帳號:guest(3.15.221.10)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):莊詠筑
作者(外文):Chuang, Yung-Chu
論文名稱(中文):微環境硬度調控巨噬細胞的行為及極化
論文名稱(外文):Microenvironment stiffness alters the behavior and polarization of macrophages
指導教授(中文):陳之碩
指導教授(外文):Chen, Chi-Shuo
口試委員(中文):江啟勳
李佳陽
陳盈潔
口試委員(外文):Chiang, Chi-Shiun
Li, Chia-Yang
Chen, Ying-Chieh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:105012536
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:36
中文關鍵詞:巨噬細胞微環境硬度極化還原氧化壓力發炎小體
外文關鍵詞:MacrophageMicroenvironmentStiffnessPolarizationReactive oxygen speciesInflammasome
相關次數:
  • 推薦推薦:0
  • 點閱點閱:232
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
巨噬細胞是一種先天免疫細胞,在發炎反應及傷口癒合扮演重要的角色。這些細胞可以極化成促發炎表型(M1)或是抗發炎表型(M2)。先前研究已經證實有許多生物化學因子可以誘發巨噬細胞的極化,但是機械刺激對於巨噬細胞表型的影響目前仍然不清楚。考量不同組織中的微環境硬度有所不同,本篇論文主要研究為探討細胞外物理環境如何影響巨噬細胞表型變化。在這裡我們利用可調節硬度的高分子作為基板模擬不同的組織硬度,進而觀察巨噬細胞在面對不同硬度下的極化情形。另外利用細菌的脂多醣(LPS)和三磷酸腺苷(ATP)誘發巨噬細胞極化成M1表型。我們觀察到隨著硬度的改變,巨噬細胞的形態及遷移模式都有所變化。接著,我們進一步觀察活性氧物質(ROS)的生成及NLRP3發炎小體的形成。我們發現到在較軟的環境下,活性氧物質的增加可能與促進發炎小體的生成相關。另外在基因表現的分析中,巨噬細胞在軟的硬度下,M1表型相關基因表現量較高。綜合實驗所得結果,我們了解到巨噬細胞對於微環境硬度是相當敏感的;當有發炎因子刺激下,在較軟的環境下的巨噬細胞傾向朝向發炎表型極化。我們的研究結果將有助於我們了解組織微環境硬度變化對於巨噬細胞的表型的影響,並且希望可以用來解釋某些疾病的發病機制,提供另一個治療方法開發的方向。
Macrophages can polarize into pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes, which would participate in innate immunity and play an important role in wound healing. Numerous researches indicated that various biochemical signals can trigger the macrophage polarization, but the influences of mechanical stimuli on polarization have not fully explored yet. Considering the different rigidities of different tissues, we investigated the alteration of macrophage phenotypes using rigidity-tunable engineered polymeric substrates. M1 polarization of macrophages was induced by using lipopolysaccharide (LPS) and adenosine triphosphate (ATP), and macrophages showed different morphology and migration pattern in response to the change of substrate stiffness. We further studied the production of mitochondrial reactive oxygen species (ROS) and the formation of NLRP3 inflammasome. Our results revealed that softer substrate facilitate NLRP3 inflammasome activity, which may be associated withup-regulation of ROS production. In addition, higher M1 related gene expression on softer substrate was confirmed with qPCR analysis. In conclusion, these results suggest that the macrophages are mechano-sensitive, and a reducing matrix stiffness can facilitate macrophages to polarize towards an inflammatory phenotype. Our findings are expected to contribute to our understanding of how microenvironment stiffness can influence the macrophage polarization and to provide an alternative mechanotransduction model for macrophage –related diseases.
CONTENTS
中文摘要 I
ABSTRACT II
ACKNOWLEDGEMENT III
CHAPTER 1 1
INTRODUCTION 1
1.1 GENERAL OVERVIEW 1
1.2 STRATEGY AND GOAL OF THE STUDY 3
CHAPTER 2 6
MATERIALS AND METHODS 6
2.1 CELLS AND CELL CULTURE 6
2.2 POLYACRYLAMIDE SUBSTRATE PREPARATION 6
2.3 LPS TREATMENT 8
2.4 CELL SHAPE-DESCRIPTOR ANALYSIS 8
2.5 TIME-LAPSE LIVE CELL IMAGING 8
2.6 MITOSOX ASSAY (OXIDATIVE STRESS ASSAYS) 9
2.7 IMMUNOFLUORESCENCE STAINING 9
2.8 TOTAL RNA ISOLATION 10
2.9 REVERSE TRANSCRIPTION PCR (RT-PCR) 11
2.10 QUANTITATIVE REAL-TIME PCR (QPCR) 11
CHAPTER 3 13
RESULTS 13
3.1 MORPHOLOGY OF J774A.1 CELLS INCUBATED WITH LPS AND ATP. 13
3.2 MORPHOLOGY OF J774A.1 CELLS CULTURE ON POLYACRYLAMIDE GELS WITH VARIOUS STIFFNESS. 13
3.3 EFFECT OF CYTOKINE STIMULATED MACROPHAGE ON CELL MOTION. 16
3.4 CELL MOTION EVOLVED ON VARIOUS STIFFNESS SUBSTRATES. 16
3.5 PRODUCTION OF MITOCHONDRIAL ROS IN STIFFNESS-INDUCED MACROPHAGES. 19
3.6 ACTIVATION OF INFLAMMASOME IN LPS AND ATP-INDUCED MACROPHAGES. 21
3.7 EFFECT OF SUBSTRATE STIFFNESS ON INFLAMMATORY SIGNALING EXPRESSION. 21
3.8 LPS AND ATP TREATMENT INDUCED MACROPHAGES POLARIZATION STATE. 25
3.9 EFFECT OF STIFFNESS ON MACROPHAGES POLARIZATION STATE. 25
CHAPTER 4 28
DISCUSSION 28
4.1 CELL SHAPE WAS ASSOCIATED WITH MACROPHAGE POLARIZATION. 28
4.2 CELL MOTION DIFFERENCE BETWEEN LPS AND ATP-INDUCED AND STIFFNESS-INDUCED MACROPHAGES. 28
4.3 MITOCHONDRIAL ROS PRODUCTION IN MACROPHAGE POLARIZATION. 29
4.4 THE SOFTER STIFFNESS PROMOTED ACTIVATION OF THE NLRP3 INFLAMMASOME. 29
4.5 EFFECT OF STIFFNESS ON MACROPHAGE PHENOTYPE POLARIZATION. 30
4.6 SUMMARY 30
CHAPTER 5 32
REFERENCES 32

1. Mantovani, A., Sozzani, S., Locati, M., Allavena, P. & Sica, A. (2002). Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in immunology 23, 549-555.
2. Mosser, D. M. & Edwards, J. P. (2008). Exploring the full spectrum of macrophage activation. Nature reviews. Immunology 8, 958-969.
3. O'Shea, J. J. & Paul, W. E. (2010). Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 327, 1098-1102.
4. Martinez, F. O. & Gordon, S. (2014). The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000prime reports 6, 13.
5. Akira, S., Misawa, T., Satoh, T. & Saitoh, T. (2013). Macrophages control innate inflammation. Diabetes, obesity & metabolism 15 Suppl 3, 10-18.
6. Sica, A. & Mantovani, A. (2012). Macrophage plasticity and polarization: in vivo veritas. The Journal of clinical investigation 122, 787-795.
7. Benoit, M., Desnues, B. & Mege, J. L. (2008). Macrophage polarization in bacterial infections. Journal of immunology 181, 3733-3739.
8. Verreck, F. A., de Boer, T., Langenberg, D. M., Hoeve, M. A., Kramer, M., Vaisberg, E., Kastelein, R., Kolk, A., de Waal-Malefyt, R. & Ottenhoff, T. H. (2004). Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proceedings of the National Academy of Sciences of the United States of America 101, 4560-4565.
9. Gordon, S. (2003). Alternative activation of macrophages. Nature reviews. Immunology 3, 23-35.
10. MacMicking, J., Xie, Q. W. & Nathan, C. (1997). Nitric oxide and macrophage function. Annual review of immunology 15, 323-350.
11. El Kasmi, K. C. & Stenmark, K. R. (2015). Contribution of metabolic reprogramming to macrophage plasticity and function. Seminar in immunology 27, 267-275.
12. Pollard, J. W. (2009). Trophic macrophages in development and disease. Nature reviews. Immunology 9, 259-270.
13. Forbes, S. J. & Rosenthal, N. (2014). Preparing the ground for tissue regeneration: from mechanism to therapy. Nature medicine 20, 857-869.
14. Qian, B. Z. & Pollard, J. W. (2010). Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39-51.
15. Hansson, G. K. & Hermansson, A. (2011). The immune system in atherosclerosis. Nature immunology 12, 204-212.
16. Kamada, N., Hisamatsu, T., Okamoto, S., Chinen, H., Kobayashi, T., Sato, T., Sakuraba, A., Kitazume, M. T., Sugita, A., Koganei, K., Akagawa, K. S. & Hibi, T. (2008). Unique CD14 intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-gamma axis. The Journal of clinical investigation 118, 2269-2280.
17. Lewis, C. E. & Pollard, J. W. (2006). Distinct role of macrophages in different tumor microenvironments. Cancer research 66, 605-612.
18. Cornelissen, R., Lievense, L. A., Maat, A. P., Hendriks, R. W., Hoogsteden, H. C., Bogers, A. J., Hegmans, J. P. & Aerts, J. G. (2014). Ratio of intratumoral macrophage phenotypes is a prognostic factor in epithelioid malignant pleural mesothelioma. PloS one 9, e106742.
19. Hynes, R. O. (2009). The extracellular matrix: not just pretty fibrils. Science 326, 1216-1219.
20. Quail, D. F. & Joyce, J. A. (2013). Microenvironmental regulation of tumor progression and metastasis. Nature medicine 19, 1423-1437.
21. Spill, F., Reynolds, D. S., Kamm, R. D. & Zaman, M. H. (2016). Impact of the physical microenvironment on tumor progression and metastasis. Current opinion in biotechnology 40, 41-48.
22. Blacher, J., Pannier, B., Guerin, A. P., Marchais, S. J., Safar, M. E. & London, G. M. (1998). Carotid arterial stiffness as a predictor of cardiovascular and all-cause mortality in end-stage renal disease. Hypertension 32, 570-574.
23. Nahon, P., Thabut, G., Ziol, M., Htar, M. T., Cesaro, F., Barget, N., Grando-Lemaire, V., Ganne-Carrie, N., Trinchet, J. C. & Beaugrand, M. (2006). Liver stiffness measurement versus clinicians' prediction or both for the assessment of liver fibrosis in patients with chronic hepatitis C. The American journal of gastroenterology 101, 2744-2751.
24. Gotschy, A., Bauer, E., Schrodt, C., Lykowsky, G., Ye, Y. X., Rommel, E., Jakob, P. M., Bauer, W. R. & Herold, V. (2013). Local arterial stiffening assessed by MRI precedes atherosclerotic plaque formation. Circulation. Cardiovascular imaging 6, 916-923.
25. Bonnans, C., Chou, J. & Werb, Z. (2014). Remodelling the extracellular matrix in development and disease. Nature reviews. Molecular cell biology 15, 786-801.
26. Bissell, D. M., Stamatoglou, S. C., Nermut, M. V. & Hughes, R. C. (1986). Interactions of rat hepatocytes with type IV collagen, fibronectin and laminin matrices. Distinct matrix-controlled modes of attachment and spreading. European journal of cell biology 40, 72-78.
27. Badylak, S. F. (2005). Regenerative medicine and developmental biology: the role of the extracellular matrix. Anatomical record. Part B, New anatomist 287, 36-41.
28. Lu, P., Takai, K., Weaver, V. M. & Werb, Z. (2011). Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harbor perspectives in biology 3.
29. Geiger, B., Spatz, J. P. & Bershadsky, A. D. (2009). Environmental sensing through focal adhesions. Nature reviews. Molecular cell biology 10, 21-33.
30. Wuerfel, J., Paul, F., Beierbach, B., Hamhaber, U., Klatt, D., Papazoglou, S., Zipp, F., Martus, P., Braun, J. & Sack, I. (2010). MR-elastography reveals degradation of tissue integrity in multiple sclerosis. NeuroImage 49, 2520-2525.
31. Levental, K. R., Yu, H., Kass, L., Lakins, J. N., Egeblad, M., Erler, J. T., Fong, S. F., Csiszar, K., Giaccia, A., Weninger, W., Yamauchi, M., Gasser, D. L. & Weaver, V. M. (2009). Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891-906.
32. Paszek, M. J., Zahir, N., Johnson, K. R., Lakins, J. N., Rozenberg, G. I., Gefen, A., Reinhart-King, C. A., Margulies, S. S., Dembo, M., Boettiger, D., Hammer, D. A. & Weaver, V. M. (2005). Tensional homeostasis and the malignant phenotype. Cancer cell 8, 241-254.
33. Levental I, G. P., Janmey PA (2007). Soft biological materials and their impact on cell function. Soft matter, 299–306.
34. Engler, A. J., Griffin, M. A., Sen, S., Bonnemann, C. G., Sweeney, H. L. & Discher, D. E. (2004). Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. The Journal of cell biology 166, 877-887.
35. Stolz, M., Raiteri, R., Daniels, A. U., VanLandingham, M. R., Baschong, W. & Aebi, U. (2004). Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy. Biophysical journal 86, 3269-3283.
36. Butcher, D. T., Alliston, T. & Weaver, V. M. (2009). A tense situation: forcing tumour progression. Nature reviews. Cancer 9, 108-122.
37. Baker, A. M., Bird, D., Lang, G., Cox, T. R. & Erler, J. T. (2013). Lysyl oxidase enzymatic function increases stiffness to drive colorectal cancer progression through FAK. Oncogene 32, 1863-1868.
38. Janmey, P. A. & Miller, R. T. (2011). Mechanisms of mechanical signaling in development and disease. Journal of cell science 124, 9-18.
39. Baker, E. L., Bonnecaze, R. T. & Zaman, M. H. (2009). Extracellular matrix stiffness and architecture govern intracellular rheology in cancer. Biophysical journal 97, 1013-1021.
40. Levental, I., Georges, P. C. & Janmey, P. A. (2007). Soft biological materials and their impact on cell function. Soft matter 3, 299-306.
41. Lee, R. T., Richardson, S. G., Loree, H. M., Grodzinsky, A. J., Gharib, S. A., Schoen, F. J. & Pandian, N. (1992). Prediction of mechanical properties of human atherosclerotic tissue by high-frequency intravascular ultrasound imaging. An in vitro study. Arteriosclerosis and thrombosis : a journal of vascular biology 12, 1-5.
42. Epelman, S., Lavine, K. J. & Randolph, G. J. (2014). Origin and functions of tissue macrophages. Immunity 41, 21-35.
43. Sasmono, R. T., Oceandy, D., Pollard, J. W., Tong, W., Pavli, P., Wainwright, B. J., Ostrowski, M. C., Himes, S. R. & Hume, D. A. (2003). A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood 101, 1155-1163.
44. Hume, D. A., Ross, I. L., Himes, S. R., Sasmono, R. T., Wells, C. A. & Ravasi, T. (2002). The mononuclear phagocyte system revisited. Journal of leukocyte biology 72, 621-627.
45. Mantovani, A., Germano, G., Marchesi, F., Locatelli, M. & Biswas, S. K. (2011). Cancer-promoting tumor-associated macrophages: new vistas and open questions. European journal of immunology 41, 2522-2525.
46. Sica, A. (2010). Role of tumour-associated macrophages in cancer-related inflammation. Experimental oncology 32, 153-158.
47. Biswas, S. K., Sica, A. & Lewis, C. E. (2008). Plasticity of macrophage function during tumor progression: regulation by distinct molecular mechanisms. Journal of immunology 180, 2011-2017.
48. Grivennikov, S. I., Greten, F. R. & Karin, M. (2010). Immunity, inflammation, and cancer. Cell 140, 883-899.
49. McWhorter, F. Y., Wang, T., Nguyen, P., Chung, T. & Liu, W. F. (2013). Modulation of macrophage phenotype by cell shape. Proceedings of the National Academy of Sciences of the United States of America 110, 17253-17258.
50. Liu, B., Kilpatrick, J. I., Lukasz, B., Jarvis, S. P., McDonnell, F., Wallace, D. M., Clark, A. F. & O'Brien, C. J. (2018). Increased Substrate Stiffness Elicits a Myofibroblastic Phenotype in Human Lamina Cribrosa Cells. Investigative ophthalmology & visual science 59, 803-814.
51. Edin, S., Wikberg, M. L., Rutegard, J., Oldenborg, P. A. & Palmqvist, R. (2013). Phenotypic skewing of macrophages in vitro by secreted factors from colorectal cancer cells. PloS one 8, e74982.
52. Hind, L. E., Lurier, E. B., Dembo, M., Spiller, K. L. & Hammer, D. A. (2016). Effect of M1-M2 Polarization on the Motility and Traction Stresses of Primary Human Macrophages. Cellular and molecular bioengineering 9, 455-465.
53. Tan, H. Y., Wang, N., Li, S., Hong, M., Wang, X. & Feng, Y. (2016). The Reactive Oxygen Species in Macrophage Polarization: Reflecting Its Dual Role in Progression and Treatment of Human Diseases. Oxidative medicine and cellualr longevity 2016, 2795090.
54. Mittal, M., Siddiqui, M. R., Tran, K., Reddy, S. P. & Malik, A. B. (2014). Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 20, 1126-1167.
55. Kohchi, C., Inagawa, H., Nishizawa, T. & Soma, G. (2009). ROS and innate immunity. Anticancer research 29, 817-821.
56. Tschopp, J. & Schroder, K. (2010). NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production? Nature reviews. Immunology 10, 210-215.
57. Martinon, F. (2010). Signaling by ROS drives inflammasome activation. European journal of immunology 40, 616-619.
58. Chowdhury, F., Li, Y., Poh, Y. C., Yokohama-Tamaki, T., Wang, N. & Tanaka, T. S. (2010). Soft substrates promote homogeneous self-renewal of embryonic stem cells via downregulating cell-matrix tractions. PloS one 5, e15655.
59. Plotnikov, S. V., Sabass, B., Schwarz, U. S. & Waterman, C. M. (2014). High-resolution traction force microscopy. Methods in cell biology 123, 367-394.
60. Labernadie, A., Bouissou, A., Delobelle, P., Balor, S., Voituriez, R., Proag, A., Fourquaux, I., Thibault, C., Vieu, C., Poincloux, R., Charriere, G. M. & Maridonneau-Parini, I. (2014). Protrusion force microscopy reveals oscillatory force generation and mechanosensing activity of human macrophage podosomes. Nature communications 5, 5343.
61. Charest, J. M., Califano, J. P., Carey, S. P. & Reinhart-King, C. A. (2012). Fabrication of substrates with defined mechanical properties and topographical features for the study of cell migration. Macromolecular bioscience 12, 12-20.
62. Matsuzawa, A., Saegusa, K., Noguchi, T., Sadamitsu, C., Nishitoh, H., Nagai, S., Koyasu, S., Matsumoto, K., Takeda, K. & Ichijo, H. (2005). ROS-dependent activation of the TRAF6-ASK1-p38 pathway is selectively required for TLR4-mediated innate immunity. Nature immunology 6, 587-592.
63. Shah, J. V. (2010). Cells in tight spaces: the role of cell shape in cell function. The Journal of cell biology 191, 233-236.
64. Kilian, K. A., Bugarija, B., Lahn, B. T. & Mrksich, M. (2010). Geometric cues for directing the differentiation of mesenchymal stem cells. Proceedings of the National Academy of Sciences of the United States of America 107, 4872-4877.
65. Finucane, O. M., Reynolds, C. M., McGillicuddy, F. C. & Roche, H. M. (2012). Insights into the role of macrophage migration inhibitory factor in obesity and insulin resistance. The Proceedings of the Nutrition Society 71, 622-633.
66. Lee, S. H., Kim, D. Y., Kang, Y. Y., Kim, H., Jang, J., Lee, M. N., Oh, G. T., Kang, S. W. & Choi, E. Y. (2014). Developmental endothelial locus-1 inhibits MIF production through suppression of NF-kappaB in macrophages. International journal of molecular medicine 33, 919-924.
67. Bloom, B. R. & Bennett, B. (1966). Mechanism of a reaction in vitro associated with delayed-type hypersensitivity. Science 153, 80-82.
68. Calandra, T. & Roger, T. (2003). Macrophage migration inhibitory factor: a regulator of innate immunity. Nature reviews. Immunology 3, 791-800.
69. Even-Ram, S. & Yamada, K. M. (2005). Cell migration in 3D matrix. Current opinion in cell biology 17, 524-532.
70. Wolf, K. & Friedl, P. (2006). Molecular mechanisms of cancer cell invasion and plasticity. The British journal of dermatology 154 Suppl 1, 11-15.
71. Friedl, P. & Weigelin, B. (2008). Interstitial leukocyte migration and immune function. Nature immunology 9, 960-969.
72. Pankova, K., Rosel, D., Novotny, M. & Brabek, J. (2010). The molecular mechanisms of transition between mesenchymal and amoeboid invasiveness in tumor cells. Cellular and molecular life sciences : CMLS 67, 63-71.
73. Touyz, R. M. (2005). Molecular and cellular mechanisms in vascular injury in hypertension: role of angiotensin II. Current opinio in nephrology and hypertension 14, 125-131.
74. Holmstrom, K. M. & Finkel, T. (2014). Cellular mechanisms and physiological consequences of redox-dependent signalling. Nature reviews. Molecular cell biology 15, 411-421.
75. Pei, Z., Pang, H., Qian, L., Yang, S., Wang, T., Zhang, W., Wu, X., Dallas, S., Wilson, B., Reece, J. M., Miller, D. S., Hong, J. S. & Block, M. L. (2007). MAC1 mediates LPS-induced production of superoxide by microglia: the role of pattern recognition receptors in dopaminergic neurotoxicity. Glia 55, 1362-1373.
76. Strowig, T., Henao-Mejia, J., Elinav, E. & Flavell, R. (2012). Inflammasomes in health and disease. Nature 481, 278-286.
77. Roser, A. E., Tonges, L. & Lingor, P. (2017). Modulation of Microglial Activity by Rho-Kinase (ROCK) Inhibition as Therapeutic Strategy in Parkinson's Disease and Amyotrophic Lateral Sclerosis. Frontiers in aging neuroscience 9, 94.
78. Yamamoto, K., Maruyama, K., Himori, N., Omodaka, K., Yokoyama, Y., Shiga, Y., Morin, R. & Nakazawa, T. (2014). The novel Rho kinase (ROCK) inhibitor K-115: a new candidate drug for neuroprotective treatment in glaucoma. Investigative ophthalmology & visual science 55, 7126-7136.
79. Matsuoka, T. & Yashiro, M. (2014). Rho/ROCK signaling in motility and metastasis of gastric cancer. World journal of gastroenterology 20, 13756-13766.
80. Martinon, F., Burns, K. & Tschopp, J. (2002). The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Molecular cell 10, 417-426.
81. Jaguin, M., Houlbert, N., Fardel, O. & Lecureur, V. (2013). Polarization profiles of human M-CSF-generated macrophages and comparison of M1-markers in classically activated macrophages from GM-CSF and M-CSF origin. Cellualr immunology 281, 51-61.
82. Fernando, M. R., Reyes, J. L., Iannuzzi, J., Leung, G. & McKay, D. M. (2014). The pro-inflammatory cytokine, interleukin-6, enhances the polarization of alternatively activated macrophages. PloS one 9, e94188.
83. Xie, C., Liu, C., Wu, B., Lin, Y., Ma, T., Xiong, H., Wang, Q., Li, Z., Ma, C. & Tu, Z. (2016). Effects of IRF1 and IFN-beta interaction on the M1 polarization of macrophages and its antitumor function. International journal of molecular medicine 38, 148-160.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *