帳號:guest(18.118.95.108)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李郁萱
作者(外文):Li, Yu-Hsuan
論文名稱(中文):用過核燃料之乾貯筒材料在含氯環境中的腐蝕行為研究
論文名稱(外文):Corrosion Behavior of Candidate Materials Used in Dry Storage Systems in Chloride-rich Environments
指導教授(中文):葉宗洸
王美雅
指導教授(外文):Yeh, Tsung-Kuang
Wang, Mei-Ya
口試委員(中文):黃俊源
馮克林
口試委員(外文):Huang, Jiunn-Yuan
Fong, Clinton
學位類別:碩士
校院名稱:國立清華大學
系所名稱:核子工程與科學研究所
學號:105013503
出版年(民國):107
畢業學年度:107
語文別:中文
論文頁數:101
中文關鍵詞:氯離子誘發應力腐蝕龜裂乾式貯存筒不鏽鋼氯鹽沉積
外文關鍵詞:CISCCdry cask storagestainless steelU-bendsalt deposition
相關次數:
  • 推薦推薦:0
  • 點閱點閱:482
  • 評分評分:*****
  • 下載下載:14
  • 收藏收藏:0
為了解決日益關鍵的用過核燃料貯存問題,將已在濕式貯存燃料池冷卻多年的燃料棒移至乾式貯存將會是良好且安全的解決辦法。乾式貯存分為室內及室外兩種,本實驗之目的為探討此設施在使用上的安全性,是否會因應力腐蝕龜裂之裂痕貫穿密封筒導致輻射外洩。由美國核能管制委員會的報告[1]中得知,不鏽鋼乾貯桶上應力腐蝕龜裂的發生條件,包含其表面必須有氯鹽沉積、環境相對濕度的高低循環變化及張應力。
本實驗以模擬乾貯筒放置之沿海環境的U-bend試片進行實驗,材料為固溶熱處理及敏化熱處理之304、304L、316L不鏽鋼與GGG-40 球墨鑄鐵(Ductile Cast Iron, DCI),以氯化鈉水溶液噴灑,使試片表面形成鹽類沈積之後,於不同溫度、固定相對濕度環境中進行長時間的測試。實驗完成後,以電子顯微鏡及光學顯微鏡觀測其試片表面是否有產生裂紋或孔蝕之現象,並加以分析,接著針對定面積進行裂縫數目及長度量測。根據不鏽鋼裂縫形貌及數量計算的結果,可得知時間並未明顯影響裂縫的成長,敏化熱處理則有讓不鏽鋼材料表面小裂縫數目增加的趨勢,實驗溫度的提高使的氧化情形加劇的效果,同時也觀察到孔蝕與裂縫成長間的關係。
The dry cask storage of spent nuclear fuel is more suitable as an interim safer solution than spent fuel pool storage. Most canisters used in dry storage system for spent fuel are fabricated from austenitic stainless steel. Austenitic stainless steels are susceptible to chloride-induced stress corrosion cracking (SCC), and the corrosion initiated by the deliquescence of sea salts coupled with susceptible materials and residual stress can lead to stress corrosion cracking. The purpose of this study is to evaluate the susceptibility to chloride induced stress corrosion cracking (CISCC) of candidate canister materials (304, 304L,316L stainless steels and GGG-40 ductile cask iron) by U-bend tests in a simulated marine atmospheric environment. A detailed characterization on the microstructure of the samples was analyzed by using the scanning electron microscope (SEM) and optical microscope (OM). The number and length of cracks in selected area were also measured. The influence of sensitization heat treatment and temperature was obvious. More cracks were found in sensitized specimens. The oxidation behavior is more serious with higher environment temperature. Besides, the phenomena that the cracks tended to grow between pits was also found.

摘要 ii
Abstract iii
致謝 iv
目錄 vi
表目錄 viii
圖目錄 ix
第1章 前言 12
1.1 研究動機 12
1.2 研究目標 13
第2章 文獻回顧 14
2.1 乾式貯存 14
2.1.1 乾式貯存筒分類 14
2.1.2 乾式貯存筒材料 14
2.1.3 乾式貯存筒材料腐蝕情形 16
2.1.4 台灣乾式貯存現況 20
2.2 應力腐蝕龜裂要素 21
2.2.1 敏感性材料-不鏽鋼 22
2.2.1.1 不鏽鋼的敏化現象 23
2.2.2 張應力-殘留應力 26
2.2.3 腐蝕性環境-含氯離子環境 28
2.3 氯離子誘發應力腐蝕龜裂 28
2.3.1 應力腐蝕龜裂的起始階段 29
2.3.2 應力腐蝕龜裂的成長階段 33
2.3.3 不同不鏽鋼對應力腐蝕龜裂的影響 35
2.3.4 氯鹽對應力腐蝕龜裂的影響 36
2.3.5 溫度對應力腐蝕龜裂的影響 45
第3章 實驗設備及步驟 48
3.1 實驗方法與流程 48
3.1 實驗試片設計及備製 50
3.2 實驗設備 53
3.2.1 U-bend 製具及夾具 53
3.2.2 鹽水噴灑設備 54
3.2.3 溼度控制環境 54
3.3 實驗分析方法與工具 56
3.3.1 敏化程度測試-雙環電位再活化法(DLEPR) 56
3.3.2 表面分析-掃描式電子顯微鏡(SEM)、光學顯微鏡(OM) 58
3.3.3 連圖影像之定量分析 58
3.3.4 成分分析-能量分散式光譜儀(EDS)、輝光放電分光儀(GDS)、碳硫分析儀 60
第4章 實驗結果與討論 61
4.1 敏化程度測試結果 61
4.2 氯鹽沉積量記錄 62
4.3 不同材料表面形貌分析 64
4.3.1 球墨鑄鐵表面形貌分析 64
4.3.2 不鏽鋼表面形貌分析 67
4.3.3 熱處理對表面形貌的影響 75
4.3.4 溫度對表面形貌的影響 77
4.3.5 時間對表面形貌的影響 80
4.4 裂縫的定量分析 82
4.4.1 熱處理對裂縫數目的影響 82
4.4.2 溫度對裂縫數目的影響 84
4.4.3 時間對裂縫數目的影響 86
4.5 孔蝕與裂縫關係 91
第5章 結論 94
參考資料 96


[1] Caseres, L., and Todd S. Mintz. “Atmospheric Stress Corrosion Cracking Susceptibility of Welded and Unwelded 304, 304L, and 316L Austenitic Stainless Steels Commonly Used for Dry Cask Storage Containers Exposed to Marine Environments, ” Southwest Research Institute, 2010.
[2]財團法人核能資訊中心. “美國乾式貯存設施,”November, 2018.
<http://www.nicenter.org.tw/modules/tadbook2/view.php?book_sn=&bdsn=1397>
[3] 葉宗洸、黃爾文教授、王美雅、陳岳泰、李郁萱、王盈之, “除役核電廠用過核燃料室內乾式貯存安全管制技術-子計劃二:除役核電廠用過核燃料室內乾式貯存之結構及密封管制技術研析期末報告,” 行政院原子能委員會放射性物料管理局委託研究計畫研究報告.
[4] Christian Jurianz.“CASTOR : A High-Tech Product Made of Ductile Cast Iron,” November, 2018.

[5]GNS Magazine.“GNS Magazine,”(2017), November, 2018.

[6]台灣電力公司. “用過核子燃料乾式貯存:計畫概要,” November, 2018.

[7]周雄偉、黃金城、康龍全, “各式乾式貯存設備介紹,”台電核能月刊.
[8] Olawale, John Oluyemi, et al. “Evaluation of corrosion behaviour of grey cast iron and low alloy steel in cocoa liquor and well water,” Journal of Minerals and Materials Characterization and Engineering 1.2 (2013): 44-48.
[9] Aramide FO, Olorunniwo EO, Atanda PO, Borode JO “Corrosion characteristics of ascast ductile iron in lime juice,” (2010) JMMCE 9: 867.
[10]Ogundare, Olasupo, et al. cAtmospheric corrosion studies of ductile iron and austenitic stainless steel in an extreme marine environment. “Journal of Minerals and Materials Characterization and Engineering 11.09 (2012): 914.
[11] National Research Council.“Review of the Bureau of Reclamation's Corrosion Prevention Standards for Ductile Iron Pipe, ” National Academies Press, 2009.
[12] Brian Allik. “Selective Leaching of Ductile Iron Components. ” Office of Nuclear Reactor Regulation (NRR)Division of License Renewal Division of License RenewalQuarterly Meeting NRC/NEI/Industry. September 10 2015.
[13]台灣電力公司. “台電公司核一廠用過核子燃料乾式貯存設施設置安全分析報告,”.
[14 ] T. Saegusa, M. WATARU, H. Takeda, and K. Shirai,.“Spent Fuel Storage in Japan and World, Symposium for Interim Storage of Nuclear Spent Fuel, ” (2016).
[15] Mayuzumi, M., J. Tani, and T. Arai. “Chloride induced stress corrosion cracking of candidate canister materials for dry storage of spent fuel,” Nuclear Engineering and Design 238.5 (2008): 1227-1232.
[16 ] 臺灣電力公司. “核一廠用過核子燃料乾式貯存設施安全分析報告第六章-第二節「結構評估」,” 2008
[17]Briant, C. L., R. A. Mulford, and E. L. Hall. “Sensitization of Austenitic Stainless Steels, I. Controlled Purity Alloys,” Corrosion 38.9 (1982): 468-477.
[18]G. Oberson, D. Dunn, T. Mintz, et al., “US NRC-Sponsored Research on Stress Corrosion Cracking Susceptibility of Dry Storage Canister Materials in Marine Environments,” WM2013 Conference, 2013. (Available with NRC Accession No. ML13029A490)
[19]中鋼焊材廠, “不銹鋼材料特性簡介, ”
[20]Raja, V. S., and Tetsuo Shoji, eds. “Stress corrosion cracking: theory and practice, ” Elsevier, 2011
[21] ASTM A240/A240M-08. “Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications. ” (2015): 1.
[22] Hwang, Seong Sik, et al. “Role of grain boundary carbides in cracking behavior of Ni base alloys. ” Nuclear Engineering and Technology 45.1 (2013): 73-80.
[23] McGuire, Michael F. “Stainless steels for design engineers,” Asm International, 2008.
[24]蔡曜隆, “銲道溫度與應力分析實驗,” 碩士, 機械工程研究所, 國立交通大學, 2001.
[25] Ma, Fong-Yuan. “Corrosive effects of chlorides on metals,” Pitting Corrosion. InTech, 2012.
[26] Parrott, R., and H. Pitts. “Chloride stress corrosion cracking in austenitic stainless steel,” The Health and Safety Laboratory for the Health and Safety Executive: Buxton, UK (2011)
[27] Frankel, G. S. “Pitting corrosion of metals. A review of the critical factors (vol 145, pg 2186, 1998),” Journal of the Electrochemical Society 145.8 (1998): 2970-2970.
[28]Lothongkum, G., P. Vongbandit, and P. Nongluck. “Experimental determination of E-pH diagrams for 316L stainless steel in air-saturated aqueous solutions containing 0-5,000 ppm of chloride using a potentiodynamic method,” Anti-Corrosion Methods and Materials 53.3 (2006): 169-174.)
[29]Dmitri Kopeliovich, “Pitting corrosion ,” November, 2018. <http://www.substech.com/dokuwiki/doku.php?id=pitting_corrosion>
[30]Baker, M. A., and J. E. Castle. “The initiation of pitting corrosion of stainless steels at oxide inclusions,” Corrosion science 33.8 (1992): 1295-1312
[31]Chiba, Aya, et al. “Effect of atmospheric aging on dissolution of MnS inclusions and pitting initiation process in type 304 stainless steel,” Corrosion Science 106 (2016): 25-34.
[32] Baker, M. A., and J. E. Castle. “The initiation of pitting corrosion at MnS inclusions,” Corrosion Science 34.4 (1993): 667-682.
[33] Shimahashi, Naoya, et al. “Effects of corrosion and cracking of sulfide inclusions on pit initiation in stainless steel,” Journal of The Electrochemical Society 161.10 (2014): C494-C500.
[34] Muto, Izumi, Shimpei Kurokawa, and Nobuyoshi Hara. “Microelectrochemical investigation of anodic polarization behavior of CrS inclusions in stainless steels,” Journal of The Electrochemical Society 156.11 (2009): C395-C399.
[35] Cheng, Cong-Qian, et al. “Pitting corrosion of sensitised type 304 stainless steel under wet–dry cycling condition,” Corrosion Science 118 (2017): 217-226.
[36]Kuniya, J., H. Anzai, and I. Masaoka. “Effect of MnS inclusions on stress corrosion cracking in low-alloy steels,” Corrosion48.5 (1992): 419-425.
[37] Breimesser, Mathias, et al. “Application of the electrochemical microcapillary technique to study intergranular stress corrosion cracking of austenitic stainless steel on the micrometre scale,” Corrosion science 55 (2012): 126-132.
[38] Mintz, Todd S., et al. “Coastal Salt Effects on the Stress Corrosion Cracking of Type 304 Stainless Steel,” Corrosion 2013 (2013).
[39] Mayuzumi, Masami, Taku Arai, and Koichiro Hide. “Chloride induced stress corrosion cracking of type 304 and 304L stainless steels in air,” Zairyo-to-Kankyo 52.3 (2003): 166-170.
[40] Bayssie, Mekonen, et al. “Evaluation of austenitic stainless steel dry storage cask stress corrosion cracking susceptibility,” 14th International Conference on Environmental Degradation of Materials in Nuclear Power Systems–Water Reactors, Virginia Beach, Va. 2009.
[41] Teysseyre, S., and G. S. Was. “Stress corrosion cracking of austenitic alloys in supercritical water,” Corrosion 62.12 (2006): 1100-1116.
[42] Leinonen, H. “Stress corrosion cracking and life prediction evaluation of austenitic stainless steels in calcium chloride solution,” Corrosion 52.5 (1996): 337-346.
[43] Tsuruta, T., and S. Okamoto. “Stress corrosion cracking of sensitized austenitic stainless steels in high-temperature water,” Corrosion 48.6 (1992): 518-527.
[44] Szklarska-Smialowska, Z., Z. Xia, and S. W. Sharkawy. “Comparative studies of SCC in two austenitic stainless steels and alloy 600 on exposure to lithiated water at 350 C,” Corrosion 48.6 (1992): 455-462.
[45]Shoji, Saburo, et al. “Effects of relative humidity on atmospheric stress corrosion cracking of stainless steels,” Corrosion Engineering 35.10 (1986): 559-565.
[46]Mintz, Todd S., et al. “Atmospheric Salt Fog Testing to Evaluate Chloride Induced Stress Corrosion Cracking of Type 304, 304 L, and 316 L Stainless Steel,” National Association of Corrosion Engineers, P. O. Box 218340 Houston TX 77084 USA.[np]. 14-18 Mar (2010).
[47 ]Prosek, T., Le Gac, A., Thierry, D., Le Manchet, S., Lojewski, C., Fanica, A., ... & Maas, F. (2014). “Low-temperature stress corrosion cracking of austenitic and duplex stainless steels under chloride deposits,” Corrosion, 70(10), 1052-1063.
[48] Prosek, Tomas, et al. “Low-temperature stress corrosion cracking of stainless steels in the atmosphere in the presence of chloride deposits,” Corrosion 65.2 (2009): 105-117.
[49]亘真澄、加藤央之、工藤聡. “コンクリートキャスク貯蔵実用化のための気中塩分量評価--既存の金属キャスク貯蔵設備での気中塩分計測. ” 電力中央研究所報告 研究報告 6022 (2007): 1-23.
[50]港灣環境資訊網. “大氣腐蝕資訊,” November, 2018. <http://isohe.ihmt.gov.tw/Station/ACWEB/acweb.aspx>
[51]交通部中央氣象局. “氣候統計-月平均-相對濕度,” November, 2018.
[52]羅俊雄、劉益雄, “台灣地區金屬材料大氣腐蝕現況,”工業材料雜誌, 305, p.p. 107, 2012.
[53]羅建明、陳桂清、柯正龍, “大氣腐蝕因子調查及腐蝕環境分類之研究,”臺北市交通部運輸研究所, March, 2012.
[54] 施純寬、曾永信. “乾式貯存設施設計壽命期間熱傳行為分析,103年度行政院原子能委員會放射性物料管理局委託研究計畫期末報告(計畫編號 : 103FCMA001),”(2014)
[55]ASTM G30-97(2016), “Standard Practice for Making and Using U-Bend Stress-Corrosion Test Specimens,” ASTM International, West Conshohocken, PA, 2016
[56] ASTM G39-99, “Standard Practice for Preparation and Use of Bent-Beam Stress-Corrosion Test Specimens,” ASTM International, West Conshohocken, PA, Reapproved 2005.
[57]Majidi, Azar P., and Michael A. Streicher. “The double loop reactivation method for detecting sensitization in AISI 304 stainless steels,” Corrosion 40.11 (1984): 584-593.
[58] Newman, R. C. “2001 WR Whitney Award Lecture: Understanding the corrosion of stainless steel,” Corrosion 57.12 (2001): 1030-1041.
[59] Parvathavarthini, N., et al. “Sensitization control in AISI 316L (N) austenitic stainless steel: defining the role of the nature of grain boundary,” Corrosion Science 51.9 (2009): 2144-2150.
[60] JEOL, “JSM-7610F Schottky Field Emission Scanning Electron Microscope,” November, 2018.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *