帳號:guest(3.17.76.126)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳立言
作者(外文):Chen, Li-yen
論文名稱(中文):雙層光激發光劑量監測系統開發與驗證
論文名稱(外文):Development and Efficacy Testing of Double-layer Optically Stimulated Luminescence Dosimetry Monitoring System
指導教授(中文):許靖涵
許芳裕
指導教授(外文):Hsu, Ching-Han
Hsu, Fang-Yuh
口試委員(中文):趙自強
陳拓榮
曹正熙
許世明
學位類別:博士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:105012804
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:70
中文關鍵詞:光激發光劑量計肢端劑量計眼球劑量計能量依存性角度依存性
外文關鍵詞:OSLDextremity dosimetereyelens dosimeterenergy dependenceangular dependence
相關次數:
  • 推薦推薦:0
  • 點閱點閱:108
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
游離輻射的應用廣泛、各類作業特性具有很大的差異,對於過去人員劑量計專注於監測有效劑量恐無法足以符合各產業實際的需求;例如從事核醫藥物操作的放射師、藥師其手部肢端劑量會遠超過其他個別器官的劑量、從事介入性診療的醫師眼球也會接受較高的輻射劑量。因此,以單一個配戴於胸口的佩章來作整體的劑量監控,不具有代表性,亦可能會失去其保守性。依據現有人員劑量監測實務作業,(1)肢端劑量計對於不同能量輻射線不具有能量判別與響應修正能力,以及(2)眼球水晶體劑量限值下修後之監測方法建立係人員劑量監測之主要挑戰。故為因應國際輻防趨勢改變、以及精進人員劑量監測技術;本研究基於可重複計讀之光激發光材料研發市面首見之雙層光激發光劑量計監測系統。此系統可用於判別游離輻射射質,進行劑量響應修正,完成更精準之劑量評估。系統可應用於肢端與眼球水晶體劑量監測系統使用。本研究所建置系統包含劑量計硬體設計與製作、計讀儀設計與製作、劑量響應模擬、劑量演算流程建置、相關測試以及依照國際標準ANSI/HPS N13.32-2008之系統驗證作業。經驗證之系統,除可通過ANSI/HPS N13.32-2008四類別測試;對於系統最低可測值、再現性、角度依存性等都進行量化分析。
Ionizing radiation is widely used in many industrial, and the characteristics of various operations are very different. In the past, personnel dosimetry mainly focused on monitoring effective doses may not be sufficient to meet the actual needs of various industries; for example, radiologists and pharmacists engaged in nuclear medicine operations whose extremities dose will far exceed the dose to other individual organs, and the eyes of physicians engaged in interventional diagnosis and treatment will also receive higher radiation doses. Therefore, using a single badge worn on the chest for overall dose monitoring is not representative and may lose its conservatism. According to the existing practice of personnel dose monitoring, (1) the extremity dosimeter does not have energy discrimination and response correction capabilities for different energy radiation, and (2) the establishment of the monitoring method after the dose limit of the eye lens is revised is based on personnel dose monitoring. main challenge. Therefore, in response to changes in international radiation protection trends and the improvement of personnel dose monitoring technology, this study developed the first double-layer photoluminescence dosimeter monitoring system on the market based on repeatable optical stimulated luminescent materials. This system can be used to discriminate ionizing radiation quality, perform dose response correction, and complete more accurate dose assessment. The system can be applied to the dose monitoring system of extremities and eyeball lenses. The system built in this institute includes dosimeter hardware design and production, meter reading device design and production, dose response simulation, dose calculation process establishment, related testing and system verification in accordance with the international standard ANSI/HPS N13.32-2008 . The verified system, in addition to passing ANSI/HPS N13.32-2008 four-category test; conducts quantitative analysis on the minimum measurable value, reproducibility, and angle dependence of the system.
中文摘要 II
ABSTRACT III
誌謝 V
第一章、導論 1
1.1背景 1
1.2文獻回顧 2
1.2.1光激發光材料沿革與應用 2
1.2.2人員劑量計發展 4
1.2.3 OSL原理以及與TLD的比較 8
1.2.3.1熱發光劑量計介紹 8
1.2.3.2光激發光原理介紹 10
1.2.3.3兩種常見的光激發光劑量計 13
1.3研究背景與動機 17
1.3.1人員劑量國際管制建議、我國現行管制限值以及現行管制作法 17
1.3.1.1職業曝露劑量管制限值 17
1.3.1.2職業曝露劑量監測作法與面臨挑戰 20
1.3.2人員劑量監測的趨勢 23
1.3.3研究目標與動機 24
第二章、材料與方法 25
2.1劑量計設計 25
2.1.1劑量計材料 25
2.1.2劑量計結構設計 25
2.2計讀儀設計 29
2.3蒙地卡羅法計畫與演算法建立 33
2.3.1蒙地卡羅法 33
2.3.2 Particle and Heavy Ion Transport code System 33
2.3.3雙層劑量計響應測試 36
2.3.4能量依存性測試 38
2.3.5角度依存性測試 38
2.4劑量校正 39
2.5指環劑量系統評估流程 39
2.6依ANSI/HPS N13.32(2008)人員劑量能力試驗標作之驗證說明 42
2.7再現性與最低可測值測試 47
第三章、結果與討論 48
3.1蒙地卡羅模擬結果 48
3.1.1 能量依存性模擬結果 48
3.1.2雙層劑量計響應測試結果 49
3.2校正結果 51
3.3依ANSI/HPS N13.32(2008)人員劑量能力試驗標作之驗證結果 52
3.3.1第一類高劑量光子驗證結果 53
3.3.2第二類光子場驗證結果 53
3.3.3第三類電子場驗證結果 53
3.3.4第四類光電子混合場驗證結果 53
3.4 劑量系統特性測試 54
3.4.1最低可測值測試結果 54
3.4.2再現性測試 55
3.4.3角度依存性誤差影響 57
3.5研究限制 60
第四章、結論 61
參考文獻 62
附錄一蒙地卡羅PHITS之評估座標、圖示與程式碼 67
1. International Commission on Radiological Protection,(1977). 1977 Recommendations of the International Commission on Radiological Protection, ICRP Publication 26.
2. International Commission on Radiological Protection,(1990). 1990 Recommendations of the International Commission on Radiological Protection, ICRP Publication 60.
3. International Commission on Radiological Protection.(2007).The 2007 Recommendations of the International Commission on Radiological Protection, ICRP Publication 103.
4. Vanhavere, F., Carinou, E., Donadille, L., Ginjaume, M., Jankowski, J., Rimpler, A., Sans Merce, M., 2008. An overview on extremity dosimetry in medical applications. Radiat. Protect. Dosim. 129 (1–3), 350–355.
5. American National Standards Institute, 2009. Personnel Dosimetry Performance - Criteriafor Testing, ANSI/HPS N13.11-2009.
6. American National Standards Institute, 2008. Performance Testing of Extremity Dosimeters, ANSI/HPS N13.32-2008.
7. Antonov-Romanovskii VV, Kcium-Marcus IF, Poroshina MS, et al. Conference of the Academy of Sciences if the USSR on the Peaceful Uses of Atomic Energy, Moscow. USAEC Report AEC-tr-2435 (Pt.1):239, 1955.
8. Akselrod MS, and McKeever SWS. A radiation dosimetrymethod using pulsed optically stimulated luminescence. Radiat. Prot. Dosim. 81 167-76, 1999.
9. ICRP Publication 74: Conversion Coefficients for Use in Radiological Protection Against External Radiation, 1997
10. (L. Bøtter-Jensen, ... A.G. Wintle, in Optically Stimulated Luminescence Dosimetry, 2003)
11. Davis, S.D., Ross, C.K., Mobit, P.N., Van der Zwan, L., Chase, W.J., Shortt, K.R., (2003). The response of LiFthermoluminescencedosemeters to photon beams in the energy range from 30 kV x rays to 60Co gamma rays. Radiat. Protect. Dosim. 106 (1), 33–43.
12. Scarboro, Sarah B. and Stephen F. Kry. “Characterisation of energy response of Al(2)O(3):C optically stimulated luminescent dosemeters (OSLDs) using cavity theory.” Radiation protection dosimetry 153 1 (2013): 23-31 .
13. Nambi, K.S.V. Discovery of TL, Health Phys. 28, 482 (1975)
14. Albrecht HO, Mandeville CE. Storage energy in BeO. Phys Rev 1956;101:1250-1.

15. Braunlich P, Schafer D, Scharmann A. A simple model for thermoluminescence and thermally stimulatedconductivity of inorganic photo-conducting phosphor and experiments pertaining to infrared stimulatedluminescence. Stanford: Proc International Conf on Lum Dosim, USAEC; 1967. p. 57-73.
16. Sanborn EN, Beard EL. Sulfides of strontium, calcium and manganese in infrared stimulated luminescence.Stanford: Proc International Conf on Lum Dosim, USAEC; 1967. p. 183-91.
17. Huntley DJ, Smith DL, Thewalt ML. Optical dating of sediments. Nature 1985;313:105-7.
18. B.G. Markey, L.E. Colyott, S.W.S. Mckeever,Time-resolved optically stimulated luminescence from α-Al2O3:C,1995,Radiation Measurements,Volume 24, 4
19. Rhyner CR, Miller WG. Radiation dosimetry by optically stimulated luminescence. Health Phys 1970;18:681-4.
20. Tochlin E, Goldstein N, Miller WG. Beryllium oxide as a thermoluminescent dosimeter. Health Phys 1969;16:1-7.
21. Bernhardt R, Herforth L. Radiation dosimetry by optically stimulated phosphorescence of CaF2:Mn. Krakow: Proc4th Int Conf Lum Dsim; 1974. p. 1091-104.
22. Pradhan AS, Ayyangar K. Radiation dosimetry by photostimulated luminescence of CaSO4:Dy. Int J Appl RadiatIsoptopes 1977;28:534-5.
23. Pradhan AS, Bhatt RC. Photostimulated luminescence and thermoluminescence of CaSO4:Dy. Phys Stat Solidi1981;68:405-11.
24. AS Pradhan, B Chandra, Bhatt RC. Phosphorescence and photostimulated luminescence of CaSO4:Dy discs at elevated temperature for fast neutron dosimetry. Radiation Protection Dosimetry 1983;5:159-62.
25. Akselrod A, Mckeever SW. A radiation dosimetry method using pulsed optically stimulated luminescence. Radiation Radiation Protection Dosimetry 1999;81:167-75.
26. McKeever S, Moscovitch M. Topics under debate-On the advantages and disadvantages of optically stimulated luminescence dosimetry and thermoluminescence dosimetry. 2003Radiation Protection Dosimetry;104:263-70.
27. Botter-Jensen L, McKeever SW, Wintle AG. Optically stimulated luminescence. Elsevier Science: BV Publication;2003.
28. Lee SY, Jai Lee K, Development of a personal dosimetry system based on optically stimulated luminescence of a-Al2O3:C for mixed radiation fields. Appl Radiat Isotopes 2001;54:675-85.
29. Yukihara EG, Sawakuchi GO, Guduru S, McKeever SW, Gaza R, Benton ER, et al. Application of the optically stimulated luminescence (OSL) technique in space dosimetry. Radiat Measurements 2006;41:1126-35.
30. Pradhan AS, Dash Sharma PK, Shirva VK. Thermoluminescence response of AL2O3:C to UV and ionisingradiation. Radiat Prot Dosim 1996;64:227-31.
31. Sommer M, Henniger J. Investigation of a BeO-based optically stimulated luminescence dosemeter. Radiat Prot Dosim. 2006;119:394–7.
32. Muthe KP, Kulkarni MS, Rawat NS, Mishra DR, Bhatt BC, Singh A, et al. Melt processing of alumina in graphiteambient for dosimetric applications. J Lumin 2008;128:445-50.
33. Cantone, M. C., Ginjaume, M., Miljanic, S., Martin, C. J., Akahane, K., Mpete, L., Balter, S. J. J. o. r. p.,(2017). Report of IRPA task group on the impact of the eye lens dose limits. 37(2), 527.
34. Bhatt BC, Page PS, Rawat NS, Mishra DR, Kulkarni MS. TL,OSL and PL studies in Al2O3:Si,Ti phosphor.Netherlands: 15thSSD Conference Delft University; 2007. p.19, 2-09.
35. Aguirre J, Alvarez P, Followill D, et al. 2009. SU-FF-T-306: Optically Stimulated Light Dosimetry: Commissioning of An Optically Stimulated Luminescence (OSL) System for Remote Dosimetry Audits, the Radiological Physics Center Experience. Medical Physics 36(6), 2009.
36. Yukihara EG, McKeever SW. Ionization density dependence of the optically and thermally stimulated uminescencefrom Al2O3:C. Radiat Prot Dosim 006;120:354-7.
