帳號:guest(3.142.42.32)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊麗穎
作者(外文):Yang, Li-Ying.
論文名稱(中文):建立正常人之模型比較思覺失調症大腦白質微結構的變化
論文名稱(外文):White matter microstructure changes in schizophrenia: A diffusion MRI study using normative model approach
指導教授(中文):許靖涵
曾文毅
指導教授(外文):Hsu, Ching-Han
Tseng, Wen-Yih Isaac
口試委員(中文):吳文超
黃宗正
口試委員(外文):Wu, Wen-Chau
Hwang, Tzung-Jeng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:105012539
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:58
中文關鍵詞:思覺失調症全腦白質神經纖維自動化分析概化部分非等向性指標平均擴散係數
外文關鍵詞:schizophreniatract-based automatic analysisgeneralized fractional anisotropymean diffusivity
相關次數:
  • 推薦推薦:0
  • 點閱點閱:496
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
思覺失調症是一種以社會行為異常以及認知混亂為特徵的精神疾病。過去的神經影像學研究發現,思覺失調症患者的大腦白質結構會發生異常改變,但是目前的研究對於白質結構的改變所發生的時機並不瞭解。因此本研究將探討思覺失調症的白質神經束病變和白質神經束發育與退化時機的相關性,以了解思覺失調症對於白質神經束改變的潛在致病機轉。首先,為了瞭解白質神經纖維束的微結構特徵在正常發育與退化過程中的模式,本研究使用全腦白質神經纖維自動化分析,獲得大腦主要76條白質神經束的完整度,以概化部分非等向性指標(GFA)和平均擴散係數(MD)加以量化。再者,利用524位其年齡涵蓋5至80歲的正常族群資料,依據性別分組,建構大腦白質神經束GFA和MD值隨著年齡變化的常模,並計算大腦白質神經束的常模特徵,例如白質成熟的巔峰年齡等。其後將158位思覺失調症患者與其同性別年齡的控制組,代入上述常模中計算標準偏差值(以z分數表示),估計的標準偏差值將用來檢驗思覺失調症與常人間白質結構的差異、結構變化量與病程的關係以及結構變化量與神經束常模特徵之間的關係。研究結果發現:患者有12條神經束的GFA數值、49條神經束的MD數值和常人有顯著差異,其中有7條神經束的GFA值會隨著病程愈久而變得更低,而36條神經束的MD值在發病初期就和常人具有差異,但不會隨著病程而改變。除此之外,常模中GFA值到達成熟所需的年齡和患者z分數呈現正相關(r= 0.286,p值:0.012),而常模中MD值的成熟年齡和z分數則呈現負相關(r= -0.586,p值:<0.0001)。本研究結果顯示思覺失調症與正常人間的白質神經束差異,並且其差異嚴重程度是與病程具有關聯性,最後藉由常模特徵與變化量之間的相關性,我們發現了越早發育的神經束受到思覺失調症的影響而損壞得較為嚴重。本研究發現了思覺失調症白質神經束的改變與神經束發育老化時機之間的關聯性,盼望此結果能作為思覺失調症致病機轉的相關學理基礎,並為臨床醫師提供診治時的依據。
Schizophrenia is a debilitating and multi-symptom mental disorder characterized by disrupted cognitive, social and behavior functions. Previous studies have investigated white matter impairments in schizophrenia via control-matched experiment design. However, the design of demographic-matched controls may encounter a problem of subject sampling bias that could lead to statistical results with potential preconception. Due to the arisen era of big data, the large amount of MRI data allows the researchers to create a normative database that covers nearly the whole lifespan to model the variables of interest in the scale of population. Therefore, in this study, we aimed to create a normative model using diffusion MRI data, then exploit it to investigate the white matter tract alteration in schizophrenia. To quantify the characteristics of white matter tracts, the whole brain tract-based automatic analysis (TBAA) was used to reconstruct and transform the image data into the diffusion index (generalized fractional anisotropy (GFA) and mean diffusivity (MD)) arrays called connectograms. The normative models were established based on 524 healthy subjects’ connectograms (292 males, age: 5-80 years). The connectograms of the 158 patients with schizophrenia were calculated into the standardized scores (z-score) individually via the normative models. The z-score of fiber tracts represented the degree of deviation from the normal population. In our results, there was significant difference of GFA z-scores in 12 tracts and MD z-score in 49 tracts. Also, the GFA z-scores of the 7 tracts were negatively correlated to the duration of illness. However, the MD z-scores of the 36 tracts revealed the difference against the normal population in the early stage of the disease onset instead of association in the duration of illness. In addition, the age of GFA peak in normal population was positively correlated (r = 0.286, p = 0.012) to the GFA z-scores in schizophrenia, and the age of MD trough was negatively correlated (r = -0.586, p < 0.001) to the MD z-scores. In summary, we found the white matter impairments in schizophrenia via the normative model approach. Also, the tracts developing earlier in normative trajectory were impaired more by the disease. Normative model approach allows us to investigate the structural changes in schizophrenia on an individual level. The derived z-score was a potential index as a reference for diagnosis. These results provided the scientific basis for the pathogenesis of schizophrenia.
中文摘要 i
Abstract iii
致謝 v
List of figures viii
List of tables ix
Chapter 1 introduction 1
1.1 Background 1
1.2 White matter changes in schizophrenia 2
1.3 Gender effect in white matter microstructure 4
1.4 Microstructural changes and atrophy in white matter tracts with aging 4
1.5 Statistical analysis method: ANCOVA 5
1.6 Motivation and purpose 6
Chapter 2 Materials and Methods 9
2.1 Imaging technique --- Diffusion spectrum imaging (DSI) 9
2.2 MRI data acquisition 9
2.3 Imaging analysis 11
2.3.1 Image quality assurance 11
2.3.2 DSI data reconstruction 12
2.4 Tract-based automatic analysis (TBAA) 13
2.5 Normative model of 76 tracts in healthy controls 18
2.5.1 Participants 18
2.5.2 Normative modeling 19
2.5.3 Model assessment 20
2.5.4 Age of peak/trough, percent change of maturation and senescence 20
2.6 Z-score of individual Schizophrenia patients 23
2.6.1 Schizophrenia demographics 23
2.6.2 Z-score and statistical analysis 24
Chapter 3 Results 26
3.1 Age-related changes within tracts 26
3.2 Z-score differences of 76 tracts in schizophrenia 31
3.3 Multiple linear regression analysis 34
3.4 Correlation between GFA/MD z-score and age of peak/trough in 76 white matter tracts 37
Chapter 4 Discussion 39
4.1 Normative model of white matter tract in whole brain 39
4.2 White matter microstructure changes in schizophrenia 43
4.3 Limitations and future work 44
Chapter 5 Conclusions 45
References 46
Appendix 50
Publication 58
Abdul-Rahman, M.F., A. Qiu, and K. Sim. 2011. Regionally specific white matter disruptions of fornix and cingulum in schizophrenia. PLoS One. 6:e18652.
Andreasen, N.C. 1990. Positive and Negative Symptoms in Schizophrenia. Archives of General Psychiatry. 47.
Andreasen, N.C., M. Pressler, P. Nopoulos, D. Miller, and B.C. Ho. 2010. Antipsychotic dose equivalents and dose-years: a standardized method for comparing exposure to different drugs. Biol Psychiatry. 67:255-262.
Ashburner, J., and K.J. Friston. 2005. Unified segmentation. Neuroimage. 26:839-851.
Avram, A.V., J.E. Sarlls, A.S. Barnett, E. Ozarslan, C. Thomas, M.O. Irfanoglu, E. Hutchinson, C. Pierpaoli, and P.J. Basser. 2016. Clinical feasibility of using mean apparent propagator (MAP) MRI to characterize brain tissue microstructure. Neuroimage. 127:422-434.
Bora, E., A. Fornito, J. Radua, M. Walterfang, M. Seal, S.J. Wood, M. Yucel, D. Velakoulis, and C. Pantelis. 2011. Neuroanatomical abnormalities in schizophrenia: a multimodal voxelwise meta-analysis and meta-regression analysis. Schizophr Res. 127:46-57.
Callaghan, P.T., A. Coy, D. MacGowan, K.J. Packer, and F.O. Zelaya. 1991. Diffraction-like effects in NMR diffusion studies of fluids in porous solids. Nature. 351:467-469.
Chen, Y.J., Y.C. Lo, Y.C. Hsu, C.C. Fan, T.J. Hwang, C.M. Liu, Y.L. Chien, M.H. Hsieh, C.C. Liu, H.G. Hwu, and W.Y. Tseng. 2015. Automatic whole brain tract-based analysis using predefined tracts in a diffusion spectrum imaging template and an accurate registration strategy. Hum Brain Mapp. 36:3441-3458.
Chung, Y.S., and D.M. Barch. 2016. Frontal-striatum dysfunction during reward processing: Relationships to amotivation in schizophrenia. J Abnorm Psychol. 125:453-469.
Dietrich, O., J.G. Raya, S.B. Reeder, M.F. Reiser, and S.O. Schoenberg. 2007. Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging. 26:375-385.
Emsley, R., B. Chiliza, L. Asmal, and B.H. Harvey. 2013. The nature of relapse in schizophrenia. BMC Psychiatry. 13:50.
Epstein, K.A., K.R. Cullen, B.A. Mueller, P. Robinson, S. Lee, and S. Kumra. 2014. White matter abnormalities and cognitive impairment in early-onset schizophrenia-spectrum disorders. J Am Acad Child Adolesc Psychiatry. 53:362-372 e361-362.
Fernandez-Miranda, J.C., A.L. Rhoton, Jr., J. Alvarez-Linera, Y. Kakizawa, C. Choi, and E.P. de Oliveira. 2008. Three-dimensional microsurgical and tractographic anatomy of the white matter of the human brain. Neurosurgery. 62:989-1026; discussion 1026-1028.
Fornito, A., A. Zalesky, C. Pantelis, and E.T. Bullmore. 2012. Schizophrenia, neuroimaging and connectomics. Neuroimage. 62:2296-2314.
Friman, O., G. Farneback, and C.F. Westin. 2006. A Bayesian approach for stochastic white matter tractography. IEEE Transactions on Medical Imaging. 25:965-978.
Gogtay, N., N.S. Vyas, R. Testa, S.J. Wood, and C. Pantelis. 2011. Age of onset of schizophrenia: perspectives from structural neuroimaging studies. Schizophr Bull. 37:504-513.
Gur, R.C., B.I. Turetsky, M. Matsui, M. Yan, W. Bilker, P. Hughett, and R.E. Gur. 1999. Sex Differences in Brain Gray and White Matter in Healthy Young Adults: Correlations with Cognitive Performance. The Journal of Neuroscience. 19:4065-4072.
Harrison, P.J., and M.J. Owen. 2003. Genes for schizophrenia? Recent findings and their pathophysiological implications. The Lancet. 361:417-419.
Hsu, Y.C., C.H. Hsu, and W.Y. Tseng. 2012. A large deformation diffeomorphic metric mapping solution for diffusion spectrum imaging datasets. Neuroimage. 63:818-834.
Huang, J.Y., C.M. Liu, T.J. Hwang, Y.J. Chen, Y.C. Hsu, H.G. Hwu, Y.T. Lin, M.H. Hsieh, C.C. Liu, Y.L. Chien, and W.I. Tseng. 2018. Shared and distinct alterations of white matter tracts in remitted and nonremitted patients with schizophrenia. Hum Brain Mapp. 39:2007-2019.
Jones, D.K., and M. Cercignani. 2010. Twenty-five pitfalls in the analysis of diffusion MRI data. NMR Biomed. 23:803-820.
Kanaan, R.A., M. Allin, M. Picchioni, G.J. Barker, E. Daly, S.S. Shergill, J. Woolley, and P.K. McGuire. 2012. Gender differences in white matter microstructure. PLoS One. 7:e38272.
Karlsgodt, K.H., D. Sun, and T.D. Cannon. 2010. Structural and Functional Brain Abnormalities in Schizophrenia. Curr Dir Psychol Sci. 19:226-231.
Kochunov, P., D.C. Glahn, J. Lancaster, P.M. Thompson, V. Kochunov, B. Rogers, P. Fox, J. Blangero, and D.E. Williamson. 2011. Fractional anisotropy of cerebral white matter and thickness of cortical gray matter across the lifespan. Neuroimage. 58:41-49.
Kuo, L.W., J.H. Chen, V.J. Wedeen, and W.Y. Tseng. 2008. Optimization of diffusion spectrum imaging and q-ball imaging on clinical MRI system. Neuroimage. 41:7-18.
Lebel, C., M. Gee, R. Camicioli, M. Wieler, W. Martin, and C. Beaulieu. 2012. Diffusion tensor imaging of white matter tract evolution over the lifespan. Neuroimage. 60:340-352.
Lieberman, J.A., R.R. Girgis, G. Brucato, H. Moore, F. Provenzano, L. Kegeles, D. Javitt, J. Kantrowitz, M.M. Wall, C.M. Corcoran, S.A. Schobel, and S.A. Small. 2018. Hippocampal dysfunction in the pathophysiology of schizophrenia: a selective review and hypothesis for early detection and intervention. Mol Psychiatry. 23:1764-1772.
Meyer-Lindenberg, A. 2010. From maps to mechanisms through neuroimaging of schizophrenia. Nature. 468:194-202.
Niogi, S.N., P. Mukherjee, and B.D. McCandliss. 2007. Diffusion tensor imaging segmentation of white matter structures using a Reproducible Objective Quantification Scheme (ROQS). Neuroimage. 35:166-174.
Nurnberger, J.I. 1994. Diagnostic Interview for Genetic Studies. Archives of General Psychiatry. 51.
Owen, M.J., N. Craddock, and M.C. O'Donovan. 2005. Schizophrenia: genes at last? Trends Genet. 21:518-525.
Ozarslan, E., C.G. Koay, T.M. Shepherd, M.E. Komlosh, M.O. Irfanoglu, C. Pierpaoli, and P.J. Basser. 2013. Mean apparent propagator (MAP) MRI: a novel diffusion imaging method for mapping tissue microstructure. Neuroimage. 78:16-32.
Peters, R. 2006. Ageing and the brain. Postgrad Med J. 82:84-88.
Ragland, J.D., C. Ranganath, J. Phillips, M.A. Boudewyn, A.M. Kring, T.A. Lesh, D.L. Long, S.J. Luck, T.A. Niendam, M. Solomon, T.Y. Swaab, and C.S. Carter. 2015. Cognitive Control of Episodic Memory in Schizophrenia: Differential Role of Dorsolateral and Ventrolateral Prefrontal Cortex. Front Hum Neurosci. 9:604.
Reese, T.G., O. Heid, R.M. Weisskoff, and V.J. Wedeen. 2003. Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magn Reson Med. 49:177-182.
Ritchie, S.J., S.R. Cox, X. Shen, M.V. Lombardo, L.M. Reus, C. Alloza, M.A. Harris, H.L. Alderson, S. Hunter, E. Neilson, D.C.M. Liewald, B. Auyeung, H.C. Whalley, S.M. Lawrie, C.R. Gale, M.E. Bastin, A.M. McIntosh, and I.J. Deary. 2018. Sex Differences in the Adult Human Brain: Evidence from 5216 UK Biobank Participants. Cereb Cortex. 28:2959-2975.
Shepherd, A.M., K.R. Laurens, S.L. Matheson, V.J. Carr, and M.J. Green. 2012. Systematic meta-review and quality assessment of the structural brain alterations in schizophrenia. Neurosci Biobehav Rev. 36:1342-1356.
Smith, S.M., M. Jenkinson, H. Johansen-Berg, D. Rueckert, T.E. Nichols, C.E. Mackay, K.E. Watkins, O. Ciccarelli, M.Z. Cader, P.M. Matthews, and T.E. Behrens. 2006. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage. 31:1487-1505.
Tuch, D.S. 2004. Q-ball imaging. Magn Reson Med. 52:1358-1372.
Tzourio-Mazoyer, N., B. Landeau, D. Papathanassiou, F. Crivello, O. Etard, N. Delcroix, B. Mazoyer, and M. Joliot. 2002. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 15:273-289.
Vos, S.B., D.K. Jones, M.A. Viergever, and A. Leemans. 2011. Partial volume effect as a hidden covariate in DTI analyses. Neuroimage. 55:1566-1576.
Wakana, S., H. Jiang, L.M. Nagae-Poetscher, P.C. van Zijl, and S. Mori. 2004. Fiber tract-based atlas of human white matter anatomy. Radiology. 230:77-87.
Wedeen, V.J., P. Hagmann, W.Y. Tseng, T.G. Reese, and R.M. Weisskoff. 2005. Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med. 54:1377-1386.
Wedeen, V.J., R.P. Wang, J.D. Schmahmann, T. Benner, W.Y. Tseng, G. Dai, D.N. Pandya, P. Hagmann, H. D'Arceuil, and A.J. de Crespigny. 2008. Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage. 41:1267-1277.
Weisstein, E.W. 2004. Bonferroni correction.
Whitford, T.J., P. Savadjiev, M. Kubicki, L.J. O'Donnell, D.P. Terry, S. Bouix, C.F. Westin, J.S. Schneiderman, L. Bobrow, A.C. Rausch, M. Niznikiewicz, P.G. Nestor, C. Pantelis, S.J. Wood, R.W. McCarley, and M.E. Shenton. 2011. Fiber geometry in the corpus callosum in schizophrenia: evidence for transcallosal misconnection. Schizophr Res. 132:69-74.
Wu, C.H., T.J. Hwang, Y.J. Chen, Y.C. Hsu, Y.C. Lo, C.M. Liu, H.G. Hwu, C.C. Liu, M.H. Hsieh, Y.L. Chien, C.M. Chen, and W.Y. Isaac Tseng. 2015. Primary and secondary alterations of white matter connectivity in schizophrenia: A study on first-episode and chronic patients using whole-brain tractography-based analysis. Schizophr Res. 169:54-61.
Yeh, F.C., T.D. Verstynen, Y. Wang, J.C. Fernandez-Miranda, and W.Y. Tseng. 2013. Deterministic diffusion fiber tracking improved by quantitative anisotropy. PLoS One. 8:e80713.
Yendiki, A., K. Koldewyn, S. Kakunoori, N. Kanwisher, and B. Fischl. 2014. Spurious group differences due to head motion in a diffusion MRI study. Neuroimage. 88:79-90.
Zhang, Y., J. Zhang, K. Oishi, A.V. Faria, H. Jiang, X. Li, K. Akhter, P. Rosa-Neto, G.B. Pike, A. Evans, A.W. Toga, R. Woods, J.C. Mazziotta, M.I. Miller, P.C. van Zijl, and S. Mori. 2010. Atlas-guided tract reconstruction for automated and comprehensive examination of the white matter anatomy. Neuroimage. 52:1289-1301.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *