帳號:guest(18.227.190.202)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):胡霈帆
作者(外文):Hu, Pei-Fan
論文名稱(中文):可躲避免疫系統偵測之外泌體修飾奈米氧化鐵應用於黑色素瘤轉移型之肺癌治療
論文名稱(外文):Exosome-Camouflaged Porous Iron Oxide Nanoparticles for Penetrated Drug Delivery to Melanoma-Derived Metastatic Lung Cancer
指導教授(中文):胡尚秀
指導教授(外文):Hu, Shang-Hsiu
口試委員(中文):姜文軒
黃薇蓁
陳冠宇
口試委員(外文):Chiang, Wen-Hsuan
Huang, Wei-Chen
Chen, Guan-Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:105012545
出版年(民國):107
畢業學年度:107
語文別:英文
論文頁數:72
中文關鍵詞:轉移型肺癌多孔性奈米氧化鐵外泌體阿黴素爾必得舒
外文關鍵詞:Metastasis lung cancerMesoporous nano iron oxideExosomeDoxorubicinErbitux
相關次數:
  • 推薦推薦:0
  • 點閱點閱:289
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
肺癌治療分為四種類型,包括手術治療,放射治療,化療和標靶治療。手術治療在肺癌早期使用效果良好,而在肺癌晚期只能以化療和標靶治療並輔以放射治療作為主要治療方法,而治療效果皆相當有限。因此,本研究設計出一種偽裝外泌體(Exosome)的多孔性氧化鐵,其可以攜帶大量的化療藥物並有效地遞送到腫瘤位置。而本多孔性氧化鐵具備高度的磁性,在高週波磁場(high-frequency magnetic field)的刺激下,可以快速生熱,進而有效釋放包覆的藥物,達到熱療與化療的效果。外吐小體是生物體的天然物質,它們擁有特定的蛋白質以幫助它們在細胞之間傳遞,可以迅速進入受體細胞並且可以避免其修飾的載體遭受免疫系統的攻擊。在細胞實驗中發現修飾過外泌體的氧化鐵在第1小時其被B16F10攝取的效率與未修飾之氧化鐵第12小時的效率相似。另外,我們發現外泌體修飾的氧化鐵在不到2個小時的時間就幾乎被B16F10黑色素瘤細胞攝入至細胞核中。另外本實驗也使用B16F10黑色素瘤細胞於C57BL6小鼠中建立了肺癌模型,在經過靜脈注射修飾過外吐小體的氧化鐵的24小時候,我們發現此載體在肺中的累積明顯多於肝臟說明本載體具有傑出的標靶腫瘤功效。修飾有外吐小體的奈米氧化鐵在經過注射後的1天至3天於肺癌部位的累積量可達15-25%,而在標靶藥物爾必得舒的幫助下於肺癌部位的累積量可高達35-60%。此外,在動物生存率實驗中,不做任何治療的肺癌小鼠約存活20天,使用修飾有外泌體的奈米氧化鐵並裝載阿黴素的載體來做治療的肺癌小鼠至少可存活30天,如果與爾必得舒結合,存活時間將增加至超過40天。此外,肺癌小鼠如果使用修飾有外泌體和爾必得舒的奈米氧化鐵且裝載有阿黴素的載體且搭配高週波做治療,則其存活時間將從不做治療組的20天增加至超過50天。未來希望能將此技術運用在其它癌症治療上。

關鍵字:轉移型肺癌、多孔性奈米氧化鐵、外泌體、阿黴素、爾必得舒
Lung cancer ranks second in the proportion of cancer in Taiwan in 2018. The lung is a common location for other tumors in the body. One of the lung metastasis tumor is melanoma cells. To research for the treatment of metastasis lung cancer, the B16F10 melanoma cells which is the one kind of cancer cells tend to metastasis to lung were adopted and the model of lung cancer was founded in C57BL/6 mice. The treatment of lung cancer is divided into four types involving surgical treatment, radiation therapy, chemotherapy and target treatment. At the beginning of lung cancer, surgical and radiation therapy are superior treatment to lung cancer. Nevertheless, surgery therapy is impressive to lung cancer and radiation therapy fallen as auxiliary treatment in the late stages of cancer, the treatment is replaced with chemotherapy and target treatment. For the purpose that developing a effective treatment for metastasis lung cancer in the late stages, the chemotherapy with the target drug which is called Erbitux were applied for the treatment. Exosome-camouflaged porous iron oxide nanoparticles can carry a large amount of chemotherapeutic drugs and be effectively delivered to tumor sites. The porous iron oxide has high magnetic properties, and can stimulate heat under the stimulation of a high-frequency magnetic field. The vehicles can effectively release the coated drug in order to achieve the effects of hyperthermia and chemotherapy. Exosomes are natural substances of organisms that possess specific proteins to facilitate their transfer between cells, Further to explain for the superiority, exosomes can rapidly enter the recipient cells and can prevent their modified vectors from being attacked by the immune system. In the cell experiments, it was found that the cellular uptake efficiency of exosome-camouflaged iron oxide for the B16F10 melanoma cells at the first hour was similar to the one of the unmodified iron oxide at the 12th hour. In addition, exosome-camouflaged iron oxide was almost ingested into the nucleus by B16F10 melanoma cells in less than 2 hours. Moreover, B16F10 melanoma cells were used to establish a lung cancer model in C57BL6 mice. The time which had passed for 24 hours after intravenous injection of exosome-camouflaged iron oxide. The amount of carriers accumulated in the lung more than in the liver. These vectors had outstanding target tumor efficacy. The accumulation of exosome-camouflaged iron oxide in the lung cancer area could reach 15-25% from 1 day to 3 days after injection, and the accumulation in the lung cancer area could reach 35-60% with the auxiliary of the target drug Erbitux. Furthermore, in the animal survival rate experiment, lung cancer mice that did not undergo any treatment survived for about 20 days, and the lung cancer suffered mice that were treated with exosome-camouflaged iron oxide which was loaded with Doxorubicin survived for more than 30 days, the survival time of the lung cancer suffered mice will increase to more than 40 days if combined with Erbitux. Eventually, the survival time of the lung cnacer suffered mice would be promoted to more than 50 days after the treatment which applying the exosome-camouflaged iron oxide which bound Erbitux and loaded with Doxorubicin combined with the application of HFMF. In the future, I hope to apply this technology to other cancer treatments.

Key words:Metastasis lung cancer, Mesoporous nano iron oxide, Exosome, Doxorubicin, Erbitux
中文摘要 ---------------------------------------------------------I
Abstract-------------------------------------------------------III
誌謝-------------------------------------------------------------V
Table of contents-----------------------------------------------VI
List of tables--------------------------------------------------IX
List of figures--------------------------------------------------X
Chapter 1 Introduction-------------------------------------------1
Chapter 2 Literature review--------------------------------------2
2.1 Introduction of lung cancer----------------------------------2
2.2 The comment about the cancer cell development from the primary tumor to the metastatic disease----------------------------------4
2.3 The characteristics of melanoma cells and the therapy for it to date----------------------------------------------------------6
2.4 The properties of magnetic nanoparticles and their applications-----------------------------------------------------9
2.5 The characteristic of exosomes and their operation mode between cells---------------------------------------------------10
2.7 The development of drug delivery----------------------------15
2.8 The applications and potential of exosomes in the drug delivery--------------------------------------------------------18
2.9 The application of serum exosomes in cancer therapy---------21
Chapter 3. Experiment section-----------------------------------24
3.1 Materials---------------------------------------------------24
3.2 Apparatus---------------------------------------------------26
3.3 Synthesis of mesoporous iron oxide nanoparticles------------27
3.4 The preparation of serum and its purification---------------27
3.5 Synthesis of mesoporous iron oxide nanopaticles which bind with exosomes originated from mice serum------------------------28
3.6.1 Drug loading efficiency and encapsulation efficiency------29
3.6.2 In vitro release------------------------------------------29
3.6.3 Cell culture----------------------------------------------29
3.6.4 Cell viability assay--------------------------------------30
3.6.5 Cellular uptake of Fe3O4, Fe3O4-Tf-Exo and Fe3O4-Tf-Exos-Dox ----------------------------------------------------------------30
3.6.6 Flow cytometry--------------------------------------------31
3.7 SDS PAGE experiments----------------------------------------32
3.8 Western Blot------------------------------------------------32
3.9 In vivo experiments-----------------------------------------33
Chapter 4. Results and Discussions------------------------------34
4.1 Synthesis and characterization of mesoporous iron oxide and mesoporous iron oxide which bind with exosomes from serum-------34
4.2 Cytotoxicity and cellular uptake of Dox, Fe3O4-Tf-Exo,
Fe3O4-Tf-Exo-Dox, Fe3O4-Tf-Exo-Er, Fe3O4-Exo-Er-Dox-------------43
4.3 Flow cytometry of Fe3O4-Tf-Exo------------------------------47
4.4 Dox release from Fe3O4-Tf-Exo and Fe3O4-Tf-Exo-Er-----------48
4.5 IVIS images and biodistribution of organs-------------------50
4.6 Liver and kidney function analysis of mice after they were injected with Fe3O4-Tf-Exo, Fe3O4-Tf-Exo-Er---------------------52
4.7 In vivo therapy and histochemistry analysis-----------------53
Chapter 5 Conclusions-------------------------------------------58
Reference-------------------------------------------------------59
1.https://www.cancer.org
2.Frances A. Shepherd, José Rodrigues Pereira, Tudor Ciuleanu,et al. Erlotinib in Previously Treated Non–Small-Cell Lung Cancer. The New England Journal of Medicine 2005, 353, 123-132.
3.Jemal, A.,Tiwari, R. C., Murray, T. , Ghafoor, A. , Samuels, A. , Ward, E. , Feuer, E. J. and Thun, M. J. Cancer Statistics. Cancer Journal for Clinicians 2004, 54, 8-29.
4.Venkatraman E, Pisters PW, Langenfeld J, Dmitrovsky E. Overexpression of the epidermal growth factor receptor and its ligand transforming growth factor alpha is frequent in resectable non-small cell lung cancer, but does not predict tumor progression. Clin Cancer Res 1997, 3, 515-522.
5.Brabender J, Danenberg KD, Metzger R, et al. Epidermal growth factor receptor and HER2-neu mRNA expression in non-small cell lung cancer is correlated with survival. Clin Cancer Res 2001, 7, 1850-1855.
6.Kris MG, Natale RB, Herbst RS, et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA 2003, 290, 2149-2158.
7.Perez-Soler R, Chachoua A, Hammond LA, et al. Determinants of tumor response and survival with erlotinib in patients with non-small-cell lung cancer. J Clin Oncol 2004, 22, 3238-3247.
8.Paget, S. The distribution of secondary growths in cancer of the breast. The Lancet 1889, 1, 571–573.
9.Hart, I. R. & Fidler, I. J. Role of organ selectivity in the determination of metastatic patterns of the B16 melanoma. Cancer Res 1980, 40, 2281–2287.
10.IJ Fidler. The pathogenesis of cancer metastasis: the’seed and soil’ hypothesis revisited. Nature Review Cancer 2003, 3, 453-458.
11.Molife R, Hancock BW. Adjuvant therapy of malignant melanoma. Crit Rev Oncol Hematol 2002, 44, 81–102.
12.Ballantyne AD, Garnock-Jones KP. Dabrafenib: first global approval. Drugs 2013, 73, 1367–1376.
13. Bollag G, Tsai J, Zhang J, Zhang C, Ibrahim P, Nolop K, et al. Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat Rev Drug Discov 2012, 11, 873–886.
14. Wright CJ, McCormack PL. Trametinib: first global approval. Drugs 2013, 73, 1245–1254.
15.Sznol M. Advances in the treatment of metastatic melanoma: new immunomodulatory agents. Semin Oncol 2012, 39,192–203.
16.Hauschild A. Adjuvant interferon alfa for melanoma: new evidencebased treatment recommendations? Curr Oncol 2009, 16, 3–6.
17. Kristina M, Ilieva, Isabel Correa et al. Effects of BRAF Mutations and BRAF Inhibition on Immune Responses to Melanoma. Mol Cancer Ther 2014, 1, 1-15.
18.Keshet Y, Seger R. The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiologicalfunctions. Methods Mol Biol 2010, 661, 3–38.
19.Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 2007, 26, 3291–3310.
20.Fujimura T, Ring S, Umansky V, Mahnke K, Enk AH. Regulatory T cells stimulate B7-H1 expression in myeloid-derived suppressor cells in ret melanomas. Journal of Investigative Dermatology 2012, 132, 1239–1246.
21.Song S, Wang Y, Wang J, Lian W, Liu S, Zhang Z, et al. Tumour-derived IL-10 within tumour microenvironment represses the antitumour immunity of Socs1-silenced and sustained antigen expressing DCs. Eur J Cancer 2012, 48, 2252–2259.
22.Gilbert AE, Karagiannis P, Dodev T, Koers A, Lacy K, Josephs DH, et al. Monitoring the systemic human memory B-cell compartment of melanoma patients for anti-tumor IgG antibodies. PLOS ONE 2011, 6, e19330, 1-15.
23.Karagiannis P, Gilbert AE, Josephs DH, Ali N, Dodev T, Saul L, et al. IgG4 subclass antibodies impair antitumor immunity in melanoma. J Clin Invest 2013, 123, 1457–1474.
24.Donia M, Fagone P, Nicoletti F, Andersen RS, Hogdall E, Straten PT, et al. BRAF inhibition improves tumor recognition by the immune system: potential implications for combinatorial therapies against melanoma involving adoptive T-cell transfer. Oncoimmunology 2012, 1, 1476–1483.
25.Widder K J, Senyei A E and Scarpelli D G 1978 Magnetic microspheres: a model system for site specific drug delivery in vivo Experimental Biology and Medicine. 1978, 58, 141–146.
26.Senyei A, Widder K and Czerlinski C. Magnetic guidance of drug carrying microspheres. J Appl Phys 1978, 49, 3578–83.
27.Mosbach K and Schroder U 1979 Preparation and applicationof magnetic polymers for targeting of drugs. FEBS 1979, 102, 112–116.
28.M. Mahmoudi, A. Simchi, M. Imani, P. Stroeve, A. Sohrabi. Templated growth of superparamagnetic iron oxide nanoparticles by temperature programming in the presence of poly(vinyl alcohol). Thin Solid Films 2018, 518, 4281-4289.
29.R.H. Kodama. Magnetic nanoparticles. Journal of Magnetism and Magnetic Materials 1999, 200, 359-372.
30.M.W. Freeman, A. Arrott, J.H.L. Watson Magnetism in medicine. Journal of Applied Physics 1960, 31, 404-405.
31.C. Alexiou, W. Arnold, R.J. Klein, F.G. Parak, P. Hulin, C. Bergemann, W. Erhardt, S. Wagenpfeil, A.S. Lubbe Locoregional cancer treatment with magnetic drug targeting. Cancer Research 2000, 60, 6641-6648.
32.A. Senyei, K. Widder, G. Czerlinski Magnetic guidance of drug-carrying microspheres. Journal of Applied Physics 1978, 49, 3578-3583.
33.I.W. Hamley. Nanotechnology with soft materials. Angewandte Chemie International Edition 2003, 42, 1692-1712.
34.V.I. Shubayev, T.R. Pisanic Ii, S. Jin Magnetic nanoparticles for theragnostics. Advanced Drug Delivery Reviews 2009, 61, 467-477.
35.A.S. Teja, P.Y. Koh Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Progress in Crystal Growth and Characterization of Materials 2009, 55, 22-45.
36.M.M. Lin, D.K. Kim, A.J. El Haj, J. Dobson Development of superparamagnetic iron oxide nanoparticles (SPIONS) for translation to clinical applications. IEEE Transactions on Nanobioscience 2008, 7, 298-305.
37.J. Kim, Y. Piao, T. Hyeon Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chemical Society Reviews 2009, 38, 372-390.
38.K. Denzer, M.J. Kleijmeer, H.F. Heijnen, W. Stoorvogel, H.J. Geuze. Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. Journal of Cell Science 2000, 113, 3365-3374.
39.M. Simons, G. Raposo Exosomes – vesicular carriers for intercellular communication. Curr Opin Cell Biol 2009, 21, 575-581.
40.S. Mathivanan, H. Ji, R.J. Simpson Exosomes: extracellular organelles important in intercellular communication. J Proteomics 2010, 73, 1907-1920.
41.J.C. Gross, V. Chaudhary, K. Bartscherer, M. Boutros Active Wnt proteins are secreted on exosomes. Nat Cell Biol 2012, 14, 1036-1045.
42.H. Valadi, K. Ekstrom, A. Bossios, M. Sjostrand, J.J. Lee, J.O. Lotvall Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007, 9, 654-659.
43.E. Wieckowski, T.L. Whiteside. Human tumor-derived vs dendritic cell-derived exosomes have distinct biologic roles and molecular profiles. Immunol Res 2006, 36, 247-254.
44.E.N. Nolte-‘t Hoen, S.I. Buschow, S.M. Anderton, W. Stoorvogel, M.H. Wauben. Activated T cells recruit exosomes secreted by dendritic cells via LFA-1. Blood 2009, 113, 1977-1981.
45.A. Janowska-Wieczorek, M. Wysoczynski, J. Kijowski, L. Marquez-Curtis, B. Machalinski, J. Ratajczak, et al. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer 2005, 113, 752-760.
46.J.L. Qu, X.J. Qu, M.F. Zhao, Y.E. Teng, Y. Zhang, K.Z. Hou, et al. Gastric cancer exosomes promote tumour cell proliferation through PI3K/Akt and MAPK/ERK activation. Dig Liver Dis 2009, 41, 875-880.
47.J.L. Qu, X.J. Qu, M.F. Zhao, Y.E. Teng, Y. Zhang, K.Z. Hou, et al. Gastric cancer exosomes promote tumour cell proliferation through PI3K/Akt and MAPK/ERK activation. Dig Liver Dis 2009, 41, 875-880.
48.T. Kogure, W.L. Lin, I.K. Yan, C. Braconi, T. Patel Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology 2011, 54, 1237-1248.
49.M. Chiba, M. Kimura, S. Asari. Exosomes secreted from human colorectal cancer cell lines contain mRNAs, microRNAs and natural antisense RNAs, that can transfer into the human hepatoma HepG2 and lung cancer A549 cell lines. Oncol Rep 2012, 28,1551-1558.
50.A. Montecalvo, A.T. Larregina, W.J. Shufesky, D.B. Stolz, M.L. Sullivan, J.M. Karlsson, et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 2012, 119, 756-766.
51. Jonathan Houseley, John LaCava & David Tollervey. RNA-quality control by the exosome. Nature Reviews Molecular Cell Biology 2006, 7, 529-539.
52.Warner, J. R. The economics of ribosome biosynthesis in yeast. Trends Biochem Sci 1999, 24, 437-440.
53. The Regulation of Exosome Secretion: a Novel Function of the p53 Protein. Cancer Res 2006, 66, 4795-801.
54. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 1997, 88, 323–31.
55. Judith Maxwell Silverman, Joachim Clos, Carolina Camargo de'Oliveira, Omid Shirvani, Yuan Fang, Christine Wang, Leonard J. Foster, Neil E. Reiner. An exosome-based secretion pathway is responsible for protein export from Leishmania and communication with macrophagess. Journal of Cell Science 2010, 123, 842-852.
56. Suresh Mathivanan Cassie J. Fahner Gavin E. Reid Richard J. Simpson. ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Research 2012, 40, 1241-1244.
57. Kateena Addae Konadu, Jane Chu, Ming Bo Huang, Praveen Kumar Amancha, Wendy Armstrong, Michael D. Powell, Francois Villinger, Vincent C. Bond; Association of Cytokines With Exosomes in the Plasma of HIV-1–Seropositive Individuals, The Journal of Infectious Diseases 2015, 211, 1712-1716.
58. Xiaoyu Gu, Ulrike Erb, Markus W. Buchler2and Margot Zoller. Improved vaccine efficacy of tumor exosome compared totumor lysate loaded dendritic cells in mice. Int. J. Cancer 2014, 136, 74–84.
59. Suresh Mathivanan, Hong Ji, Richard J. Simpson. Exosomes: Extracellular organelles important in intercellular communication. JOURNAL OF PROTEOMICS 2010, 73, 1907-1920.
60. Marina Colombo, Graça Raposo, and Clotilde Théry. Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles. Colombo 2014, 30, 255-289.
61. Kasper Bendix Johnsen, Johann Mar Gudbergsson, Martin Najbjerg Skov, Linda Pilgaard, Torben Moos b, Meg Duroux. A comprehensive overview of exosomes as drug delivery vehicles—Endogenous nanocarriers for targeted cancer therapy. Biochimica et Biophysica Acta 2014, 1846, 75-87.
62. Joshua L. Hood, Roman Susana San and Samuel A. Exosomes Released by Melanoma Cells Prepare Sentinel Lymph Nodes for Tumor Metastasis. Microenvironment and Immunology Cancer Res 2011, 71, 1-9.
63. I. B. Lobov, R. A. Renard, N. Papadopoulos, N. W. Gale, G. Thurston, G. D. Yancopoulos, and S. J. Wiegand. Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. PNAS 2007, 104, 3219-3224.
64. Steven Suchting, Catarina Freitas, Ferdinand le Noble, Rui Benedito, Christiane Bréant, Antonio Duarte, and Anne Eichmann. The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. PNAS 2007, 104, 3225-3230.
65. Joshua L. Hood, Susana San Roman and Samuel A. Wickline. Exosomes Released by Melanoma Cells Prepare Sentinel Lymph Nodes for Tumor Metastasis. Cancer Res 2011, 71, 1–10.
66.Oliver POLITZ, Alexei GRATCHEV, Peter A. G. McCOURT, Kai SCHLEDZEWSKI, Pierre GUILLOT, Sophie JOHANSSON, Gunbjorg SVINENG, Peter FRANKE, Christoph KANNICHT, Julia KZHYSHKOWSKA, Paola LONGATI, Florian W. VELTEN, Staffan JOHANSSON, Sergij GOERDT. Stabilin-1 and −2 constitute a novel family of fasciclin-like hyaluronan receptor homologues. Biochemical Journal 2002, 362, 155-164.
67. Wenbiao Liu M.D. Syed A. Ahmad M.D. Young D. Jung M.D., Ph.D. Niels Reinmuth M.D. Fan Fan B.S. Corazon D. Bucana Ph.D. Lee M. Ellis M.D. Coexpression of ephrin‐Bs and their receptors in colon carcinoma. Cancer 2002, 94, 934–939.
68. Jong-Kuen Lee, Sae-Ra Park, Bong-Kwang Jung, Yoon-Kyung Jeon, Yeong-Shin Lee, Min-Kyoung Kim, Yong-Goo Kim, Ji-Young Jang , Chul-Woo Kim.Exosomes Derived from Mesenchymal Stem Cells Suppress Angiogenesis by Down-Regulating VEGF Expression in Breast Cancer Cells. PLOS ONE 2013, 8, e84256, 1-11.
69. Teng X, Chen L, Chen W, Yang J, Yang Z, Shen Z, Mesenchymal Stem Cell-Derived Exosomes Improve the Microenvironment of Infarcted Myocardium Contributing to Angiogenesis and Anti-Inflammation. Cell Physiol Biochem 2015, 37, 2415-2424.
70. Umezu, T., Tadokoro, H., Azuma, K., Yoshizawa, S., Ohyashiki, K., & Ohyashiki, J. H. Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood 2014, 576116, 1-51.
71. Georg Stoecklin, Min Lu, Bernd Rattenbacher and Christoph Moroni. A Constitutive Decay Element Promotes Tumor Necrosis Factor Alpha mRNA Degradation via an AU-Rich Element-Independent Pathway. Mol Cell Bio May 2003, 23, 3506-3515.
72. Zhong-Jian Shen, Stephane Esnault & James S Malter. The peptidyl-prolyl isomerase Pin1 regulates the stability of granulocyte-macrophages colony-stimulating factor mRNA in activated eosinophils. Nature Immunology 2005, 6, 1280-1287.
73. Shengming Dai, Dong Wei, Zhen Wu, Xiangyang Zhou, Xiaomou Wei,Haixin Huang, Guisheng Li. Phase I Clinical Trial of Autologous Ascites-derived Exosomes Combined With GM-CSF for Colorectal Cancer. Molecular Therapy 2008, 16, 782-790.
74. Ayuko Hoshino, Bruno Costa-Silva, David Lyden. et al. Tumour exosome integrins determine organotropic metastasis. Nature 2015, 527, 329-335.
75. Joseph Wolfers, Anne Lozier, Graça Raposo, Armelle Regnault, Clotilde Théry, Carole Masurier, Caroline Flament, Stéphanie Pouzieux, Florence Faure, Thomas Tursz, Eric Angevin, Sebastian Amigorena & Laurence Zitvogel. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nature Medicine 2001, 7, 297-303.
76. Héctor Peinado, Maša Alečković, Simon Lavotshkin, Irina Matei, Bruno Costa-Silva, Gema Moreno-Bueno, Marta Hergueta-Redondo, Caitlin Williams, Guillermo García-Santos, Cyrus M Ghajar, Ayuko Nitadori-Hoshino, Caitlin Hoffman, Karen Badal, Benjamin A Garcia, Margaret K Callahan, Jianda Yuan, Vilma R Martins, Johan Skog, Rosandra N Kaplan, Mary S Brady, Jedd D Wolchok, Paul B Chapman, Yibin Kang, Jacqueline Bromberg & David Lyden. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature Medicine 2012, 18, 883-891.
77. Clotilde Théry, Muriel Boussac, Philippe Véron, Paola Ricciardi-Castagnoli, Graça Raposo, Jerôme Garin and Sebastian Amigorena. Proteomic Analysis of Dendritic Cell-Derived Exosomes: A Secreted Subcellular Compartment Distinct from Apoptotic Vesicles. J Immunol 2001, 166, 7309-7318.
78.Clotilde Théry, Armelle Regnault, Jérôme Garin, Joseph Wolfers, Laurence Zitvogel, Paola Ricciardi-Castagnoli, Graça Raposo, Sebastian Amigorena. Molecular Characterization of Dendritic Cell-Derived Exosomes. The Journal of Cell Biology 1999, 147, 599-610.
79. Mesenchymal stem cell-derived exosomesincrease ATP levels, decrease oxidativestress and activate PI3K/Akt pathway toenhance myocardial viability and preventadverse remodeling after myocardialischemia/reperfusion injuryFatih Arslana, , Ruenn Chai Laid, Mirjam B. Smeetsa, Lars Akeroyda, Andre Choof, Eissa N.E. Aguora, Leo Timmersa, Harold V. van Rijeng, Pieter A. Doevendansc, Gerard Pasterkampa,Sai Kiang Limd, Dominique P. de Kleijna. Cell Research 2013, 10, 301-312.
80. Hadi Valadi, Karin Ekström, Apostolos Bossios, Margareta Sjöstrand, James J Lee & Jan O Lötvall. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology 2007, 9, 654-659.
81. M. Liu, K. Kono, J. M. Frechet, J. Water-soluble dendritic unimolecular micelles: Their potential as drug delivery agents. Control Release 2000, 121-131.
82. S. M. Moghimi, A. C. Hunter, J. C. Murray. Long-Circulating and Target-Specific Nanoparticles: Theory to Practice. Pharmacol Rev 2001,53, 283-318.
83. D. A. LaVan, T. McGuire, R. Langer. Small-scale systems for in vivo drug delivery. Nature Biotechnol 2003, 21, 1184-1191.
84. R. Duncan. The dawning era of polymer therapeutics. Nature Rev Drug Discov 2003, 2, 347-360.
85. T. M. Allen. Ligand-targeted therapeutics in anticancer therapy. Nature Rev Cancer 2002, 2, 750-763.
86. D. S. Alberts, D. J. Garcia. Safety Aspects of Pegylated Liposomal Doxorubicin in Patients with Cancer. Drugs 1997, 54, 30-35.
87. J. Szebeni et al. Role of Complement Activation in Hypersensitivity Reactions to Doxil and Hynic PEG Liposome: Experimental and Clinical Studies. J Liposome Res 2002, 12, 165-172.
88. Dong Liu, Fang Yang, Fei Xiong, and Ning Gu. The Smart Drug Delivery System and Its Clinical Potential. Theranostics 2016, 6, 1306-1323.
89. D. Cunliffe, C. de las Heras Alarcon, V. Peters, J.R. Smith, C. Alexander. Thermoresponsive Surface-Grafted Poly(N−isopropylacrylamide) Copolymers:  Effect of Phase Transitions on Protein and Bacterial Attachment. Langmuir 2003, 19, 2888–2899.
90. L.-C. Dong, A.S. Hoffman. A novel approach for preparation of pH-sensitive hydrogels for enteric drug delivery. J Control Release 1991, 15, 141-152.
91. Y. Matsumura, H. Maeda, A new concept for macromolecular therapeutics in cancer-chemotherapy— mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986, 46, 6387–6392.
92. K. Na, Y.H. Bae. pH-sensitive polymers for drug delivery. Polymeric Drug Delivery Systems 2005, 3, 129–194.
93. E.S. Lee, K. Na, Y.H. Bae. Polymeric micelle for tumor pH and folate-mediated targeting. J Control Release 2003, 91, 103–113.
94. J.V.M. Weaver, Y. Tang, S. Liu, P.D. Iddon, R. Grigg, N.C. Billingham, S.P. Armes, R. Hunter, S.P. Rannard. Preparation of shell cross-linked micelles by polyelectrolyte complexation. Angew Chem Int Ed Engl 2004, 43, 1389–1392.
95. K.B. Thurmond, E.E. Remsen, T. Kowalewski, K.L. Wooley. Packaging of DNA by shell crosslinked nanoparticles. Nucleic Acids Res 1999, 27, 2966–2971.
96. E.L. Ferguson, D. Schmaljohann, R. Duncan, Proc. Contr. Novel Anticancer Polymer Conjugates Designed to Treat Hormone-Dependant Cancers and Circumvent Resistance. Rel Soc 2006, 660.
97. N. Lavignac, M. Lazenby, J. Franchini, P. Ferruti, R. Duncan, Synthesis and preliminary evaluation of poly(amidoamine)-melittin conjugates as endosomolytic polymers and/or potential anticancer therapeutics. Int J Pharm 2005, 300, 102–112.
98. Yanhua Tian, Suping Li, Jian Song, Tianjiao Ji, Motao Zhu, Gregory J. Anderson, Jingyan Wei, Guangjun Nie. A Doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 2014, 35, 2383-2390.
99. Tianzhi Yang & Paige Martin & Brittany Fogarty & Alison Brown & Kayla Schurman & Roger Phipps & Viravuth P. Yin & Paul Lockman & Shuhua Bai. Exosome Delivered Anticancer Drugs Across the Blood-Brain Barrier for Brain Cancer Therapy in Danio Rerio. Pharm Res 2015, 32, 2003–2014.
100.Jessica Wahlgren, Tanya De L. Karlson, Mikael Brisslert, Forugh Vaziri Sani, Esbjörn Telemo, Per Sunnerhagen, Hadi Valadi. Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Research 2012, 40, e130.
101.Shin-ichiro Ohno, Masakatsu Takanashi, Katsuko Sudo, Shinobu Ueda, Akio Ishikawa, Nagahisa Matsuyama, Koji Fujita, Takayuki Mizutani, Tadaaki Ohgi, Takahiro Ochiya, Noriko Gotoh, Masahiko Kuroda. Systemically Injected Exosomes Targeted to EGFR Deliver Antitumor MicroRNA to Breast Cancer Cells. Molecular Therapy 2013, 21, 185–191.
102.Jie Wang, Yue Dong, Yiwei Li, Wei Li, Kai Cheng, Yuan Qian, Guoqiang Xu, Xiaoshuai Zhang, Liang Hu, Peng Chen, Wei Du, Xiaojun Feng, Yuan-Di Zhao, Zhihong Zhang, and Bi-Feng Liu. Designer Exosomes for Active Targeted Chemo-Photothermal Synergistic Tumor Therapy. Adv Funct Mater 2018, 28, 1707360.
103.Matthew J. Haney, Natalia L. Klyachko, Yuling Zhao, Richa Gupta, Evgeniya G. Plotnikova, Zhijian He, Tejash Patel, Aleksandr Piroyan, Marina Sokolsky, Alexander V. Kabanov, Elena V. Batrakova. Exosomes as drug delivery vehicles for Parkinson's disease therapy. Journal of Controlled Release 2015, 207, 18-30.
104.Per-Arne Oldenborg, Alex Zheleznyak, Yi-Fu Fang, Carl F. Lagenaur, Hattie D. Gresham, Frederik P. Lindberg. Role of CD47 as a Marker of Self on Red Blood Cells. SCIENCE 2000, 288, 2051-2054.
105.Hongzhao Qi, Chaoyong Liu, Lixia Long, Yu Ren, Shanshan Zhang, Xiaodan Chang, Xiaomin Qian, Huanhuan Jia, Jin Zhao, Jinjin Sun, Xin Hou, Xubo Yuan, Chunsheng Kang. Blood Exosomes Endowed with Magnetic and Targeting Properties for Cancer Therapy. ACS Nano 2016, 10, 3323–3333.
106.Shanhu Liu, Ruimin Xing, Feng Lu, Rohit Kumar Rana, and Jun-Jie Zhu. One-Pot Template-Free Fabrication of Hollow Magnetite Nanospheres and Their Application as Potential Drug Carriers. The Journal of Physical Chemistry 2009, 113, 21042-2104.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 仿紅血球多孔磁性奈米粒子用於增強阿黴素- 高分子粒子釋放應用於轉移肺腫瘤治療
2. 具光熱應答性乳鐵蛋白修飾奈米豌豆應用於雷射刺激藥物釋放、腫瘤標靶與光熱/化學協同治療
3. 磁性奈米殼核膠囊特性改質應用於疏水性藥物控制釋放與增強腫瘤治療
4. 磷脂質修飾多孔碳矽複合奈米片經磁刺激 用於加強類神經細胞分化和腫瘤治療
5. 具標靶功能紅血球膜包覆介孔性二氧化矽奈米粒子應用於藥物輸送與光熱治療
6. 具藥物再填充之可注射型磁性多孔隙複合奈米載體應於腫瘤治療
7. 多孔碳球/氧化石墨烯複合材料應用於高靈敏性偵測循環腫瘤細胞
8. 具自發性多重階段標靶與穿透的磁製藥物傳輸系統應用於腫瘤深處的協同治療
9. 3D列印應用於具階段性藥物控制釋放磁性微針製備於雄性禿治療
10. 具磁電操控表面電性之金奈米腦攜帶可穿透次級藥物載體應用於腦瘤深度治療
11. 可注射型多孔金奈米腦/微米水膠球複合材料應用於創傷性腦損傷治療
12. 可注射式新月形水膠微球與具磁電操控表面電性之金奈米腦應用於腦創傷的修復
13. 外泌體修飾磁性奈米粒子透過對流增強遞送系統應用於腦瘤治療
14. 具光熱免疫療法之巨噬細胞外泌體裝飾金/銀殼核三角奈米板結合檢查點阻斷劑應用於抑制轉移性腫瘤
15. 石墨烯奈米複合材料之穿透藥物傳遞應用於深度腦部腫瘤治療
 
* *