37. Yukihara EG, Gaza R, McKeever SW, Soares CG. Optically stimulated luminescence and thermoluminescenceefficiency for high-energy heavy charged particle radiation in Al2O3:C. Radiat Measurements 2004;38:59-70.
38. Bulur E, Goeksu HY. OSL from BeO ceramics: New observations from an old material. Radiat Measurements1998;29:639-50.
39. Bulur E, Botter-Jensen L, Murray AS. LM-OSL signals from some insulators: An analysis of the dependency of the trapping probability on stimulation light intensity. Radiat Measurements. 2001;33:715–9.
40. Bulur E, Botter-Jensen L, Murray AS. Frequency modulated pulsed stimulation in optically stimulated luminescence. Nucl Intrum Meth Phys Res B. 2001;179:151–9.
41. Sommer M, Henniger J. Investigation of a BeO-based optically stimulated luminescence dosemeter. Radiat Prot Dosim. 2006;119:394–7.
42. Sommer M, Fraudenberg R, Henniger J. New aspects of a BeO-based optically stimulated luminescence dosimeter. Radiat Measurements. 2007;42:617–20.
43. Scarpa G. The dosimetric use of Beryllium oxide as a thermoluminscenct material: A preliminary study. Phys Med Biol. 1970;15:667–72.
44. International Commission on Radiological Protection, 1996. Conversion Coefficients for use in Radiological Protection against External Radiation, ICRP Publication 74.
45. International Atomic Energy Agency, 2014. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards, General Safety Requirements Part 3.
46. International Commission on Radiological Protection, 2012. ICRP Statement on Tissue Reactions / Early and Late Effects of Radiation in Normal Tissues and Organs – Threshold Doses for Tissue Reactions in a Radiation Protection Context, ICRP Publication 118.
47. Official Journal of the European Union,(2013).European Union basic safety standard Directive 2013/59.
48. Institute of Nuclear Energy Research, 2018. Report of Pre-proficiency Test for Extremity in Taiwan.
49. Vano, E., Sanchez, R., & Fernandez, J. J. R. p. d. (2015). Estimation of staff lens doses during interventional procedures. Comparing cardiology, neuroradiology and interventional radiology. 165(1-4), 279-283.
50. Cantone, M. C., Ginjaume, M., Miljanic, S., Martin, C. J., Akahane, K., Mpete, L., Balter, S. J. J. o. r. p.,(2017). Report of IRPA task group on the impact of the eye lens dose limits. 37(2), 527.
51. 劉育容, 許靖涵, 許芳裕, 2018. 介入性放射診療之醫療工作人員眼球水晶體劑量評估.清華大學碩士論文.
52. Kerns JR, Kry SF, Sahoo N, Followill DS, Ibbott GS. Angular dependence of the nanoDot OSL dosimeter. Med Phys. 2011 Jul;38(7):3955-62. doi: 10.1118/1.3596533. PMID: 21858992; PMCID: PMC3133805.
53. 吳東曄, 許靖涵, 許芳裕, 2012. 光刺激發光指環劑量計之劑量演算法研究.清華大學碩士論文.
54. Roberson PL, Carlson RD. Determining the lower limit of detection for personnel dosimetry systems. Health Phys. 1992 Jan;62(1):2-9. doi: 10.1097/00004032-199201000-00001. Erratum in: Health Phys 1993 Mar;64(3):333. PMID: 1727409.
55. Aguirre J, Alvarez P, Followill D, et al. 2009. SU-FF-T-306: Optically Stimulated Light Dosimetry: Commissioning of An Optically Stimulated Luminescence (OSL) System for Remote Dosimetry Audits, the Radiological Physics Center Experience. Medical Physics 36(6), 2009.
56. Jursinic P. A. (2010). Changes in optically stimulated luminescent dosimeter (OSLD) dosimetric characteristics with accumulated dose. Med. Phys. 37, 132–140 10.1118/1.3431994
57. Kim D. W., Chung W. K., Shin D. O., Yoon M., Hwang U. J., Rah J. E., Jeong H., Lee S. Y., Shin D., Lee S. B., Park S. Y. (2011). Dose response of commercially available optically stimulated luminescent detector, Al2O3:C for megavoltage photons and electrons. Radiat. Prot. Dosim.
58. Kerns J. R., Kry S. F., Sahoo N., Followill D. S., Ibbott G. S. (2011). Angular dependence of the nanoDot OSL dosimeter. Med. Phys. 38, 3955–3962 10.1118/1.3612085
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *