帳號:guest(3.133.115.53)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王晨旭
作者(外文):Wang, Chen-Hsu
論文名稱(中文):類澱粉蛋白正子掃描的量化分析方法:閾值區域比值法
論文名稱(外文):The quantitative analysis of Amyloid PET - Threshold based Region Ratio
指導教授(中文):許靖涵
指導教授(外文):Hsu, Ching-Han
口試委員(中文):程紹智
樊裕明
口試委員(外文):Cherng, Shiou-Chi
Fan, Yu-Ming
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:105012538
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:53
中文關鍵詞:類澱粉蛋白正子阿茲海默症失智症量化分析Tau蛋白
外文關鍵詞:AmyloidPETAlzheimer's diseaseADdementiaTauquantitative analysis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:240
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在全球,失智症的人口數越來越多,而在臨床上的診斷率卻只有大約 25%,傳統的 診斷方式依靠臨床的評量以及問診,影像學的檢查主要是為了排除其他內科方面的疾 病,近期的診斷方式加入了 Biomarkers 來輔助診斷,期望能提高臨床失智症的診斷率到 50%。其中類澱粉蛋白正子造影對於失智症的病程預測有很大的幫助,而早期判讀類澱粉 蛋白正子造影影像的方法主要是依靠視覺評估的方式來做判讀,結果的準確性依靠的是 臨床醫師的經驗,後來有了量化分析的方法標準攝取值比值法的出現,對於類澱粉蛋白 正子造影的結果有了比較客觀的依據。但此方法也有些缺點,會受到年齡因素的影響, 因此此方法陽性的結果大約只有 50%的患者真的是有罹患阿茲海默氏症。
本文提供另外的量化分析方法叫做閾值區域比值法,此方法較不會受到其他的因素 而影響判讀的結果。本文比較了不同的造影藥劑、不同的性別、年齡以及不同群組之間 的分析結果,以視覺評估當作黃金標準,來和標準攝取值比值法做比較。最後再以臨床 檢查的病例來做驗證,得到的結果有很高的準確率,尤其是 TRR_80 的結果特異性明顯比 標準攝取值比值法來的好,代表著此方法分析結果為陽性的話,病患腦中有不正常的類 澱粉蛋白沉積的情形可信度是很高的。而 TRR_OTSU 的方法較適合用在相同的造影藥劑 的影像上來做分析,這樣的結果對於臨床上會更加的容易使用。
閾值區域比值法分析類澱粉蛋白正子造影影像可以用來早期的偵測患者腦中是否有
不正常的類澱粉蛋白堆積,能夠提早治療延緩病程的發展,能夠有效提高臨床失智症的
診斷率,而且操作上也很快速簡便,對於改善臨床報告品質有很大的幫助。
The number of people with dementia is increasing in the world, but the clinical diagnosis rate is only about 25%. Traditional diagnostic methods depend on the clinical evaluation and consultation. For medical diseases, recent diagnostic methods have added biomarkers to assist in the diagnosis, and it is hoped that the diagnosis rate of clinical dementia can be increased to 50%. The method of Amyloid PET is mainly to make interpretations of visual assessment. The accuracy of the results is based on the experience of clinicians. Later, the quantitative analysis method called the standard uptake value ratio (SUVr) appears. For Amyloid PET result has a more objective basis. However, this method has some shortcomings, because the elders have Amyloid deposits in the brain. Therefore, only about 50% of patients with positive results of this method are really suffering from AD.
This article provides another quantitative analysis method called the threshold based region ratio (TRR), which is less affected by other factors that affect the interpretation result. Here we compare the analysis results between different tracers, genders, ages, and groups, and then verify the results with clinical examination cases. The results obtained have a very high accuracy rate. The specificity of TRR_80 is sbetter than that of SUVr, which means that if the analysis result of this method is positive, there is a high degree of certainty that the patient has abnormal amyloid deposits in the brain. The TRR_OTSU method is more suitable for analysis on the image of the same tracer. This result will be easier to use in clinical practice.
TRR method to analyze Amyloid PET images can be used to find out whether there is abnormal amyloid accumulation in the brain at the early stage. It can improve the diagnosis rate of dementia, and it’s helpful for improving the quality of clinical reports.
誌謝
摘要 ---------------------------------------------- i
目錄 ---------------------------------------------- iii
圖目錄 -------------------------------------------- v
表目錄 -------------------------------------------- vi
壹、緒論 ----------------------------------------- 1
一 阿茲海默症 -------------------------------------- 3
1 失智症之類型 ------------------------------------- 3
2 阿茲海默氏症可能成因 ------------------------------ 3
3 阿茲海默氏症病程 --------------------------------- 5
二 臨床診斷 --------------------------------------- 6
三 研究動機 --------------------------------------- 9
貳、研究目的 -------------------------------------- 10
參、材料與方法 ------------------------------------ 12
一 材料 ------------------------------------------ 12
1 研究資料 --------------------------------------- 12
2 造影藥劑 --------------------------------------- 14
3 造影方式 --------------------------------------- 16
二 方法 ------------------------------------------ 17
1 視覺評估 --------------------------------------- 17
2 影像預處理 ------------------------------------- 20
3 醫學影像量化分析 --------------------------------- 21
3.1 標準攝取值比值法 ------------------------------- 21
3.1.1 Centiloid Atlas ---------------------------- 22
3.1.2 Amyloid Cortical Composite Atlas ----------- 23
3.2 閾值區域比值法 --------------------------------- 24
3.2.1 閾值分割法 ---------------------------------- 25
3.2.2 閾值選擇 ------------------------------------ 26
3.2.3 大津閾值分割法 ------------------------------- 27
3.2.4 區域大小分析 --------------------------------- 28
3.3 統計方法 -------------------------------------- 29
肆、研究結果 --------------------------------------- 31
一 標準攝取值比值法結果 ------------------------------ 31
二 閾值區域比值法結果 -------------------------------- 33
三 比較不同藥物、性別、年齡結果 ----------------------- 35
四 比較不同病程群組結果 ------------------------------ 38
伍、結果討論 --------------------------------------- 40
陸、結論與未來工作 ---------------------------------- 48
柒、參考文獻 --------------------------------------- 50

1. Lennart Thurfjell, Johan Lilja, Roger Lundqvist, Chris Buckley, Adrian Smith, Rik Vandenberghe, and Paul Sherwin, “Automated Quantification of 18F-Flutemetamol PET Activity for Categorizing Scans as Negative or Positive for Brain Amyloid: Concordance with Visual Image Reads”, J Nucl Med, 2014, 55:1623-1628

2. Santiago Bullich, Victor L. Villemagne, Ana M. Catafau, Aleksandar Jovalekic, Norman Koglin, Christopher C. Rowe, and Susan De Santi, “Optimal Reference Region to Measure Longitudinal Amyloid-β Change with 18F-Florbetaben PET”, J Nucl Med, 2017, 58:1300-1306

3. Santiago Bullich, John Seibyl, Ana M. Catafau, Aleksandar Jovalekic, Norman Koglin, Henryk Barthel, Osama Sabri, Susan De Santi, “Optimized classification of 18F- Florbetaben PET scans as positive and negative using an SUVR quantitative approach and comparison to visual assessment”, NeuroImage: Clinical, 2017, 15:325–332

4. Fayçal Ben Bouallègue , Denis Mariano-Goulart, Pierre Payoux and the Alzheimer’s Disease Neuroimaging Initiative (ADNI), “Comparison of CSF markers and semi- quantitative amyloid PET in Alzheimer’s disease diagnosis and in cognitive impairment prognosis using the ADNI-2 database”, Ben Bouallègue et al. Alzheimer's Research & Therapy, 2017, 9:32

5. Nicholas R. Harn, Suzanne L. Hunt, Jacqueline Hill, Eric Vidoni, Mark Perry, and Jeffrey M. Burns, “Augmenting Amyloid PET Interpretations with Quantitative Information Improves Consistency of Early Amyloid Detection”, Clin Nucl Med, 2017, 42(8): 577– 581

6. Abhinay D. Joshi, Michael J. Pontecorvo, Chrisopher M. Clark, Alan P. Carpenter, Danna L. Jennings, Carl H. Sadowsky, Lee P. Adler, Karel D. Kovnat, John P. Seibyl, Anupa Arora, Krishnendu Saha, Jason D. Burns, Mark J. Lowrey, Mark A. Mintun, Daniel M. Skovronsky, and the Florbetapir F 18 Study Investigators, “Performance Characteristics of Amyloid PET with Florbetapir F 18 in Patients with Alzheimer’s Disease and Cognitively Normal Subjects”, J Nucl Med, 2012, 53(3):378–384

7. Kirk A. Frey and Robert A. Koeppe, “PET Amyloid Analyses”, J Nucl Med, 2016, 57(8):1168–1169
8. Karin Knešaurek, Geoffrey Warnock, Lale Kostakoglu, Cyrill Burger, for Alzheimer's

8. Karin Knešaurek, Geoffrey Warnock, Lale Kostakoglu, Cyrill Burger, for Alzheimer's Disease Neouroimaging Initiative, ” Comparison of Standardized Uptake Value Ratio Calculations in Amyloid Positron Emission Tomography Brain Imaging”, World Journal of Nuclear Medicine, 2018, 17(1):21–26

9. G Akamatsu, Y Ikari, A Ohnishi, H Nishida, K Aita, M Sasaki, Y Yamamoto, M Sasaki and M Senda, “Automated PET-only quantification of amyloid deposition with adaptive template and empirically pre-defined ROI”, Physics in Medicine & Biology, 61:5768

10. L. Saint-Aubert & F. Nemmi & P. Péran & E. J. Barbeau & P. Payoux & F. Chollet & J. Pariente, “Comparison between PET template-based method and MRI-based method for cortical quantification of florbetapir (AV-45) uptake in vivo”, Eur J Nucl Med Mol Imaging, 2014, 41:836–843

11. LisaAnn Trembath, CNMT, MSM, CCRA, FSNMMI-TS, Maureen Newell, CNMT, RT(N), and Michael D. Devous, Sr., PhD, “Technical Considerations in Brain Amyloid PET Imaging with 18F-Florbetapir”, J Nucl Med Technol, 2015, 43:175–184

12. Jeffrey R. Petrella, R. Edward Coleman, P. Murali Doraiswamy, ” Neuroimaging and Early Diagnosis of Alzheimer Disease: A Look to the Future”, Radiology, 2003, 226(2):315–336

13. Yi Ming Ding, Jae Ho Sohn, MD, MS, Michael G.Kawczynski, MS, Hari Trivedi, MD, Roy Harnish, MS, Nathaniel W.Jenkins, MS, Dmytro Lituiev, PhD, Timothy P. Copeland, MPP, Mariam S. Aboian, MD, PhD, Carina Mari Aparici, MD, Spencer C. Behr, MD, Robert R. Flavell, MD, PhD, Shih-Ying Huang, PhD, Kelly A. Zalocusky, PhD, Lorenzo Nardo, PhD, Youngho Seo, PhD, Randall A. Hawkins, MD, PhD, Miguel Hernandez Pampaloni, MD, PhD, Dexter Hadley, MD, PhD, Benjamin L. Franc, MD, MS, “A Deep Learning Model to Predict a Diagnosis of Alzheimer Disease by Using 18F-FDG PET of the Brain”, Radiology, 2018, 00:1–9

14. Victor L. Villemagne, Kevin Ong, Rachel S. Mulligan, Gerhard Holl, Svetlana Pejoska, Gareth Jones, Graeme O’Keefe, Uwe Ackerman, Henri Tochon-Danguy, J. Gordon Chan, Cornelia B. Reininger, Lueder Fels, Barbara Putz, Beate Rohde, Colin L. Masters, and Christopher C. Rowe, “Amyloid Imaging with 18F-Florbetaben in Alzheimer Disease and Other Dementias”, J Nucl Med, 2011, 52:1210-1217

15. Ana M. Catafau, Santiago Bullich, John P. Seibyl, Henryk Barthel, Bernardino Ghetti, James Leverenz, James W. Ironside, Walter J. Schulz-Schaefer, Anja Hoffmann, Osama Sabri, “Cerebellar amyloid-beta plaques: How frequent are they, and do they influence 18F-Florbetaben SUVR”, J Nucl Med, 2016, 57:1740-1745

16. John Seibyl, Ana M Catafau, Henryk Barthel, Kenji Ishii, Christopher C Rowe, James B Leverenz, Bernardino Ghetti, James W Ironside, Masaki Takao, Hiroyasu Akatsu, Shigeo Murayama, Santiago Bullich, Andre Mueller, Norman Koglin, Walter J Schulz-Schaeffer, Anja Hoffmann, Marwan N Sabbagh, Andrew W Stephens, Osama Sabri, “Impact of training method on the robustness of the visual assessment of 18F-florbetaben PET scans - results from a phase 3 study”, J Nucl Med, 2016, 57:900-906

17. Chloe Hutton & Jerome Declerck & Mark A. Mintun, Michael J. Pontecorvo & Michael D. Devous Sr., Abhinay D. Joshi & for the Alzheimer’s Disease Neuroimaging Initiative, “Quantification of 18F-florbetapir PET: comparison of two analysis methods”, J Nucl Med Mol Imaging, 2015, 42:725-732

18. William E. Klunk, Robert A. Koeppe, Julie C. Price, Tammie Benzinger, Michael D. Devous Sr., William Jagust, Keith Johnson, Chester A. Mathis, Davneet Minhas, Michael J. Pontecorvo, Christopher C. Rowe, Daniel Skovronsky, and Mark Mintun, “The Centiloid Project: Standardizing Quantitative Amyloid Plaque Estimation by PET”, Alzheimers Dement, 2015, 11(1):1-15

19. Mark E. Schmidt, Ping Chiao, Gregory Klein, Dawn Matthews, Lennart Thurfjell, Patricia E. Cole, Richard Margolin, Susan Landau, Norman L. Foster, N. Scott Mason, Susan De Santi, Joyce Suhy, Robert A. Koeppe, William Jagust, “The influence of biological and technical factors on quantitative analysis of amyloid PET: Points to consider and recommendations for controlling variability in longitudinal data”, Alzheimers & Dementia, 2014, 1-19

20. Ebba Gløersen Muller, Trine Holt Edwin, Caroline Stokke, Sigrid Stensby Navelsaker, Almira Babovic, Nenad Bogdanovic, Anne Brita Knapskog, Mona Elisabeth Revheim, “Amyloid-β PET—Correlation with cerebrospinal fluid biomarkers and prediction of Alzheimer ́s disease diagnosis in a memory clinic”, PLOS ONE, 2019, 1-15

21. Christopher C. Rowe and Victor L. Villemagne, “Brain Amyloid Imaging” J Nucl Med, 2011, 52:1733-1740

22. Christopher M Clark, Michael J Pontecorvo, Thomas G Beach, Barry J Bedell, R Edward Coleman†, P Murali Doraiswamy, Adam S Fleisher, Eric M Reiman, Marwan N Sabbagh, Carl H Sadowsky, Julie A Schneider, Anupa Arora, Alan P Carpenter, Matthew L Flitter, Abhinay D Joshi, Michael J Krautkramer, Ming Lu, Mark A Mintun, Daniel M Skovronsky, “Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-β plaques: a prospective cohort study”, Lancet Neurol, 2012, 11:669-678

23. A. Chincarinia, E. Peiraa, S. Morbellib, M. Pardinic, M. Bauckneht, J. Arbizu, M. Castelo-Branco, K.A. Büsing, A. de Mendonça, M. Didic, M. Dottorini, S. Engelborghs, C. Ferrarese, G.B. Frisoni, V. Garibotto, E. Guedj, L. Hausner, J. Hugon, J. Verhaeghe, P. Mecocci, M. Musarra, M. Queneau, M. Riverol, I. Santana, U.P. Guerraab, F. Nobili, “Semi-quantification and grading of amyloid PET: A project of the European Alzheimer's Disease Consortium (EADC)”, NeuroImage: Clinical, 2019, 23:101846

24. Urban Ekman, Daniel Ferreira, Eric Westman, “The A/T/N biomarker scheme and patterns of brain atrophy assessed in mild cognitive impairment”, SCIENTIFIC REPORTS, 2018, 8:8431

25. Louise Ricea, Sotirios Bisdas, “The diagnostic value of FDG and amyloid PET in Alzheimer’s disease—A systematic review”, European J Radialogy, 2017, 94:16-24

26. Martínez G, Vernooij RWM, Fuentes Padilla P, Zamora J, Bonfill Cosp X, Flicker L, “18F PET with florbetapir for the early diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI)”, Cochrane Database of Systematic Reviews, 2017, 11

27. Julie Ottoy, Ellis Niemantsverdriet, Jeroen Verhaeghe, Ellen De Roeck, Hanne Struyfs, Charisse Somers, Leonie wyffels, Sarah Ceyssens, Sara Van Mossevelde, Tobi Van den Bossche, Christine Van Broeckhoven, Annemie Ribbens, Maria Bjerke, Sigrid Stroobants, Sebastiaan Engelborghs, Steven Staelens, “Association of short-term cognitive decline and MCI-to-AD dementia conversion with CSF, MRI, amyloid- and 18F-FDG-PET imaging”, NeuroImage: Clinical, 2019, 22:101771

28. Yejin Kim, Paul Rosenberg, Esther Oh, “A Review of Diagnostic Impact of Amyloid Positron Emission Tomography Imaging in Clinical Practice”, Dement Geriatr Cogn Disord, 2018, 46:154-167

29. Katherine Zukotynski, Phillip H. Kuo, David Mikulis, Pedro Rosa-Neto, Antonio P. Strafella, Rathan M. Subramaniam, Sandra E. Black, “PET/CT of Dementia”, AJR, 2018, 211:246-259
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *