帳號:guest(3.149.251.104)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張祐銜
作者(外文):Chang, Yu-Hsien
論文名稱(中文):振動特性對矩形管雙相流之影響研究
論文名稱(外文):The Influence of Vibration Characteristics on Two-phase Flow in Rectangular Channel
指導教授(中文):陳紹文
指導教授(外文):Chen, Shao-Wen
口試委員(中文):王仲容
鄭憶湘
口試委員(外文):Wang, Jong-Rong
Cheng, I-Hsiang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:核子工程與科學研究所
學號:105013516
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:105
中文關鍵詞:空泡分率振動頻率震幅流譜
外文關鍵詞:Void fractionVibrationFrequencyAmplitudeFlow pattern
相關次數:
  • 推薦推薦:0
  • 點閱點閱:96
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
日本東北強震後,世界各國重新檢視核電廠安全,並且著重的重點已經不再電廠本身的建築強度,轉而探討電廠系統的暫態問題。此外台灣位於環太平洋地震帶,更須審慎以待。有鑑於在振動情況下,雙相流的影響研究文獻還不是很完整,因此本論文規劃一連串實驗,首先規劃10種水流量與10種氣流量,進行無振動之雙相流測試,以此為基準,爾後在相同的流量條件下施加振動並進行測試。而振動特性分為振幅與頻率兩部分,振幅控制在1~2cm之間,而頻率控制在1~2Hz之間,並且分別進行探討。分析的部分,運用空泡分率的平均值、標準差、機率密度曲線(PDF)與累績機率密度曲線(CPDF)以觀察管中雙相流的變化,可以發現在低空泡分率的狀況下,振幅與頻率的提升皆會使氣泡互相碰撞的機會增加,進而使氣泡結合形成大型氣泡,而在較高空泡分率的區域,氣泡尺寸原本就比較大,其泡結合的效應不再明顯,振動反而增加水的紊流力,使大型氣泡被切割。此外會搭配K-means演算法進行流譜邊界的判定,可以發現頻率與振幅的施加皆會使流譜邊界往左偏移,但頻率的效果較為明顯,並且發現在相同振動加速度下,流譜邊界會因為共振現象而偏移較多。上述結果說明了許多振動所造成的影響,希望未來應用於雙相流系統特性與安全度分析上。
After the accident of Fukushima nuclear power plant, researchers review the safety of nuclear power plant. Instead of the safety of construction, researcher focus on the transient of two-phase flow in nuclear power plant. Moreover, Taiwan is located at Ring of Fire. The influence of earthquake should be faced seriously.
In this study, two-phase flow would be tested under vibration. The condition of vibration would be control at frequency in range of 1~2Hz and amplitude in range of 1~2cm. The electrode probes would measure the void fraction which would be analyzed by some statistic method such as average, standard deviation, PDF and CPDF. In result, bubbles would coalesce to each other to become a bigger bubble under vibration in low void fraction region. However, in high void fraction region, vibration would cause the bigger bubble sliced by the water and become small bubble. Vibration also lead the flow pattern boundary shifted on left, and the effect of frequency is greater than the amplitude. Besides, if the vibration frequency matches to system natural frequency, it would cause resonance vibration. The flow pattern boundary shifts more. According these result, earthquake would influence the two-phase flow in nuclear power plant, and it should be considered for the safety issue in the future.
致謝 i
摘要 iii
Abstract v
目錄 vi
表目錄 ix
圖目錄 x
符號說明 xvi
第一章 緒論 1
1.1 研究背景 1
1.2 雙相流介紹 2
1.3 地震震波特性 5
1.4 研究目的 9
第二章 文獻回顧 10
2.1 低頻振動對於雙相流之影響 10
2.1.1 流動引發之振動(Flow induced vibration) 11
2.1.2 次冷沸騰(Subcooled boiling)及飽和沸騰(Saturated boiling)雙相流與振動 14
2.1.3 絕熱雙相流與振動 17
2.2 垂直雙相流 21
2.2.1 圓形管雙相流 21
2.2.2 非圓形管雙相流 26
2.3 雙相流實驗方法 34
2.4 小結 38
第三章 實驗系統設計 39
3.1 絕熱雙相流振動實驗系統 39
3.1.1 空氣供給系統 40
3.1.2 冷水供給系統 41
3.1.3 實驗管道系統 43
3.1.4 振動平台系統 45
3.1.5 訊號量測與數據擷取系統 46
3.1.6 高速攝影系統 48
3.2 實驗程序 50
3.3 實驗範圍 52
3.3.1 穩態矩形管實驗範圍 52
3.3.2 垂直振動矩形管實驗範圍 53
第四章 結果與討論 54
4.1 訊號校正實驗 54
4.1.1 訊號轉換實驗 54
4.1.2 電導度計感應測試實驗 58
4.1.3 電導度計實際測試實驗 59
4.2 無振動矩形管雙相流實驗 64
4.3 有振動矩形管雙相流實驗 69
4.3.1 振幅對於矩形管雙相流之影響 69
4.3.2 頻率對於矩形管雙相流之影響 76
4.4 雙相流流譜邊界判斷 83
4.4.1 文獻之流譜邊界判斷結果 83
4.4.2 改良後之流譜邊界判斷結果 83
4.4.3 運用K-means演算法之流譜邊界判斷結果 86
第五章 結論 100
5.1 研究成果 100
5.2 建議 101
參考文獻 102

1. NRC, North Anna earthquake summary. 2011.
2. Bertola, Modelling and experimentation in two-phase flow. 2003.
3. Shearer, Introduction to Seismology. 2009: Cambridge.
4. Energy, M.o., How big are earthquakes? 2006.
5. TEPCO, Press release : The record of the earthquake intensity observed at Fukushima Daiichi nuclear power station and Fukushima Daini nuclear power station (interim report). 2011.
6. Hirano, M. and T. Tamakoshi, An analytical study on excitation of nuclear-coupled thermal hydraulic instability due to seismically induced resonance in BWR. Nuclear Engineering and Design, 1996. 162: p. 307-315.
7. Satou, A., et al., Neutron-Coupled Thermal Hydraulic Calculation of BWR under Seismic Acceleration. Nuclear Science and Technology, 2011. 2: p. 120-124.
8. Hibiki, T. and M. Ishii, Effect of Flow-Induced Vibration on Local Flow Parameters of Two-Phase Flow. Nuclear Engineering and Design, 1998. 185: p. 113-125.
9. Lee, Y.H. and S.H. Chang, The Effect of Vibration on Critical Heat Flux in a Vertical Round Tube. Journal of Nuclear Science and Technology, 2003. 40(10): p. 734-743.
10. Lee, Y.H., D.H. Kim, and S.H. Chang, An experimental investigation on the critical heat flux enhancement by mechanical vibration in vertical round tube. Nuclear Engineering and Design, 2004. 229: p. 47-58.
11. Kadhim, S.K. and M.S. Nasif, Experimental investigation of the effect vertical oscillation on the heat transfer coefficient of the finned tube. MATEC Web of Conferences, 2016.
12. Klaczak, A., Report from experiments on heat transfer by forced vibrations of exchangers. Heat and Mass Transfer, 1997: p. 477-480.
13. H.ZAbou-Ziyan, et al., Performance of stationary and vibrated thermosyphon working with water and R134a. Applied Thermal Engineering, 1997. 21: p. 813-830.
14. Deaver, F.K., W.R. Penney, and T.B. Jefferson, Heat transfer from an oscillating horizontal wire to water. Journal of Heat Transfer, 1961. 91: p. 251-256.
15. Gibbons, J.H., Effects of sonic vibration on boiling. Chemical Engineering Science, 1961. 15.
16. Nangia, K.K. and W.Y. Chon, Some observation on the effect of interfacial vibration on saturated boiling heat transfer. AIChE Journal, 1967. 13: p. 872-876.
17. Zitko, V. and N.H. Afgan, Boiling heat transfer from oscillating surface. Journal of Enhanced Heat Transfer. Journal of Enhanced Heat Transfer, 1994. 1(2): p. 191-196.
18. Nariai, H. and T. Tanaka, Void fraction of subcooled flow boiling around oscillating heater rod. Annual Spring Meeting of Atomic Energy Society of Japan., 1994.
19. Kawamura, S., A study on neutron flux transient in oscillating fuel assembly. 1996 Annual Spring Meeting of Atomic Energy Society of Japan, 1996.
20. Kawamura, S., Effect of horizontal excitation on bubble behavior at subcooled temperature. 1996 Annual Spring Meeting of Atomic Energy Society of Japan, 1996.
21. Shioyama, T. and K. Ohtomi, Pressure fluctuation and behavior of vapor bubbles for a on-component two-phase flow in a vertical tube induced by longitudinal excitation. H0977AA, 1990. 99.
22. Fujiyama, Y. and H. Ohtake, Study on Saturated Flow Boiling Heat Transfer under Vibration Conditions. 20th International Conference on Nuclear Engineering, 2012: p. 532-527.
23. Li, S., Experimental research of bubble number density and bubble size in narrow rectangular channel under rolling motion. Nuclear Engineering and Design, 2014. 268: p. 41-50.
24. Ohtake, H., Y. Koizumi, and H. Higono, Study on subcooled flow boiling heat transfer under oscillatory flow and vibration conditions. 16th International Conference on Nuclear Engineering, 2008: p. 769-774.
25. Shariff, Y.M., Enhancement of Flow Boiling in Meso Scale Channels with Subsonic Vibrations. Journal of Micro-Nano Mechatronics, 2009. 5(3): p. 93-102.
26. Chen, S.W., Experimental Investigation of Vibration Effects on Subcooled Boiling Two-Phase in an Annulus. 7th International Conference on Multiphase Flow, 2010.
27. Pendyala, R., S. Jayanti, and A.R. Balakrishnan, Flow and pressure drop fluctuations in a vertical tube subject to low frequency oscillations. Nuclear Engineering and Design, 2008. 238(1): p. 178-187.
28. Mizuno, K., Experimental Study on Behavior of Horizontal Bubbly Flow under Structure Vibration. Mechanical Engineering Journal, 2014. 1.
29. Takano, J.I., Bubble Behavior in Horizontal Two-Phase Flow under Flow Rate Fluctuation. Mechanical Engineering Journal, 2014. 1.
30. Yoshida, H., Development of Prediction Technology of Two-Phase Flow Dynamics under Earthquake Acceleration. Mechanical Engineering Journal, 2014. 1.
31. Kato, Y., Development of prediction technology of two-phase flow dynamics under earthquake acceleration (16) experimental and numerical study of pressure fluctuation effects on bubble motion. 23rd International Conference on Nuclear Engineering, 2015.
32. Xiao, X., Vibration effects on bubbly flow structure in an annulus. 24th International Conference on Nuclear Engineering, 2016.
33. Chen, S.W., Experimental Study of Adiabatic Two-Phase Flow in an Annular Channel under Low_Frequency Vibration. Journal of Engineering for Gas Turbines and Power, 2014. 136.
34. Taitel, Y., D. Bornea, and A.E. Dukler, Modelling flow pattern transitions for steady upward gas-liquid flow in vertical tubes. AIChE Journal, 1980. 26(3): p. 345-354.
35. Mishima, K. and M. Ishii, Flow Regime transition criteria for upward two-phase flow in vertical tubes. International Journal of Heat and Mass Transfer, 1984. 27(5): p. 723-737.
36. Hewitt, G.F. and D.N. Roberts, Studies of Two-phase Flow Patterns by Simultaneous X-ray and Flash Photography. Chemical Engineering Division, 1969.
37. Duns Jr., H. and N.C.J. Ros, Vertical flow of gas and liquid mixtures from bronchioles. Proceeding of 6th World Petroleum Congress, 1963.
38. Ohnuki, A. and H. Akimoto, Experimental study on transition of flow pattern and phase distribution in upward air-water two-phase flow along a large vertical pipe. International Journal of Multiphase Flow, 2000. 26: p. 367-386.
39. Schlegel, J.P., Local flow structure beyond bubbly flow in large diameter channels. International Journal of Heat and Fluid Flow, 2014. 47: p. 42-56.
40. Griffith, P., The prediction of low quality boiling voids. 1963.
41. Jr, J., O.C., and N. Zuber, The interrelation between void fraction fluctuations and flow patterns in two-phase flow. International Journal of Multiphase Flow, 1974. 2: p. 273-306.
42. Sadatomi, M., Y. Sato, and S. Saruwatari, Two-phase flow in vertical noncircular channels. International Journal of Multiphase Flow, 1982. 8(6): p. 641-655.
43. Troniewski, L. and R. Ulbrich, Two-Phase Gas-Liquid Flow in Rectangular Channels. Chemical Engineering Science, 1984. 39(4): p. 751-765.
44. Mishima, K., T. Hibiki, and H. Nishihara, Some characteristics of gas-liquid flow in narrow rectangular ducts. International Journal of Multiphase Flow, 1993. 19(1): p. 115-124.
45. Wilmarth, T. and M. Ishii, Two-Phase Flow Regimes in Narrow Rectangular Vertical and Horizontal Channels. International Journal of Heat and Mass Transfer, 1994. 37(12): p. 1749-1758.
46. Hibiki, T. and K. Mishima, Flow regime transition criteria for upward two-phase flow in vertical narrow rectangular channels. Nuclear Engineering and Design, 2001. 203: p. 117-131.
47. Zboray, R., High-frame rate imaging of two-phase flow in a thin rectangular channel using fast neutrons. Applied Radiation and Isotopes, 2014. 90: p. 122-31.
48. Zboray, R., Time-resolved Fast Neutron Radiography of Air-water Two-phase Flows. Physics Procedia, 2015. 69: p. 551-555.
49. Shen, X., et al., Gas-liquid bubbly flow structure in a vertical large-diameter square duct. Progress in Nuclear Energy, 2016. 89: p. 140-158.
50. Ito, D., H. Kikura, and M. Aritomi, Micro wire-mesh sensor for two-phase flow measurement in a rectangular narrow channel. Flow Measurement and Instrumentation, 2011. 22: p. 377-382.
51. Fu, Y. and Y. Liu, Experimental study of bubbly flow using image processing techniques. Nuclear Engineering and Design, 2016. 310: p. 570-579.
52. Ishii, M. and I. Kataoka, Scaling laws for thermal-hydraulic system under single phase and two-phase natural circulation. Nuclear Engineering and Design, 1984. 81: p. 411-425.
53. Maxwell, J.C., A treatise on electricity and magnetism. 1878.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *