[48]Escoffre, J.M., et al., Doxorubicin liposome-loaded microbubbles for contrast imaging and ultrasound-triggered drug delivery. IEEE Trans Ultrason Ferroelectr Freq Control, 2013. 60(1): p. 78-87.
[49]Geers, B., et al., Self-assembled liposome-loaded microbubbles: The missing link for safe and efficient ultrasound triggered drug-delivery. J Control Release, 2011. 152(2): p. 249-56.
[50]Yu, F.T., et al., Low Intensity Ultrasound Mediated Liposomal Doxorubicin Delivery Using Polymer Microbubbles. Mol Pharm, 2016. 13(1): p. 55-64.
[51]Fan, C.H., et al., Folate-conjugated gene-carrying microbubbles with focused ultrasound for concurrent blood-brain barrier opening and local gene delivery. Biomaterials, 2016. 106: p. 46-57.
[52]Lammers, T., et al., Theranostic USPIO-Loaded Microbubbles for Mediating and Monitoring Blood-Brain Barrier Permeation. Adv Funct Mater, 2015. 25(1): p. 36-43.
[53]Hu, Y., J.M. Wan, and A.C. Yu, Membrane perforation and recovery dynamics in microbubble-mediated sonoporation. Ultrasound Med Biol, 2013. 39(12): p. 2393-405.
[54]van Wamel, A., et al., Vibrating microbubbles poking individual cells: drug transfer into cells via sonoporation. J Control Release, 2006. 112(2): p. 149-55.
[55]De Cock, I., et al., Sonoprinting and the importance of microbubble loading for the ultrasound mediated cellular delivery of nanoparticles. Biomaterials, 2016. 83: p. 294-307.
[56]Kooiman, K., et al., Acoustic behavior of microbubbles and implications for drug delivery. Adv Drug Deliv Rev, 2014. 72: p. 28-48.
[57]Luan, Y., et al., Lipid shedding from single oscillating microbubbles. Ultrasound Med Biol, 2014. 40(8): p. 1834-46.
[58]Yang, F.Y., et al., Pharmacokinetics of BPA in gliomas with ultrasound induced blood-brain barrier disruption as measured by microdialysis. PLoS One, 2014. 9(6): p. e100104.
[59]Yang, F.Y., et al., Boron neutron capture therapy for glioblastoma multiforme: enhanced drug delivery and antitumor effect following blood-brain barrier disruption induced by focused ultrasound. Future Oncol, 2012. 8(10): p. 1361-9.
[60]Alkins, R.D., et al., Enhancing drug delivery for boron neutron capture therapy of brain tumors with focused ultrasound. Neuro Oncol, 2013. 15(9): p. 1225-35.
[61]Kang, S.-T., et al., Internal polymer scaffolding in lipid-coated microbubbles for control of inertial cavitation in ultrasound theranostics. Journal of Materials Chemistry B, 2015. 3(29): p. 5938-5941.
[62]Ergen, C., et al., Targeting distinct myeloid cell populations in vivo using polymers, liposomes and microbubbles. Biomaterials, 2017. 114: p. 106-120.
[63]Tartis, M.S., et al., Dynamic microPET imaging of ultrasound contrast agents and lipid delivery. J Control Release, 2008. 131(3): p. 160-6.
[64]Barrefelt, A., et al., Fluorescence labeled microbubbles for multimodal imaging. Biochem Biophys Res Commun, 2015. 464(3): p. 737-42.
[65]Lin, C.Y., et al., Effects of focused ultrasound and microbubbles on the vascular permeability of nanoparticles delivered into mouse tumors. Ultrasound Med Biol, 2010. 36(9): p. 1460-9.
[66]Shen, Y., et al., Enhanced delivery of paclitaxel liposomes using focused ultrasound with microbubbles for treating nude mice bearing intracranial glioblastoma xenografts. Int J Nanomedicine, 2017. 12: p. 5613-5629.
[67]Wang, P.H., et al., Gold-nanorod contrast-enhanced photoacoustic micro-imaging of focused-ultrasound induced blood-brain-barrier opening in a rat model. J Biomed Opt, 2012. 17(6): p. 061222.
[68]Yao, L., et al., Facilitated brain delivery of poly (ethylene glycol)-poly (lactic acid) nanoparticles by microbubble-enhanced unfocused ultrasound. Biomaterials, 2014. 35(10): p. 3384-95.
[69]Gao, Z., et al., Use of boron cluster-containing redox nanoparticles with ROS scavenging ability in boron neutron capture therapy to achieve high therapeutic efficiency and low adverse effects. Biomaterials, 2016. 104: p. 201-12.
[70]Toft, K.G., et al., Disposition of perfluorobutane in rats after intravenous injection of Sonazoid. Ultrasound Med Biol, 2006. 32(1): p. 107-14.
[71]Liu, Y.N., et al., Renal retention of lipid microbubbles: a potential mechanism for flank discomfort during ultrasound contrast administration. J Am Soc Echocardiogr, 2013. 26(12): p. 1474-81.
[72]Cho, H., et al., Localized Down-regulation of P-glycoprotein by Focused Ultrasound and Microbubbles induced Blood-Brain Barrier Disruption in Rat Brain. Sci Rep, 2016. 6: p. 31201.
[73]Burke, C.W., et al., Ultrasound-activated agents comprised of 5FU-bearing nanoparticles bonded to microbubbles inhibit solid tumor growth and improve survival. Mol Ther, 2014. 22(2): p. 321-328.
[74]Liao, A.H., et al., Estimating the delivery efficiency of drug-loaded microbubbles in cancer cells with ultrasound and bioluminescence imaging. Ultrasound Med Biol, 2012. 38(11): p. 1938-48.
[75]Yanagisawa, K., et al., Phagocytosis of ultrasound contrast agent microbubbles by Kupffer cells. Ultrasound Med Biol, 2007. 33(2): p. 318-25.
[76]Al Rawashdeh, W., et al., Noninvasive Assessment of Elimination and Retention using CT-FMT and Kinetic Whole-body Modeling. Theranostics, 2017. 7(6): p. 1499-1510.
[77]Garg, S., A.A. Thomas, and M.A. Borden, The effect of lipid monolayer in-plane rigidity on in vivo microbubble circulation persistence. Biomaterials, 2013. 34(28): p. 6862-70.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *