帳號:guest(3.135.204.160)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):簡虞軒
作者(外文):Chien, Yu-Hsuan
論文名稱(中文):質子治療誘發二次癌症風險評估模組之開發:考量小兒腦瘤治療之照野內外的器官
論文名稱(外文):Developing the radiation-induced second cancer risk estimation module in proton therapy: considering the organs inside and outside radiation fields in treatment of pediatric brain tumors
指導教授(中文):蔡惠予
許榮鈞
指導教授(外文):Tsai, Hui-Yu
Sheu, Rong-Jiun
口試委員(中文):張似瑮
曾振淦
口試委員(外文):Chang, Szu-Li
Tseng, Chen-Kan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:核子工程與科學研究所
學號:105013505
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:142
中文關鍵詞:輻射致癌風險等價器官劑量擾動式質子治療終生可歸因性風險
外文關鍵詞:Radiation-induced cancerOrgan equivalent doseWobbling proton therapyLife attributable risk
相關次數:
  • 推薦推薦:1
  • 點閱點閱:126
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
評估放射治療後誘發二次致癌風險對於小兒病人尤為重要,因為小兒的組織處於生長期與治癒後存活期較長,而目前的質子治療計畫系統對於照野外的器官劑量,並無考量質子所誘發中子輻射所造成的影響,另外文獻中亦缺乏合併考慮照野內外的輻射誘發癌症風險,鑑於上述三點,本研究目的是開發一個針對照野內外不同劑量範圍,選用各自適用的風險評估模型的臨床風險計算系統,並用其評估小兒腦瘤以擾動式質子治療後的二次致癌風險。
通過人體試驗委員會許可後,取得11位病人DICOM資料,擷取病患資訊並重建危急器官(Organ at risk, OAR)與射束之間的相對位置用以定義OAR屬於照野內或照野外。照野內外分別使用各自適用的風險評估模型,照野內由質子所造成高劑量區,使用學者Schneider開發的器官等價劑量模型(Organ equivalent dose, OED),照野外由散射光子、質子與二次中子所造成的低劑量區,則參考BEIR VII報告中建立的線性風險模型。將照野內外的OAR致癌風險通過台灣人口背景生存機率的加權,計算累積至台灣平均壽命80歲的可歸因性終生危險度(Life attributable risk, LAR)作為風險分析標的。最後使用本風險計算系統評估11位臨床小兒腦瘤病患的二次致癌風險,分別比對其在擾動式質子技術與光子技術的治療計畫下,二次致癌風險的情況。
本研究所開發的臨床風險計算系統建構完成後,先根據已發表文獻比對驗證其可行性,再將此系統用於計算臨床小兒腦瘤病例。計算結果顯示小兒腦部OAR的LAR落在0~9 %之間,每個案例的LAR分布情形與PTV的體積大小與位置有關係。針對小兒腦瘤病患的風險評估比較質子計畫與光子計畫結果,在PTV偏離頭部中心或體積較小的群組裡,可明顯發現擾動式質子治療的風險低於光子治療。
Evaluating the risk of secondary cancer induction after radiation therapy is especially important in pediatric patients because the tissue of the child is in the growth phase and the survival period is longer after the cure, and the current proton therapy does not take into account the dose effects of proton-induced neutron radiation outside the field. In addition, there is also a lack of consideration in the literature to assess the conbination risk of induced cancer by inside and outside the field. Due to the above three points, the purpose of this study is to develop a suitable risk assessment module for different dose ranges inside and outside the field, using their respective risk assessment models, and to assess the secondary risk of pediatric brain tumors after wobbling proton therapy.
After approval by Institutional Review Board(IRB), 11 patients' DICOM data were obtained. Patient information was extracted and the relative position between the Organ at risk (OAR) and the beam was reconstructed to define whether the OAR in the field or out of the field. Select the appropriate risk assessment model inside and outside the field respectively. For high-dose areas(in field), use the Organ equivalent dose(OED) method developed by Uwe Schneider. For low-dose areas(out-of-field) deposited dose by scattered photon, proton and second neutron, refer to the linear risk model established in the BEIR VII report. The OAR radiation-induced cancer risk inside and outside the field was weighted by the survival probability of Taiwan's Life Table, and the life attributable risk(LAR) accumulated to the average life expectancy of Taiwan was calculated as the risk analysis target. Finally, this risk calculation system was used to evaluate the secondary carcinogenic risk of 11 clinical pediatric brain tumor patients, respectively, compared with the secondary cancer risk under the treatment plan of wobbling proton and photon technology.
After the construction of the clinical risk calculation system developed in this study, the feasibility of the system was verified based on the published literature, and the system was used to calculate clinical pediatric brain tumor cases. The calculation results show that the LAR of the pediatric brain OAR is between 0 % and 9 %. The LAR distribution in each case is related to the volume and location of PTV. For the risk assessment of pediatric brain tumor patients, the results of the proton and the photon treatment planning were compared. In the group which PTV locates in the out-of-center of the head or is smaller volume, the risk of wobbling proton therapy was significantly lower than that of photon therapy.
摘要 i
Abstract ii
致謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 研究目的及動機 1
1.2 研究方法與步驟 2
1.3 研究範圍與限制 4
1.4 名詞解釋 5
第二章 介紹與文獻回顧 9
2.1 擾動式質子治療 9
2.1.1 質子治療的發展 9
2.1.2 質子治療技術分類與原理 12
2.1.3 擾動式質子治療技術原理 15
2.2 輻射致癌評估 18
2.2.1 細胞對游離輻射的反應 18
2.2.2 輻射致癌機轉 20
2.2.3 輻射劑量反應調查報告 24
2.2.4 輻射致癌評估模型 29
第三章 研究設計與方法 33
3.1 輻射致癌計算模型 33
3.1.1 高劑量模型 33
3.1.2 低劑量模型 42
3.1.3 未列表之特定器官 45
3.2 臨床風險計算系統建構 47
3.2.1 臨床病例取得與篩選 47
3.2.2 治療計畫 49
3.2.3 治療計畫檔案處理 51
3.2.4 器官位置定義 53
3.2.5 劑量數據 61
3.2.6 計算風險值 69
3.3 程式碼架構 72
第四章 結果與討論 80
4.1 系統驗證 80
4.2 風險結果 85
4.3 總覽與討論 103
第五章 結論與未來工作 107
5.1 研究結論 107
5.2 未來工作 108
參考資料 110
附錄 119
I. Matlab程式碼I:Export data 119
II. Matlab程式碼II:Initialization 123
III. Matlab程式碼III:Process data 126
IV. Matlab程式碼IV:Risk calculation 128
1. Wang, L. and G.X. Ding, "The accuracy of the out-of-field dose calculations using a model based algorithm in a commercial treatment planning system." Phys Med Biol. 59(13): p. N113-28, 2014.
2. Paganetti, H., Proton Beam Therapy. IOP Publishing, 2017.
3. Ma, C.M. and T. Lomax, Proton and Carbon Ion Therapy. Boca Raton, CRC Press, 2012.
4. Wilson, R.R., "Radiological use of fast protons." Radiology. 47(5): p. 487-91, 1946.
5. Thomas F. DeLaney, H.M.K., Proton and Charged Particle Radiotherapy. Lippincott Williams & Wilkins, 2008.
6. Bortfeld, T., H. Paganetti, and H. Kooy, "MO-A-T-6B-01: Proton Beam Radiotherapy - The State of the Art." Medical Physics. 32(6Part13): p. 2048-2049, 2005.
7. Kanai, T., et al., "Spot scanning system for proton radiotherapy." Med Phys. 7(4): p. 365-9, 1980.
8. Schardt, D., T. Elsässer, and D. Schulz-Ertner, "Heavy-ion tumor therapy: Physical and radiobiological benefits." Reviews of Modern Physics. 82(1): p. 383-425, 2010.
9. Lin, L., et al., "A benchmarking method to evaluate the accuracy of a commercial proton monte carlo pencil beam scanning treatment planning system." J Appl Clin Med Phys. 18(2): p. 44-49, 2017.
10. Breuer, H. and B.J. Smit, Proton Therapy and Radiosurgery. Berlin, Springer-Verlag Berlin Heidelberg, 2000.
11. 吳書瑋, "利用PTSim建立林口長庚醫院擾動式質子治療機蒙地卡羅模擬系統." 國立清華大學生醫工程與環境科學系, 博士論文, 2018.
12. Savage, J.R., "Classification and relationships of induced chromosomal structual changes." J Med Genet. 13(2): p. 103-22, 1976.
13. Hall, E.J.G., Amato J., Radiobiology for the Radiologist, 7th Edition. 530 Walnut Street, Philadelphia, PA 19106 USA, Lippincott Williams & Wilkins, 2012.
14. Williams, M.V., J. Denekamp, and J.F. Fowler, "A review of alpha/beta ratios for experimental tumors: implications for clinical studies of altered fractionation." Int J Radiat Oncol Biol Phys. 11(1): p. 87-96, 1985.
15. Shuryak, I., P. Hahnfeldt, L. Hlatky, R.K. Sachs, and D.J. Brenner, "A new view of radiation-induced cancer: integrating short- and long-term processes. Part II: second cancer risk estimation." Radiat Environ Biophys. 48(3): p. 275-86, 2009.
16. Schneider, U., "Modeling the risk of secondary malignancies after radiotherapy." Genes (Basel). 2(4): p. 1033-49, 2011.
17. National research council, "Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2." p. 422, 2006
18. Vahakangas, K.H., et al., "Mutations of p53 and ras genes in radon-associated lung cancer from uranium miners." Lancet. 339(8793): p. 576-80, 1992.
19. Bartsch, H., et al., "Screening for putative radon-specific p53 mutation hotspot in German uranium miners." Lancet. 346(8967): p. 121, 1995.
20. Iwamoto, K.S., et al., "p53 mutations in tumor and non-tumor tissues of thorotrast recipients: a model for cellular selection during radiation carcinogenesis in the liver." Carcinogenesis. 20(7): p. 1283-91, 1999.
21. Venitt, S. and P.J. Biggs, "Radon, mycotoxins, p53, and uranium mining." Lancet. 343(8900): p. 795, 1994.
22. UNSCEAR, "Effects of ionizing radiation. UNSCEAR 2006 Report Vol. I." II, 2006
23. Bounacer, A., et al., "High prevalence of activating ret proto-oncogene rearrangements, in thyroid tumors from patients who had received external radiation." Oncogene. 15(11): p. 1263-73, 1997.
24. Bounacer, A., R. Wicker, M. Schlumberger, A. Sarasin, and H.G. Suarez, "Oncogenic rearrangements of the ret proto-oncogene in thyroid tumors induced after exposure to ionizing radiation." Biochimie. 79(9-10): p. 619-23, 1997.
25. Rabes, H.M., et al., "Pattern of radiation-induced RET and NTRK1 rearrangements in 191 post-chernobyl papillary thyroid carcinomas: biological, phenotypic, and clinical implications." Clin Cancer Res. 6(3): p. 1093-103, 2000.
26. Morgan, W.F., J.P. Day, M.I. Kaplan, E.M. McGhee, and C.L. Limoli, "Genomic instability induced by ionizing radiation." Radiat Res. 146(3): p. 247-58, 1996.
27. Mothersill, C. and C.B. Seymour, "Mechanisms and implications of genomic instability and other delayed effects of ionizing radiation exposure." Mutagenesis. 13(5): p. 421-6, 1998.
28. Little, J.B., "Radiation carcinogenesis." Carcinogenesis. 21(3): p. 397-404, 2000.
29. Kadhim, M.A., D.A. Macdonald, D.T. Goodhead, S.A. Lorimore, S.J. Marsden, and E.G. Wright, "Transmission of chromosomal instability after plutonium alpha-particle irradiation." Nature. 355(6362): p. 738-40, 1992.
30. Watson, G.E., S.A. Lorimore, and E.G. Wright, "Long-term in vivo transmission of alpha-particle-induced chromosomal instability in murine haemopoietic cells." Int J Radiat Biol. 69(2): p. 175-82, 1996.
31. Tawn, E.J., C.A. Whitehouse, D. Holdsworth, S. Morris, and R.E. Tarone, "Chromosome analysis of workers occupationally exposed to radiation at the Sellafield nuclear facility." Int J Radiat Biol. 76(3): p. 355-65, 2000.
32. Tawn, E.J., C.A. Whitehouse, and F.A. Martin, "Sequential chromosome aberration analysis following radiotherapy - no evidence for enhanced genomic instability." Mutat Res. 465(1-2): p. 45-51, 2000.
33. Bouffler, S.D., J.W. Haines, A.A. Edwards, J.D. Harrison, and R. Cox, "Lack of detectable transmissible chromosomal instability after in vivo or in vitro exposure of mouse bone marrow cells to 224Ra alpha particles." Radiat Res. 155(2): p. 345-52, 2001.
34. Kinzler, K.W. and B. Vogelstein, "Cancer-susceptibility genes. Gatekeepers and caretakers." Nature. 386(6627): p. 761, 763, 1997.
35. Grant, E.J., et al., "Solid Cancer Incidence among the Life Span Study of Atomic Bomb Survivors: 1958-2009." Radiat Res. 187(5): p. 513-537, 2017.
36. Brill, A.B., M. Tomonaga, and R.M. Heyssel, "Leukemia in man following exposure to ionizing radiation. A summary of the findings in Hiroshima and Nagasaki, and a comparison with other human experience." Ann Intern Med. 56: p. 590-609, 1962.
37. Ichimaru, M., T. Ishimaru, and J.L. Belsky, "Incidence of leukemia in atomic bomb survivors belonging to a fixed cohort in Hiroshima and Nagasaki, 1950--71. Radiation dose, years after exposure, age at exposure, and type of leukemia." J Radiat Res. 19(3): p. 262-82, 1978.
38. Mabuchi, K., et al., "Cancer incidence in atomic bomb survivors. Part I: Use of the tumor registries in Hiroshima and Nagasaki for incidence studies." Radiat Res. 137(2 Suppl): p. S1-16, 1994.
39. Jablon, S., K. Tachikawa, J.L. Belsky, and A. Steer, "Cancer in Japanese exposed as children to atomic bombs." Lancet. 1(7706): p. 927-32, 1971.
40. Furukawa, K., M. Misumi, J.B. Cologne, and H.M. Cullings, "A Bayesian Semiparametric Model for Radiation Dose-Response Estimation." Risk Anal. 36(6): p. 1211-23, 2016.
41. ICRP, "1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. ." Ann. ICRP. 21(1-3), 1991.
42. EPA, "Estimating Radiogenic Cancer Risks. Addendum: Uncertainty Analysis." 1999
43. UNSCEAR, "Sources and effects of ionizing radiation. UNSCEAR 2000 Report Vol. I." II, 2000
44. NIH, "Report of the NCI-CDC Working Group to Revise the 1985 NIH Radioepidemiological Tables." 2003
45. NCRP, "Second Primary Cancers and Cardiovascular Disease after RadiationTherapy. NCRP Report No. 170." 2011
46. NCI, "SEER Cancer Statistics Review, 1975-2011." 2011
47. Breslow, N.E. and N.E. Day, "Statistical methods in cancer research. Volume I - The analysis of case-control studies." IARC Sci Publ, (32): p. 5-338, 1980.
48. Dores, G.M., et al., "Second malignant neoplasms among long-term survivors of Hodgkin's disease: a population-based evaluation over 25 years." J Clin Oncol. 20(16): p. 3484-94, 2002.
49. NCI, "SEER Cancer Statistics Review, 1975-2014." 2014
50. UNSCEAR, "Sources and effects of ionizing radiation. UNSCEAR 2000 Report Vol. II." I, 2000
51. IARC, "Ionizing Radiation, Part 1: X- and Gamma (γ)-Radiation, and Neutrons, IARC Monographs on the Evaluation of Carcinogenic Risk to Humans, Volume 75." 2000
52. Preston, D.L., et al., "Solid cancer incidence in atomic bomb survivors: 1958-1998." Radiat Res. 168(1): p. 1-64, 2007.
53. Welte, B., et al., "Second Malignancies in High‑Dose Areas of Previous Tumor Radiotherapy." Strahlentherapie und Onkologie. 186(3): p. 174-179Welte2010, 2010.
54. ICRP, "The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103." Ann. ICRP. 37(2-4), 2007.
55. Hall, E.J., "Intensity-modulated radiation therapy, protons, and the risk of second cancers." Int J Radiat Oncol Biol Phys. 65(1): p. 1-7, 2006.
56. Gray, L.H., Cellular radiation biology : a symposium considering radiation effects in the cell and possible implications for cancer therapy : a collection of papers presented at the eighteenth Annual Symposium on Fundamental Cancer Research. Baltimore, Williams and Wilkins, 1965.
57. Little, M.P., D.G. Hoel, J. Molitor, J.D. Boice, R. Wakeford, and C.R. Muirhead, "New models for evaluation of radiation-induced lifetime cancer risk and its uncertainty employed in the UNSCEAR 2006 report." Radiat Res. 169(6): p. 660-76, 2008.
58. Wheldon, E.G., K.A. Lindsay, and T.E. Wheldon, "The dose-response relationship for cancer incidence in a two-stage radiation carcinogenesis model incorporating cellular repopulation." Int J Radiat Biol. 76(5): p. 699-710, 2000.
59. Schneider, U.W., L., "Cancer risk estimates from the combined Japanese A-bomb and Hodgkin cohorts for doses relevant to radiotherapy." Radiat Environ Biophys. 47(2): p. 253-63, 2008.
60. Daşu, A., I. Toma-Daşu, J. Olofsson, and M. Karlsson, "The use of risk estimation models for the induction of secondary cancers following radiotherapy." Acta Oncologica. 44(4): p. 339-347, 2005.
61. Brenner, D.J., R.E. Curtis, E.J. Hall, and E. Ron, "Second malignancies in prostate carcinoma patients after radiotherapy compared with surgery." Cancer. 88(2): p. 398-406, 2000.
62. Schneider, U., "Mechanistic model of radiation-induced cancer after fractionated radiotherapy using the linear-quadratic formula." Med Phys. 36(4): p. 1138-43, 2009.
63. Schneider, U. and L. Walsh, "Cancer risk estimates from the combined Japanese A-bomb and Hodgkin cohorts for doses relevant to radiotherapy." Radiat Environ Biophys. 47(2): p. 253-63, 2008.
64. Schneider, U.Z., D.; Ross, D.; Kaser-Hotz, B., "Estimation of radiation-induced cancer from three-dimensional dose distributions: Concept of organ equivalent dose." Int J Radiat Oncol Biol Phys. 61(5): p. 1510-5, 2005.
65. Schneider, U.S., M.; Robotka, J., "Site-specific dose-response relationships for cancer induction from the combined Japanese A-bomb and Hodgkin cohorts for doses relevant to radiotherapy." Theor Biol Med Model. 8: p. 27, 2011.
66. Nguyen, J., M. Moteabbed, and H. Paganetti, "Assessment of uncertainties in radiation-induced cancer risk predictions at clinically relevant doses." Med Phys. 42(1): p. 81-9, 2015.
67. Preston, D.L., Y. Shimizu, D.A. Pierce, A. Suyama, and K. Mabuchi, "Studies of mortality of atomic bomb survivors. Report 13: Solid cancer and noncancer disease mortality: 1950-1997." Radiat Res. 160(4): p. 381-407, 2003.
68. Chang, A.E., B.T. Ambro, S.E. Strome, J.C. Papadimitriou, and K.D. Pereira, "Immature teratoma of the maxillary sinus: a rare pediatric tumor." JAMA Otolaryngol Head Neck Surg. 140(9): p. 870-2, 2014.
69. Haas-Kogan, D.A., et al., "Radiation therapy for intracranial germ cell tumors." Int J Radiat Oncol Biol Phys. 56(2): p. 511-8, 2003.
70. Leung, H.W., A.L. Chan, and M.B. Chang, "Brain dose-sparing radiotherapy techniques for localized intracranial germinoma: Case report and literature review of modern irradiation." Cancer Radiother. 20(3): p. 210-6, 2016.
71. Kaplon, R., et al., "The application of radiation therapy to the Pediatric Preclinical Testing Program (PPTP): results of a pilot study in rhabdomyosarcoma." Pediatr Blood Cancer. 60(3): p. 377-382, 2013.
72. Dantonello, T.M., et al., "Challenges in the local treatment of large abdominal embryonal rhabdomyosarcoma." Ann Surg Oncol. 21(11): p. 3579-86, 2014.
73. Ware, M.L., S. Cha, N. Gupta, and V.L. Perry, "Radiation-induced atypical meningioma with rapid growth in a 13-year-old girl. Case report." J Neurosurg. 100(5 Suppl Pediatrics): p. 488-91, 2004.
74. Hicsonmez, A., et al., "Challenges and differences in external radiation therapy for retinoblastoma: from standard techniques to new developments." Tumori. 103(5): p. 438-442, 2017.
75. Willard, V.W., H.M. Conklin, F.A. Boop, S. Wu, and T.E. Merchant, "Emotional and behavioral functioning after conformal radiation therapy for pediatric ependymoma." Int J Radiat Oncol Biol Phys. 88(4): p. 814-21, 2014.
76. Gallego, O., "Nonsurgical treatment of recurrent glioblastoma." Curr Oncol. 22(4): p. e273-81, 2015.
77. Friedman, G.N., et al., "Rapid Neurological Recovery Following Partial Surgical Resection of Spinal Glioblastoma Multiforme in a Pediatric Patient Presenting With Complete Paraplegia." J Pediatr Hematol Oncol. 38(8): p. e286-e290, 2016.
78. Shabason, J.E., D. Sutton, O. Kenton, D.M. Guttmann, R.A. Lustig, and C. Hill-Kayser, "Patterns of Failure for Pediatric Glioblastoma Multiforme Following Radiation Therapy." Pediatr Blood Cancer. 63(8): p. 1465-7, 2016.
79. Khan, F.M. and J.P. Gibbons, Khan's The Physics of Radiation Therapy, 5th ed. 5 ed., Lippincott Williams and Wilkins, 2014.
80. 內政部統計處. 最新統計指標. 2016 Access date: 2018/06/12. Available from: https://www.moi.gov.tw/stat/chart.aspx.
81. Mazonakis, M., C. Varveris, E. Lyraraki, and J. Damilakis, "Radiotherapy for stage I seminoma of the testis: Organ equivalent dose to partially in-field structures and second cancer risk estimates on the basis of a mechanistic, bell-shaped, and plateau model." Med Phys. 42(11): p. 6309-16, 2015.
82. Arias, E., "United States life tables, 2010." Natl Vital Stat Rep. 63(7): p. 1-63, 2014.
83. Moteabbed, M.Y., T. I.; Paganetti, H., "The risk of radiation-induced second cancers in the high to medium dose region: a comparison between passive and scanned proton therapy, IMRT and VMAT for pediatric patients with brain tumors." Phys Med Biol. 59(12): p. 2883-99, 2014.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *