帳號:guest(18.223.196.180)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):歐書廷
作者(外文):Ou, Shu-Ting
論文名稱(中文):以苯丙胺酸修飾幾丁聚醣包覆含硼褐藻膠/聚乙烯醇奈米球體應用於硼中子捕獲治療
論文名稱(外文):Application of L-phenylalanine-modified chitosan coated boron-containing alginate/polyvinyl alcohol spheres for boron neutron capture therapy
指導教授(中文):曾繁根
指導教授(外文):Tseng, Fan-Gang
口試委員(中文):江啟勳
薛燕婉
楊重熙
口試委員(外文):Chiang, Chi-Shiun
HsuehLiu, Yen-Wan
Yang, Chung-Shi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:105012517
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:100
中文關鍵詞:硼中子捕獲治療苯丙胺酸褐藻膠幾丁聚醣聚乙烯醇癌症治療
外文關鍵詞:Boron neutron capture therapyphenylalaninealginatechitosanpolyvinyl alcoholBNCT
相關次數:
  • 推薦推薦:0
  • 點閱點閱:140
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
根據衛生署統計自民國71年起,癌症已蟬聯35年國人十大死因之首,每年皆奪去4萬多人的性命。癌症不但破壞了病患的日常生活,也連帶影響了家人的生活品質。而龐大的醫療費用支出更是拖垮健保制度的原兇之ㄧ 。在所有癌症類別中,頭頸癌因手術切除風險大,因此目前主要的頭頸癌治療方式分為放射治療與化學治療,但皆有其副作用且T/N比不高。
奈米藥物尺寸小,直徑約 100~200 奈米,癌細胞容易吸收,且可透過增強滲透及滯留的作用(enhanced permeability and retention, EPR)聚集於腫瘤附近,因此可減少對人體正常組織的傷害,因此本實驗設計以奈米顆粒當作藥物載體包覆硼酸,並應用於硼中子捕獲治療(Boron Neutron Capture Therapy, BNCT)。目前用於硼中子捕獲治療的藥物為 Borophenylalanine (BPA), Sodium borocaptate (BSH),及硼酸。BPA 以必要胺基酸phenylalanine為主結構,因此易被癌細胞吸收。然而近年的研究發現當腫瘤吸收足夠的 BPA 後,多餘的 BPA 將排出至血液中,由附近正常細胞所吸收,因而造成正常細胞的受損。BSH為單一分子含 12 個硼原子的含硼藥物,然而其在癌症細胞的留存濃度與一般細胞無太大差異。而硼酸則當作含硼藥物測量之控制組。
本實驗提出並綜合兩合理的方案,試圖解決上述難題。ㄧ、利用奈米載體的特性聚集於腫瘤部位,提升 T/N ratio。二、效仿BPA原理,將癌細胞必需胺基酸phenylalanine 接枝於奈米載體外層。並應用於硼中子捕獲治療。
According to the statistics of the Department of Health, since the 71 years of the Republic of China, cancer has been the first of the top 10 causes of death among the 35-year nationals and killed more than 40,000 lives each year. Cancer not only destroyed the daily life of patients, but also affected the quality of life of their families. And the huge medical expenses are the ones that destroy the health insurance system. In all cancer categories, head and neck cancer due to the risk of surgical resection, so the current treatment of head and neck cancer is divided into radiation therapy and chemotherapy, but both of them have their side effects and T / N ratio is not high.
Nanomedicine is small in size and about 100-200 nm in diameter. It is easily absorbed by cancer cells and can accumulate near the tumor through enhanced permeability and retention (EPR), thereby reducing damage to normal human tissues Therefore, this experiment designed the nanoparticles as a drug carrier coated with boric acid, and applied to boron neutron capture therapy (Boron Neutron Capture Therapy, BNCT). Currently used for boron neutron capture treatment of drugs Borophenylalanine (BPA) , Sodium borocaptate (BSH), and boric acid. BPA is the essential amino acid phenylalanine-based structure, it is easily absorbed by cancer cells. However, recent studies have found that when the tumor absorbs enough BPA, excess BPA will be excreted into the bloodstream and taken up by nearby normal cells, causing normal cell damage. BSH is a boron-containing drug containing 12 boron atoms in a single molecule, however, its concentration in cancer cells is not much different from that in normal cells. Boric acid is used as a control group for boron-containing drug measurements.
The experiment proposed two reasonable solutions to try to solve the above problems. First, the use of nano-carrier characteristics gathered in the tumor site, improve the T / N ratio. Second, to follow the principle of BPA, the amino acid essential amino acids phenylalanine grafted to the outer layer of nanocarriers, then used in boron neutron capture therapy.
章節目錄
第一章 緒論 1
1.1研究背景前言 1
1.2研究動機 2
第二章 文獻討論 4
2.1 EPR效應[5] 4
2.1.1EPR效應原理及早期發展 4
2.1.2 SMANCS與新的癌症藥物傳遞概念 6
2.1.3奈米顆粒的長期循環 8
2.1.4 EPR模型 9
2.1.5 EPR之展望 10
2.2幾丁聚醣材料[85] 11
2.2.1幾丁聚醣與天然聚合物的吸引 12
2.2.2幾丁聚醣-褐藻膠複合物 12
2.2.3幾丁聚醣-角叉菜膠複合物 14
2.2.4幾丁聚醣-果膠複合物 15
2.2.5幾丁聚醣-黃原膠複合物 15
2.2.6 幾丁聚醣與合成聚合物之間的聚電解質錯合物 16
2.2.7幾丁聚醣之未來潛力 17
2.3 奈米藥物載體之Zeta potential對藥物傳遞系統的影響[121] 18
2.3.1 Zeta potential 之物理意義 18
2.3.2 Zeta potential之量測 19
2.3.3 Zeta potential與標靶藥物傳遞 19
2.3.4 Zeta potential對細胞吸收的影響 20
2.3.5 Zeta potemtial對皮膚給藥系統的影響 22
2.3.7 Zeta potemtial對腫瘤的標靶作用 23
2.3.8 Zeta potential在腦中的標靶作用 25
2.4 Boronphenylalanine(BPA)通過細胞膜之機制[193] 26
2.4.1細胞吸收分析 27
2.4.2 L運輸系統 28
2.4.3 A運輸系統 29
2.4.4 BPA之外排分析 30
2.4.5 BPA運輸系統 31
2.5硼中子捕獲治療治療口腔鱗狀上皮細胞癌之機制 34
2.5.1腫瘤抑制蛋白(p53蛋白) 34
2.5.2放射線對細胞的影響 34
2.5.3硼中子捕獲治療影響SAS細胞的機制[220] 35
2.6以電噴灑製備奈米藥物載體[223] 38
第三章 實驗設計與規劃 43
3.1實驗設計與架構 43
3.2 實驗藥品 45
3.3實驗步驟 48
3.3.1苯丙胺酸修飾幾丁聚醣[225] 48
3.3.2水膠製備 49
3.3.3幾丁聚醣溶液製備 49
3.3.4幾丁聚醣/褐藻膠奈米顆粒製備實驗步驟 49
3.3.5 加入PVA之新製程實驗流程 50
第四章 結果與討論 51
4.1 以phenylalanine修飾Chitosan 51
4.1.1氫譜 51
4.1.2碳譜 54
4.1.3 接枝率計算 56
4.2奈米顆粒 57
4.2.1 奈米顆粒表面電位 57
4.2.2 奈米顆粒尺寸 58
4.3 細胞毒性測試 58
4.4 藥物吸收量 60
4.5 SAS藥物吸收速率 61
4.8 含PVA藥物SEM圖 65
4.9 含PVA藥物毒性測試與照射 65
4.10 修飾後之幾丁聚醣包覆含PVA藥物進行BNCT 66
第五章 結論 68
第六章 未來工作 69
參考文獻 70

[1] A. Z. Wang, R. Langer, and O. C. Farokhzad, "Nanoparticle delivery of cancer drugs,"
Annu Rev Med, vol. 63, pp. 185‐98, 2012.
[2]. Barth, Rolf F., et al. "Boron neutron capture therapy for cancer. Realities and prospects." Cancer 70.12 (1992): 2995-3007.
[3]. Snyder, H. R., Albert J. Reedy, and Wm J. Lennarz. "Synthesis of Aromatic Boronic Acids. Aldehydo Boronic Acids and a Boronic Acid Analog of Tyrosine1." Journal of the American Chemical Society 80.4 (1958): 835-838.
[4]. Liver Cancer Study Group of Japan. "The general rules for the clinical and pathological study of primary liver cancer." The Japanese journal of surgery 19.1 (1989): 98-129.
[5] Joseph W. Nichols , You Han Bae" EPR: Evidence and fallacy"Journal of Controlled Release 190 (2014) 451–464
[6] E.A. Azzopardi, E.L. Ferguson, D.W. Thomas, The enhanced permeability retention
effect: a new paradigm for drug targeting in infection, J. Antimicrob. Chemother.
68 (2) (Feb. 2013) 257–274.
[7] J. Fang, H. Nakamura, H. Maeda, Y. Matsukado, The EPR effect: unique features of
tumor blood vessels for drug delivery, factors involved, and limitations and augmentation
of the effect, Adv. Drug Deliv. Rev. 63 (3) (Mar. 2011) 136–151.
[8] T. Konno, H. Maeda, K. Iwai, S. Maki, S. Tashiro, M. Uchida, Y. Miyauchi, Selective
targeting of anti-cancer drug and simultaneous image enhancement in solid tumors
by arterially administered lipid contrast medium, Cancer 54 (11) (Dec.1984) 2367–2374.
[9] Y. Matsumura, H. Maeda, A new concept for macromolecular therapeutics in cancer
chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS, Cancer Res. 46 (12 Pt 1) (1986) 6387–6392.
[10] Y. Matsumura, H. Maeda, A new concept for macromolecular therapeutics in cancer
chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS, Cancer Res. 46 (12 Pt 1) (1986) 6387–6392.
[11] M.R. Dreher,W. Liu, C.R.Michelich,M.W. Dewhirst, F. Yuan, A. Chilkoti, Tumor vascular
permeability, accumulation, and penetration of macromolecular drug carriers,
J. Natl. Cancer Inst. 98 (5) (Mar. 2006) 335–344.
[12] A.J. Leu, D.A. Berk, A. Lymboussaki, K. Alitalo, R.K. Jain, Absence of functional lymphaticswithin a murine sarcoma: a molecular and functional evaluation, Cancer
Res. 60 (16) (Aug. 2000) 4324–4327.
[13] T. Roose, P.A. Netti, L.L.Munn, Y. Boucher, R.K. Jain, Solid stress generated by spheroid growth estimated using a linear poroelasticity model, Microvasc. Res. 66 (3)
(Nov. 2003) 204–212.
[14] D.M. McDonald, P. Baluk, Significance of blood vessel leakiness in cancer, Cancer
Res. 62 (18) (Sep. 2002) 5381–5385.
[15] J. Fang, H. Nakamura, H. Maeda, Y. Matsukado, The EPR effect: unique features of
tumor blood vessels for drug delivery, factors involved, and limitations and augmentation
of the effect, Adv. Drug Deliv. Rev. 63 (3) (Mar. 2011) 136–151.
[16] H. Maeda, Tumor-selective delivery of macromolecular drugs via the EPR effect:
background and future prospects, Bioconjug. Chem. 21 (5) (May 2010) 797–802.
[17] T. Konno, H. Maeda, K. Iwai, S. Maki, S. Tashiro, M. Uchida, Y. Miyauchi, Selective
targeting of anti-cancer drug and simultaneous image enhancement in solid tumors
by arterially administered lipid contrast medium, Cancer 54 (11) (Dec.
1984) 2367–2374.
[18] E.J. Potchen, A.J. Elliott, B.A. Siegel, R. Studer, R.G. Evens, Pathophysiologic basis of
soft tissue tumor scanning, J. Surg. Oncol. 3 (6) (1971) 593–602.
[19] V.J. Richardson, B.E. Ryman, R.F. Jewkes, K. Jeyasingh,M.N. Tattersall, E.S. Newlands,
S.B. Kaye, Tissue distribution and tumour localization of 99m-technetium-labelled
liposomes in cancer patients, Br. J. Cancer 40 (1) (Jul. 1979) 35–43.
[20] G. Gregoriadis, D.E. Neerunjun, R. Hunt, Fate of a liposome-associated agent
injected into normal and tumour-bearing rodents. Attempts to improve localization
in tumour tissues, Life Sci. 21 (3) (1977) 357–369.
[21] L. Grislain, P. Couvreur, V. Lenaerts, M. Roland, D. Deprez-Decampeneere, P.
Speiser, Pharmacokinetics and distribution of a biodegradable drug-carrier, Int. J.
Pharm. 15 (3) (1983) 335–345.
[22] B. Sylven, I. Bois, Protein content and enzymatic assays of interstitial fluid from
some normal tissues and transplanted mouse tumors, Cancer Res. 20 (6) (Jul.
1960) 831–836.
[23] R.T. Proffitt, L.E. Williams, C.A. Presant, G.W. Tin, J.A. Uliana, R.C. Gamble, J.D.
Baldeschwieler, Tumor-imaging potential of liposomes loaded with In-111-NTA:
biodistribution in mice, J. Nucl. Med. 24 (1) (Jan. 1983) 45–51.
[24] V.J. Richardson, K. Jeyasingh, R.F. Jewkes, B.E. Ryman, M.H. Tattersall, Properties of
[99mTc] technetium-labelled liposomes in normal and tumour-bearing rats,Biochem. Soc. Trans. 5 (1) (Jan. 1977) 290–291.
[25] K.J. Widder, A.E. Senyei, B. Sears, Experimental methods in cancer therapeutics, J.
Pharm. Sci. 71 (4) (Apr. 1982) 379–387.
[26] V.J. Richardson, K. Jeyasingh, R.F. Jewkes, B.E. Ryman, M.H. Tattersall, Possible
tumor localization of Tc-99m-labeled liposomes: effects of lipid composition,
charge, and liposome size, J. Nucl. Med. 19 (9) (Sep. 1978) 1049–1054.
[27] T.P. Butler, F.H. Grantham, P.M. Gullino, Bulk transfer of fluid in the interstitial
compartment of mammary tumors, Cancer Res. 35 (11 Pt 1) (Nov. 1975)
3084–3088.
[28] G. Gregoriadis, D.E. Neerunjun, R. Hunt, Fate of a liposome-associated agent
injected into normal and tumour-bearing rodents. Attempts to improve localization
in tumour tissues, Life Sci. 21 (3) (1977) 357–369.
[29] V.J. Richardson, K. Jeyasingh, R.F. Jewkes, B.E. Ryman, M.H. Tattersall, Properties of
[99mTc] technetium-labelled liposomes in normal and tumour-bearing rats,
Biochem. Soc. Trans. 5 (1) (Jan. 1977) 290–291.
[30] V.J. Richardson, K. Jeyasingh, R.F. Jewkes, B.E. Ryman, M.H. Tattersall, Possible
tumor localization of Tc-99m-labeled liposomes: effects of lipid composition,
charge, and liposome size, J. Nucl. Med. 19 (9) (Sep. 1978) 1049–1054.
[31] A.A. Gabizon, D. Papahadjopoulos, Liposome formulations with prolonged circulation
time in blood and enhanced uptake by tumors, Proc. Natl. Acad. Sci. 85 (18)
(Sep. 1988) 6949–6953.
[32] T. Allen, J. Everest, Effect of liposome size and drug release properties on pharmacokinetics of encapsulated drug in rats, J. Pharmacol. Exp. Ther. 226 (2) (Aug.
1983) 539–544.
[33] I.H. Goldberg, Free radical mechanisms in neocarzinostatin-induced DNA damage,
Free Radic. Biol. Med. 3 (1) (1987) 41–54.
[34] S.-K. Sim, J.William Lown, The mechanism of the neocarzinostatin-induced cleavage
of DNA, Biochem. Biophys. Res. Commun. 81 (1) (1978) 99–105.
[35] H.Maeda, SMANCS and polymer-conjugatedmacromolecular drugs: advantages in
cancer chemotherapy, Adv. Drug Deliv. Rev. 46 (1–3) (Mar. 1991) 169–185.
[36] H. Maeda, Y. Sano, J. Takeshita, Z. Iwai, H. Kosaka, T. Marubayashi, Y. Matsukado, A
pharmacokinetic simulation model for chemotherapy of brain tumor with an antitumor
protein antibiotic, neocarzinostatin, Cancer Chemother. Pharmacol. 5 (4)(Jun. 1981) 243–249.
[37] T. Oda, F. Sato, H. Yamamoto, M. Akagi, H. Maeda, Cytotoxicity of SMANCS in comparison with other anticancer agents against various cells in culture, Anticancer
Res. 9 (2) (1989) 261–266.
[38] H.Maeda, SMANCS and polymer-conjugatedmacromolecular drugs: advantages in
cancer chemotherapy, Adv. Drug Deliv. Rev. 46 (1–3) (Mar. 1991) 169–185.
[39] S. Hirayama, F. Sato, T. Oda, H.Maeda, Stability of highmolecular weight anticancer
agent SMANCS and its transfer from oil-phase to water-phase. Comparative study
with neocarzinostatin, Jpn. J. Antibiot. 39 (3) (Mar. 1986) 815–822.
[40] H. Maeda, M. Ueda, T. Morinaga, T. Matsumoto, Conjugation of poly(styrene-comaleic
acid) derivatives to the antitumor protein neocarzinostatin: pronounced
improvements in pharmacological properties, J. Med. Chem. 28 (4) (Apr. 1985)
455–461.
[41] K. Iwai, H. Maeda, T. Konno, Use of oily contrast medium for selective drug
targeting to tumor: enhanced therapeutic effect and X-ray image, Cancer Res. 44
(5) (May 1984) 2115–2121.
[42] H. Maeda, T. Matsumoto, T. Konno, K. Iwai,M. Ueda, Tailor-making of protein drugs
by polymer conjugation for tumor targeting: a brief review on SMANCS, J. Protein
Chem. 3 (2) (Apr. 1984) 181–193.
[43] A.A. Gabizon, D. Papahadjopoulos, Liposome formulations with prolonged circulation
time in blood and enhanced uptake by tumors, Proc. Natl. Acad. Sci. 85 (18)
(Sep. 1988) 6949–6953.
[44] T. Allen, J. Everest, Effect of liposome size and drug release properties on pharmacokinetics
of encapsulated drug in rats, J. Pharmacol. Exp. Ther. 226 (2) (Aug.
1983) 539–544.
[45] J.M. Harris, R.B. Chess, Effect of pegylation on pharmaceuticals, Nat. Rev. Drug
Discov. 2 (3) (Mar. 2003) 214–221.
[46] A. Abuchowski, J.R. McCoy, N.C. Palczuk, T. van Es, F.F. Davis, Effect of covalent attachment
of polyethylene glycol on immunogenicity and circulating life of bovine
liver catalase, J. Biol. Chem. 252 (11) (Jun. 1977) 3582–3586.
[47] T. Lammers, G. Pasut, F.M. Veronese, State of the art in PEGylation: the great versatility
achieved after forty years of research, J. Control. Release 161 (2) (2012) 461–472.
[48] J.-W. Yoo, E. Chambers, S. Mitragotri, Factors that control the circulation time of
nanoparticles in blood: challenges, solutions and future prospects, Curr. Pharm.
Des. 16 (21) (Jul. 2010) 2298–2307.
[49] M. Schuler, D. Trentin,M. Textor, S.G.P. Tosatti, Biomedical interfaces: titaniumsurface
technology for implants and cell carriers, Nanomedicine (Lond) 1 (4) (Dec.
2006) 449–463.
[50] L. Grislain, P. Couvreur, V. Lenaerts, M. Roland, D. Deprez-Decampeneere, P.
Speiser, Pharmacokinetics and distribution of a biodegradable drug-carrier, Int. J.
Pharm. 15 (3) (1983) 335–345.
[51] M.S. Hershfield, R.H. Buckley, M.L. Greenberg, A.L. Melton, R. Schiff, C. Hatem, J.
Kurtzberg, M.L. Markert, R.H. Kobayashi, A.L. Kobayashi, Treatment of adenosine
deaminase deficiency with polyethylene glycol-modified adenosine deaminase,
N. Engl. J. Med. 316 (10) (Mar. 1987) 589–596.
[52] N.V. Katre, The conjugation of proteins with polyethylene glycol and other polymers,
Adv. Drug Deliv. Rev. 10 (1) (Jan. 1993) 91–114.
[53] K. Kitajima, M. Fukuoka, Studies on the appropriate administration of cisplatin
based on pharmacokinetics and toxicity, Gan to kagaku ryoho 14 (8) (Aug.
1987) 2517–2523.
[54] R.L. Juliano, D. Stamp, Pharmacokinetics of liposome-encapsulated anti-tumor
drugs, Biochem. Pharmacol. 27 (1) (1978) 21–27.
[55] M. Ostro, P. Cullis, Use of liposomes as injectable-drug delivery systems, Am. J.
Health Syst. Pharm. 46 (8) (Aug. 1989) 1576–1587.
[56] V.J. Richardson, K. Jeyasingh, R.F. Jewkes, B.E. Ryman, M.H. Tattersall, Possible
tumor localization of Tc-99m-labeled liposomes: effects of lipid composition,
charge, and liposome size, J. Nucl. Med. 19 (9) (Sep. 1978) 1049–1054.
[57] M. Ostro, P. Cullis, Use of liposomes as injectable-drug delivery systems, Am. J.
Health Syst. Pharm. 46 (8) (Aug. 1989) 1576–1587.
[58] A. Soundararajan, A. Bao, W.T. Phillips, R. Perez, B.A. Goins, [(186)Re]Liposomal
doxorubicin (Doxil): in vitro stability, pharmacokinetics, imaging and
biodistribution in a head and neck squamous cell carcinoma xenograft model,
Nucl. Med. Biol. 36 (5) (Jul. 2009) 515–524.
[59] M. Winterhalter, D.D. Lasic, Liposome stability and formation: experimental parameters
and theories on the size distribution, Chem. Phys. Lipids 64 (1) (1993)
35–43.
[60] A.A. Gabizon, Liposome circulation time and tumor targeting: implications for cancer
chemotherapy, Adv. Drug Deliv. Rev. 16 (2–3) (Sep. 1995) 285–294.
[61] T.M. Allen, C. Hansen, F.Martin, C. Redemann, A. Yau-Young, Liposomes containing
synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation
half-lives in vivo, Biochim. Biophys. Acta Biomembr. 1066 (1) (1991) 29–36.
[62] G. Gregoriadis, D.E. Neerunjun, R. Hunt, Fate of a liposome-associated agent
injected into normal and tumour-bearing rodents. Attempts to improve localization
in tumour tissues, Life Sci. 21 (3) (1977) 357–369.
[63] A.J. Bradley, D.V. Devine, S.M. Ansell, J. Janzen, D.E. Brooks, Inhibition of liposomeinduced
complement activation by incorporated poly(ethylene glycol)-lipids,
Arch. Biochem. Biophys. 357 (2) (Sep. 1998) 185–194.
[64] J. Szebeni, P. Bedőcs, Z. Rozsnyay, Liposome-induced complement activation and
related cardiopulmonary distress in pigs: factors promoting reactogenicity of
Doxil and AmBisome, Nanomedicine 8 (2) (Feb. 2012) 176–184.
[65] R.B. Weiss, The anthracyclines: will we ever find a better doxorubicin? Semin.
Oncol. 19 (6) (Dec. 1992) 670–686.
[66] D.D. Von Hoff, M.W. Layard, P. Basa, H.L. Davis, A.L. Von Hoff, M. Rozencweig, F.M.
Muggia, Risk factors for doxorubicin-induced congestive heart failure, Ann. Intern.
Med. 91 (5) (Nov. 1979) 710–717.
[67] D.L. Keefe, Anthracycline-induced cardiomyopathy, Semin. Oncol. 28 (No.4 Suppl.
12) (Aug. 2001) 2–7.
[68] L.D. Mayer, M.B. Bally, M.J. Hope, P.R. Cullis, Uptake of antineoplastic agents into
large unilamellar vesicles in response to a membrane potential, Biochim. Biophys.
Acta 816 (2) (Jun. 1985) 294–302.
[69] Y. Barenholz, Doxil(r)—the first FDA-approv
[70] T.M. Allen, C. Hansen, F.Martin, C. Redemann, A. Yau-Young, Liposomes containing
synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation
half-lives in vivo, Biochim. Biophys. Acta Biomembr. 1066 (1) (1991) 29–36.
[71] D. Papahadjopoulos, T.M. Allen, A.A. Gabizon, E. Mayhew, K. Matthay, S.K. Huang,
K.D. Lee, M.C.Woodle, D.D. Lasic, C. Redemann, Sterically stabilized liposomes: improvements
in pharmacokinetics and antitumor therapeutic efficacy, Proc. Natl.
Acad. Sci. 88 (24) (Dec. 1991) 11460–11464.
[72] A.J. Bradley, D.V. Devine, S.M. Ansell, J. Janzen, D.E. Brooks, Inhibition of liposomeinduced
complement activation by incorporated poly(ethylene glycol)-lipids,
Arch. Biochem. Biophys. 357 (2) (Sep. 1998) 185–194.
[73] P.Working, M. Newman, Pharmacokinetics, biodistribution and therapeutic efficacy
of doxorubicin encapsulated in Stealth(r) liposomes (Doxil(r)), Liposome 4 (1)
(Jan. 1994) 667–687.
[74] D.E. Owens, N.A. Peppas, Opsonization, biodistribution, and pharmacokinetics of
polymeric nanoparticles, Int. J. Pharm. 307 (no. 1) (Jan. 2006) 93–102.
[75] A.A. Gabizon, Y. Barenholz, M. Bialer, Prolongation of the circulation time of doxorubicin
encapsulated in liposomes containing a polyethylene glycol-derivatized
phospholipid: pharmacokinetic studies in rodents and dogs, Pharm. Res. 10 (5)
(May 1993) 703–708.
[76] A.A. Gabizon, Selective tumor localization and improved therapeutic index of
anthracyclines encapsulated in long-circulating liposomes, Cancer Res. 52 (4)
(Feb. 1992) 891–896.
[77] A.A. Gabizon, D. Papahadjopoulos, Liposome formulations with prolonged circulation
time in blood and enhanced uptake by tumors, Proc. Natl. Acad. Sci. 85 (18)
(Sep. 1988) 6949–6953.
[78] A.A. Gabizon, R. Catane, B. Uziely, B. Kaufman, T. Safra, R. Cohen, F. Martin, A.
Huang, Y. Barenholz, Prolonged circulation time and enhanced accumulation in
malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes,
Cancer Res. 54 (4) (Feb. 1994) 987–992.
[79] T.M. Allen, C. Hansen, F.Martin, C. Redemann, A. Yau-Young, Liposomes containing
synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation
half-lives in vivo, Biochim. Biophys. Acta Biomembr. 1066 (1) (1991) 29–36.
[80] T. Lammers, G. Pasut, F.M. Veronese, State of the art in PEGylation: the great versatility
achieved after forty years of research, J. Control. Release 161 (2) (2012) 461–472.
[81] J.W. Nichols, Y.H. Bae, Odyssey of a cancer nanoparticle: from injection site to site
of action, Nano Today 7 (6) (Dec. 2012) 606–618.
[82] N.A. Peppas, R.K. Jain, Delivery of molecular and cellular medicine to solid tumors,
Adv. Drug Deliv. Rev. 64 (2012) 353–365.
[83] L. Eikenes, Ø.S. Bruland, C. Brekken, C.D.L. Davies, Collagenase increases the
transcapillary pressure gradient and improves the uptake and distribution of
monoclonal antibodies in human osteosarcoma xenografts, Cancer Res. 64 (14)
(Jul. 2004) 4768–4773.
[84] R.K. Jain, Normalization of tumor vasculature: an emerging concept in
antiangiogenic therapy, Science 307 (5706) (Jan. 2005) 58–62.
[85]Josias H. Hamman, Chitosan Based Polyelectrolyte Complexes as Potential Carrier Materials in Drug Delivery Systems, Mar. Drugs 2010, 8, 1305-1322; doi:10.3390/md8041305

[86] Argüelles-Monal, W.; Cabrera, G.; Peniche, C.; Rinaudo, M. Conductimetric study of the interpolyelectrolyte reaction between chitosan and polygalacturonic acid. Polymer 2000, 41, 2373–2378.
[87].Gamzazade, A.I.; Nasibov, S.M. Formation and properties of polyelectrolyte complexes of chitosan hydrochloride and sodium dextransulfate. Carbohydr. Polym. 2002, 50, 339–343.
[88].Maciel, J.S.; Silva, D.A.; Paula, H.C.B.; de Paula, R.C.M. Chitosan/carboxymethyl cashew gum polyelectrolyte complex: synthesis and thermal stability. Eur. Polym. J. 2005, 41, 2726–2733.
[89]Sashina, E.S.; Novoselov, N.P. Polyelectrolyte complexes of fibroin with chitosan. Macromol. Chem. Polym Mater. 2005, 78, 493–497

[90] Zhao, Q.; Qian, J.; An, Q.; Gao, C.; Gui, Z.; Jin, H. Synthesis and characterization of soluble chitosan/sodium carboxymethyl cellulose polyelectrolyte complexes and the pervaporation dehydration of their homogenous membranes. J. Membr. Sci. 2009, 333, 68–78.
[91]Oliveira, M.A.; Ciarlini, P.C.; Feitosa, J.P.A.; de Paula, R.C.M.; Paula, H.C.B. Chitosan/”angico” gum nanoparticles: Synthesis and characterization. Mater. Sci. Eng. C 2009, 29, 448–451.
[92] Sankalia, M.G.; Mashru, R.C.; Sankalia, J.M.; Sutariya, V.B. Reversed chitosan-alginate polyelectrolyte complex for stability improvement of alpha-amylase: Optimization and physicochemical characterization. Eur. J. Pharm. Biopharm. 2007, 65, 215–232.
[93] Beneke, C.E.; Viljoen, A.M.; Hamman, J.H. Polymeric plant-derived excipients in drug delivery. Molecules 2009, 14, 2602–2620.
[94] Hein, S.; Wang, K.; Stevens, W.F.; Kjems, J. Chitosan composites for biomedical applications: status, challenges and perspectives. Mater. Sci. Technol. 2008, 24, 1053–1061.
[95] Li, X.; Xie, H.; Lin, J.; Xie, W.; Ma, X. Characterization and biodegradation of chitosan-alginate polyelectrolyte complexes. Polym. Degrad. Stab. 2009, 94, 1–6.
[96] Sæther, H.V.; Holme, H.K.; Maurstad, G.; Smidsrød, O.; Stokke, B.T. Polyelectrolyte complex formation using alginate and chitosan. Carbohydr. Polym. 2008, 74, 813–821.
[97] Sankalia, M.G.; Mashru, R.C.; Sankalia, J.M.; Sutariya, V.B. Reversed chitosan-alginate polyelectrolyte complex for stability improvement of alpha-amylase: Optimization and physicochemical characterization. Eur. J. Pharm. Biopharm. 2007, 65, 215–232.
[98] Liao, I-C.; Wan, A.C.A.; Yim, E.K.F.; Leong, K.W. Controlled release from fibers of polyelectrolyte complexes. J. Control. Release 2005, 104, 347–358.
[99] Beneke, C.E.; Viljoen, A.M.; Hamman, J.H. Polymeric plant-derived excipients in drug delivery. Molecules 2009, 14, 2602–2620.
[100]Coviello, T.; Alhaique, F.; Dorigo, A.; Matricardi, P.; Grassi, M. Two galactomannans and scleroglucan as matrices for drug delivery: Preparation and release studies. Eur. J. Pharm. Biopharm. 2007, 66, 200–209.
[101] Shumilina, E.V; Shchipunov, Y.A. Chitosan-carrageenan gels. Colloid J. 2002, 64, 372–378.
[102]Briones, A.V.; Sato, T. Encapsulation of glucose oxidase (GOD) in polyelectrolyte complexes of chitosan-carrageenan. React. Funct. Polym. 2010, 70, 19–27.
[103] Fry, S.C. Primary cell wall metabolism, tracking the careers of wall polymers in living plant cells. New Phytol. 2004, 161,641–675.
[104] Sriamornsak, P.; Thirawong, N.; Weerapol, Y.; Nunthanid, J.; Sungthongjeen, S. Swelling and erosion of pectin matrix tablets and their impact on drug release behavior. Eur. J. Pharm. Biopharm. 2007, 67,211–219.
[105] Cárdenas, A.; Goycoolea, F.M.; Rinaudo, M. On the gelling behaviour of „nopal‟ (Opuntia ficus indica) low metholoxyl pectin. Carbohydr. Polym. 2008, 73, 212–222.
[106] Bernabe, P.; Peniche, C.; Argüelles-Monal, W. Swelling behavior of chitosan/pectin polyelectrolyte complex membranes. Effect of thermal cross-linking. Polym. Bull. 2005, 55, 367–375.
[107] Bigucci, F.; Luppi, B.; Cerchiara, T.; Sorrenti, M.; Bettinetti, G.; Rodriquez, L.; Zecchi, V. Chitosan/pectin polyelectrolyte complexes: Selection of suitable preparative conditions for colon-specific delivery of vancomycin. Eur. J. Pharm. Sci. 2008, 35, 435–441.
[108] Mundargi, R.; Patil, S.A.; Aminabhavi, T.M. Evaluation of acrylamide-grafted-xanthan gum copolymer matrix tablets for oral controlled delivery of antihypertensive drugs. Carbohydr. Polym. 2007, 69, 130–141.

[109]Magnin, D.; Lefebvre, J.; Chornet, E.; Dumitriu, S. Physicochemical and structural characterisation of a polyionic matrix of interest in biotechnology, in the pharmaceutical and biomedical fields. Carbohydr. Polym. 2004, 55, 437–453.
[110] Dumitriu, S.; Magny, P.; Montane, D.; Vidal, P.F.; Chornet, E. Polyionic hydrogels obtained by complexation: Their properties as support for enzyme immobilization. J. Bioact. Compat. Polym. 1994, 9, 184–209.
[111]Dumitriu, S.; Chornet, E.; Vidal, P.F.; Moresoli, C. Polyionic hydrogels as support for immobilization of lipase. Biotechnol. Tech. 1995, 9, 833–836.
[112]Magnin, D.; Lefebvre, J.; Chornet, E.; Dumitriu, S. Physicochemical and structural characterisation of a polyionic matrix of interest in biotechnology, in the pharmaceutical and biomedical fields. Carbohydr. Polym. 2004, 55, 437–453.
[113]Kriwet, B.; Kissel, T. Interactions between bioadhesive poly (acrylic acid) and calcium ions. Int. J. Pharm. 1996, 127, 135–145.
[114] Lee, M.-H.; Chun, M.-K.; Choi, H.-K. Preparation of Carbopol/Chitosan interpolymer complex as a controlled release tablet matrix; effects of complex formation medium on drug release characteristics. Arch. Pharm. Res. 2008, 31, 932–937.
[115] Park, S.-H.; Chun, M.-K.; Choi, H.-K. Preparation of an extended release matrix tablet using chitosan/Carbopol interpolymer complex. Int. J. Pharm. 2008, 347, 39–44.
[116]Silva, C.L.; Pereira, J.C.; Ramalho, A.; Pais, A.A.C.C.; Sousa, J.S.J. Films based on chitosan polyelectrolyte complexes for skin drug delivery: Development and characterisation. J. Memb. Sci. 2008, 320, 268–279.
[117] Lu, Z.; Chen, W.; Hamman, J.H. Chitosan-polycarbophil complexes in swellable matrix systems for controlled drug release. Curr. Drug Deliv. 2007, 4, 257–263.
[118] Lu, Z.; Chen, W.; Olivier, E.I.; Hamman, J.H. Matrix polymeric excipients: Comparing a novel polyelectrolyte complex with hydroxypropylmethylcellulose. Drug Deliv. 2008, 15, 87–96.
[119]Lankalapalli, S.; Kolapalli, V.R.M. Polyelectrolyte complexes: A review of their applicability in drug delivery technology. Ind. J. Pharm. Sci. 2009, 71, 481–487.
[120] Shiraishi, S.; Imai, T.; Otagiri, M. Controlled release of indomethacin by chitosan-polyelectrolyte complex: Optimization and in vivo/in vitro evaluation. J. Control. Release 1993, 25, 217–225.
[121] Soheyla Honary and Foruhe Zahir, Effect of Zeta Potential on the Properties of Nano-Drug Delivery Systems - A Review (Part 1), Tropical Journal of Pharmaceutical Research April 2013; 12 (2): 255-264
[122] Chun MS, Cho H, Songb I. Electrokinetic behavior ofmembrane zeta potential during the filtration ofcolloidal suspensions. Desalination 2002; 148: 363-367.
[123] Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics:an emerging treatment modality for cancer. Nat.Rev. Drug Discov. 2008; 7: 771-782.
[124] Prokop A, Kozlov E, Carlesso J, Davidson M. Hydrogelbasedcolloidal polymeric system for protein anddrug delivery: physical and chemicalcharacterization permeability control andapplications. Adv. Polymer res. 2002; 160: 119-173.
[125] Huynh NT, Passirani C, Saulnier P, Benoit JP. Lipid nanocapsules, A new platform for nanomedicine.Int. J. Pharm. 2009; 379: 201-209.
[126] Singh R, Lillard JR. Nanoparticle-based targeted drug delivery, Experimental and Molecular Pathology. Exp.Mol. Pathol. 2009; 86: 215-223.
[127]Agnihotri SA, Mallikavjund NN, Aminabhavi TM. Recent advances on chitosan-based micro and nanoparticles in drug delivery. J. control. Release 2004; 100: 5-28.
[128]Rabinovich-Guilatt L, Couvreur P, Lambert G, Goldstein D, Benita S,Dubernet C. Extensive surface studies help to analyse zeta potential data: the case of cationic emulsions. Chem.phys.lipid. 2004; 131:.1–13.
[129] Huynh NT, Passirani C, Saulnier P, Benoit JP. Lipid nanocapsules, A new platform for nanomedicine.Int. J. Pharm. 2009; 379: 201-209.
[130]Huynh NT, Passirani C, Saulnier P, Benoit JP. Lipid nanocapsules, A new platform for nanomedicine.Int. J. Pharm. 2009; 379: 201-209.
[131] Jabr-Milane LS, van Vlerken LE, Yadav S, Amiji MM.Multi-functional nanocarriers to overcome tumor drug resistance. Cancer Treat. Rev. 2008; 34: 592–602.
[132] Shan X, Liu C, Yuan Y, Xu F, Tao X, Sheng Y, Zhou H.In vitro macrophage uptake and in vivobiodistribution of long-circulation nanoparticles withpoly (ethylene-glycol)-modified PLA (BAB type)triblock copolymer. Colloids surface B 2009; 72:303-311.
[133] Panyam J, Zhou WZ, Probha S, Sahoo S, LabhasetwarV. Rapid endo-lysosomal escape of poly (D,Llactide-co-glycolide) nanoparticles: implications fordrug and gene delivery. FASEB 2002; 16: 1217-1226.
[134] Langer K, Balthasar S, Vogel V, Dinauer N, Briesen H,Schubert D. Optimization of the preparationprocess for human serum albumin (HSA)nanoparticles. Int. J. Pharm. 2003; 257: 169-180.
[135] León-Rodrigueza L, Leiro-Vidalb J, lanco-Méndeza J,Luzardo-Álvarez A. Incorporation of PVMMA toPLGA MS enhances lectin grafting and their in vitro
activity in macrophages. Int. J. Pharm. 2010; 402:165–174.
[136] Butsele KV, Sibreta P, Fustin CA, Gohyb JF, PassiraniC, Benoitc JP. Synthesis and pH-dependentmicellization of diblock copolymer mixtures. J.Colloid. Interf. Sci. 2009; 329: 235- 243.
[137] Butsele KV, Sibreta P, Fustin CA, Gohyb JF, PassiraniC, Benoitc JP. Synthesis and pH-dependentmicellization of diblock copolymer mixtures. J.Colloid. Interf. Sci. 2009; 329: 235- 243.
[138] Kedar U, Phutane P, Shidhaye S, Kadam V. Advancesin polymeric micelles for drug delivery and tumortargeting’ Nanomed- Nanotechnol. 2010; 6: 714–729.
[139] Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F.Nanocapsulation I. methods for preparation of drug-loaded polymeric nanoparticles. Nanomed-Nanotechnol. 2006; 2: 8-21.
[140]Ciani L, Ristori S, Bonechi C, Rossi C, Martini G. Effect of the preparation procedure on the structural properties of oligonucleotide/cationic liposome complexes (lipoplexes) studied byelectron spin resonance and Zeta potential. Biophys. Chem.2007; 131: 80–87.
[141] Patila S, Sandberg A, Heckert E, Self W, Sea S. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential.Biomaterials 2007; 28: 4600–4607.
[142] Chen Ch, Tsai TH, Huang ZR, Fang JY. Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers:Physicochemical characterization and pharmacokinetics. Eur. J. Pharm. Biopharm. 2010;74: 474–482.
[143] Bernfild M, Gotte M, Park PW, Reizes O, Fitzgerald ML,Lincecum J, Zako M. Functions of cell surfaceheparan sulphate proteoglycans. Annu. Rev.Biochem. 1999; 68: 729-777.
[144] Mislick K A, Baldeschwieler JD. Evidence for the role of proteoglycans in cation-mediated gene transfer.Proc. Natl. Acad. Sci. U.S.A 1996; 93: 12349-12354.
[145] Panyam P, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cell and tissue. Adv. Drug. Deliv. Rev. 2003; 55: 329-347.
[146] Harting SM, Greene RR, Dikov MM, Prokop A. Davidson JM, Multifunctional nanoparticulate polyelectrolyte complexes. Pharm. Res. 2007; 24: 2353-2369.
[147] Wilhelma C, Billoteya C, Rogerc JN, Bacria J, Gazeau F. Intracellular uptake of anionic
superparamagnetic nanoparticles as a function of their surface coating. Biomaterials 2003; 24: 1001–1011.
[148] Sahay G, Alakhova DY, Kabanov AV. Endocytosis ofnanomedicines. J. Control. Release 2010; 145:182–195.
[149] Bernfild M, Gotte M, Park PW, Reizes O, Fitzgerald ML,Lincecum J, Zako M. Functions of cell surface heparan sulphate proteoglycans. Annu. Rev.Biochem. 1999; 68: 729-777.
[150] Patila S, Sandberg A, Heckert E, Self W, Sea S. Proteinadsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential.Biomaterials 2007; 28: 4600–4607.
[1551] Limbach LK, Li Y, Grass RN, Brunner TJ, Hintermann MA, Muller M. Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ. Sci. Technol. 2005; 39: 9370–9376.
[152] Win KY, Feng SS. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 2005; 26: 2713–2722.
[153] Nam HY. Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles. J. control. Release 2009; 135: 259–267.
[154] Cheng H, Zeng J, Jing Y, Zhang X, Zhuo R. Targeted gene delivery mediated by folate-polyethylenimineblock- poly(ethylene glycol) with receptor selectivity.Bioconjugate. Chem. 2009; 20: 481–487.
[155] Patila S, Sandberg A, Heckert E, Self W, Sea S. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential.Biomaterials 2007; 28: 4600–4607.
[156] Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv. drug deliver. Rev. 2001; 47: 65–81.
[157] Park JS, Han TH, Lee KY, Han SS, Hwang JJ, Mon DH,Kim SY, Cho YW. N-acetyl histidine-conjugatedglycol chitosan self-assembled nanoparticles forintracytoplasmic delivery of drugs: Endocytosis,exocytosis and drug release. J. Control. Release2006; 115: 37–45.
[158] Staples M, Daniel K, Cima MJ, Langer R. Application ofMicro- and Nano-Electromechanical Devices toDrug Delivery. Pharm. Res. 2006; 23: 847-863.
[159] Staples M, Daniel K, Cima MJ, Langer R. Application ofMicro- and Nano-Electromechanical Devices toDrug Delivery. Pharm. Res. 2006; 23: 847-863.
[160] Chang JH, Cho MA, Son HH, Lee CK, Yoon MS, ChoHH, Seo DS, Kim KJ. Characterization and formation of phospholipid nanoemulsion coatingson Mg-modified sericite surface. J. Ind. Eng. Chem,2006;12: 635-638.
[161] Hoeller S, Sperge, A, Valenta C. Lecithin based nanoemulsions: A comparative study of theinfluence of non-ionic surfactants and the cationic phytosphingosine on physicochemical behaviourand skin permeation. Int. J. Pharm. 2009; 370:181–186.
[162] Hoeller S, Sperger A, Valenta C. Lecithin based nanoemulsions: A comparative study of the influence of non-ionic surfactants and the cationic phytosphingosine onphysicochemical behavior and skin permeation. Int. J. Pharm. 2009; 370:181–186.
[163] Coulmana SA, Anstey A, Gateleyb C, Morrisseyc A,McLoughlind C, Allendera C, Birchall JC.Microneedle mediated delivery of nanoparticles intohuman skin. Int. J. Pharm. 2009; 366: 190–200.
[164] Ran S, Downes A, Thorpe PE. Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res. 2002; 62: 6132–6140.
[165] Yang R, Han X, Shia, X, Cheng G, Shim Ch, Cui F.Cationic formulation of paclitaxel-loaded poly D,Llactic-co-glycolic acid (PLGA) nanoparticles using an emulsion-solvent diffusion method. Asian J.Pharmaceut. Sci. 2009; 4: 89-95.
[166] Lee ES, Na K, Bae YH. Polymeric micelle for tumor pH and folate-mediated targeting. J. Control. Release.2003; 91: 103–113.
[167] Mahoney BP, Raghunand N, Baggett B, Gillies RJ.Tumor acidity, ion trapping and chemotherapeutics.I. Acid pH affects the distribution of chemotherapeutic agents in vitro. Biochem.Pharmacol. 2003; 66: 1207–1218.
[168] Garcia-Martin ML, Martinez GV, Raghunand N, Sherry AD, Zhang S, Gillies RJ. High resolution pHeimaging of rat glioma using pH-dependent relaxivity. Magn. Reson. Med. 2006; 55: 309–315.
[169] Yang R, Shima WS, Cuic FD, Chengc G, Hanc X, Jin QR, Kima DD, Chunga S, Shima CK. Enhanced electrostatic interaction between chitosan-modified PLGA nanoparticle and tumor. Int. J. Pharm. 2009;371: 142–147.
[170] Chen X, Wang X, Wang Y, Yang, L, Hu J, Xiao W, FuA, Cai L, Li X, Ye X, Liu Y, Wu W, Shao X., Mao Y,Wei Y, Chen L. Improved tumor-targeting drugdelivery and therapeutic efficacy by cationicliposome modified with truncated bFGF peptide. J.Control. Release 2010; 145: 17-25.
[171]Sethuraman VA, Han Bae Y. TAT peptide-based micelle system for potential active targeting of anti-canceragents to acidic solid tumors. J. Control. Release2007; 118: 216-224.
[172] Needham D, Ponce A. Nanoscale drug delivery vehicles for Solid tumors, Nanotechnology for cancer therapy, CRC Press, Taylor & Francis;2002; p 677.
[173] Needham D, Ponce A. Nanoscale drug deliveryvehicles for Solid tumors, Nanotechnology for cancer therapy, CRC Press, Taylor & Francis;2002; p 677.
[174] Dubernet BC, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliver. Re.,2002; 54: 631–651.
[175] Cafaggi S, Russo E, Stefani R, Leardi R, Caviglioli G,Parodi B, Bignardi G, Detotero D, Viale M.Preparation and evaluation of nanoparticles madeof chitosan or N-trimethyl chitosan and a cisplatin–alginate complex. J. Control. Release 2007; 121:110–123.
[176] Yang R, Yong SG, Shim WS, Cui F, Cheng G, Kim IW,Kim DD, Chung SJ, Shim CK. Lung-specificdelivery of paclitaxel by chitosan-modified PLGAnanoparticles via transient formation ofmicroaggregates. J. pharm Sci. 2009; 98: 970-984.
[177] Cafaggi S, Russo E, Stefani R, Leardi R, Caviglioli G,Parodi B, Bignardi G, Detotero D, Viale M.Preparation and evaluation of nanoparticles made
of chitosan or N-trimethyl chitosan and a cisplatin–alginate complex. J. Control. Release 2007; 121:110–123.
[178] Kommareddy S, Shenoy DB, Amiji MM. Long-circulatingpolymeric nanoparticles for drug and gene deliveryto tumors, Nano technology for cancer therapy,CRC Press, Taylor & Francis; 2007; p 231.
[179] Chun ChJ, Lee SM, Kim S, Yang H, Song SC.Thermosensitive poly(organophosphazene)–paclitaxel conjugate gels for antitumor applications.Biomaterials 2009; 30: 2349-2360.
[180] Robert BCampbell, Positively-charged liposomes for targeting tumor vasculature, Nano technology for cancer therapy, CRC Press, Taylor & Francis;2007. 613p.
[181] Gregoriadis G. Liposomes technology, Volume III CRC
Press, Taylor & Francis; 2007. 156p.
[182] Beduneau A, Saulnier P, Benoit JP. Active targeting ofbrain tumors using nanocarriers. Biomaterials2007; 28: 4947–4967.
[183] Park JH, Lee S, Kim J, Park K, Kim K, Kwon IC.Polymer nanomedicine for cancer therapy. Prog.Polym. Sci. 2008; 33: 113-137.
[184] Yang R, Yong SG, Shim WS, Cui F, Cheng G, Kim IW,Kim DD, Chung SJ, Shim CK. Lung-specificdelivery of paclitaxel by chitosan-modified PLGA nanoparticles via transient formation ofmicroaggregates. J. pharm Sci. 2009; 98: 970-984.
[185] Juillerat-Jeanneret L. The targeted delivery of cancer drugs across the blood–brain barrier: chemical modifications of drugs or drug-nanoparticles. DrugDiscov. Today 2008; 13: 1099-1106.
[186] Park JS, Han TH, Lee KY, Han SS, Hwang JJ, Mon DH,Kim SY, Cho YW. N-acetyl histidine-conjugated glycol chitosan self-assembled nanoparticles for intracytoplasmic delivery of drugs: Endocytosis, exocytosis and drug release. J. Control. Release
2006; 115: 37–45.
[187] Beduneau A, Saulnier P, Benoit JP. Active targeting of brain tumors using nanocarriers. Biomaterials2007; 28: 4947–4967.
[188] Parikh T, Bommana MM, Squillante E. Efficacy of surface charge in targeting pegylated nanoparticles of sulpiride to the brain. Eur. J. Pharm. Biopharm.
2010; 74: 442–450.
[189] Wanga S, Jianga T, Maa M, Hua Y, Zhangb J. Preparation and evaluation of anti-neuroexcitation peptide (ANEP) loaded N-trimethyl chitosanchloride nanoparticles for brain-targeting. Int. J.Pharmaceut. 2010; 386: 249–255.
.[190] Huang M, Khor E, Lim LY. Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of deacetylation.Pharm. Res. 2004; 21: 344–353.
[191] Amidi M, Romeijn SG, Verhoef JC, Junginger HE, Bungener L, Huckriede A, Crommelin DJA, JiskootW. N-Trimethyl chitosan (TMC) nanoparticlesloaded with influenza subunit antigen for intranasal vaccination: biological properties and
immunogenicity in a mouse model. Vaccine 2007;25: 144–153.
[192] T, Bommana MM, Squillante E. Efficacy ofsurface charge in targeting pegylated nanoparticlesof sulpiride to the brain. Eur. J. Pharm. Biopharm.2010; 74: 442–450.
[193] A.Wittig,ab,l W. A. Sauerweinb and J. A. Coderrea, Mechanisms of Transport of p-Borono-Phenylalanine through the Cell Membrane In Vitro, Radiation Research, Vol. 153, No. 2 (Feb., 2000), pp. 173-180
[194] M. Papaspyrou, L. E. Feinendegen and H-W. Miiller-Giirtner, Pre- loading with L-tyrosine increases the uptake of boronophenylalanine in mouse melanoma cells. Cancer Res. 54, 6311-6314 (1994).
[195] G. C. Gazzola, V. Dall'Asta and G. Guidotti, The transport of neutral amino acids in cultured human fibroblasts. J. Biol. Chem. 225, 929- 936 (1980).
[196]J. R. Jara, J. H. Martinez-Liarte, E Solano and R. Pefiafiel, Transport of L-tyrosine by B16/F10 melanoma cells: The effect of the intra- cellular content of other amino acids. J. Cell Sci. 97, 479-485 (1990).
[197]G. C. Gazzola, V. Dall'Asta and G. Guidotti, The transport of neutral amino acids in cultured human fibroblasts. J. Biol. Chem. 225, 929- 936 (1980).
[198]M. A. Shotwell, M. S. Kilberg and D. L. Oxender, Regulation of ami- no acid system L in CHO cells. J. Biol. Chem. 257, 2974-2980 (1982).
[199]J. A. Coderre, A. D. Chanana, D. D. Joel, E. H. Elowitz, P. L. Micca, M. M. Nawrocky, M. Chadha, J-O. Gebbers, M. Shady and D. N. Slatkin, Biodistribution of boronophenylalanine in patients with glio- blastoma multiforme: Boron concentration correlates with tumor cel- lularity. Radiat. Res. 149, 163-170 (1998)
[200]J. A. Coderre, T. M. Button, P. L. Micca, C. Fisher, M. M. Nawrocky and H. B. Liu, Neutron capture therapy of the rat 9L gliosarcoma using the p-boronophenylalanine-fructose complex. Int. J. Radiat. Oncol. Biol. Phys. 30, 643-652 (1994).
[201]Y. Mishima, M. Ichihashi, C. Honda, M. Shiono, T Nakagawa, H. Obara, J. Shirakawa, J. Hiratsuka, K. Kanda and T. Nozaki, Advances in the control of cutaneous primary and metastatic melanoma by thermal neutron capture therapy. In Progress in Boron Neutron Cap- ture Therapy for Cancer (B. J. Allen, D. E. Moore and B. V. Har- rington, Eds.), pp. 577-583. Plenum Press, New York, 1992.
[202] J. A. Coderre, E. H. Elowitz, M. Chadha, R. Bergland, J. Capala, D. D. Joel, H. B. Liu, D. N. Slatkin and A. D. Chanana, Boron neu- tron capture therapy for glioblastoma multiforme using p-borono- phenylalanine and epithermal neutrons: Trial design and early clinical results. J. Neurooncol. 33, 141-152 (1997).
[203] J. A. Coderre, D. J. Glass, R. G. Fairchild, U. Roy, S. Cohen and I. Fand, Selective targeting of boronophenylalanine to melanoma in BALB/c mice for boron neutron capture therapy. Cancer Res. 47, 6377-6383 (1987).
[204] E. H. Elowitz, R. M. Bergland, J. A. Coderre, D. D. Joel, M. Chadha and A. D. Chanana, Biodistribution of p-boronophenlyalanine (BPA) in patients with glioblastoma multiforme for use in boron neutron capture therapy. Neurosurgery 42, 463-469 (1998).
[205]J. A. Coderre, A. D. Chanana, D. D. Joel, E. H. Elowitz, P. L. Micca, M. M. Nawrocky, M. Chadha, J-O. Gebbers, M. Shady and D. N. Slatkin, Biodistribution of boronophenylalanine in patients with glio- blastoma multiforme: Boron concentration correlates with tumor cel- lularity. Radiat. Res. 149, 163-170 (1998).
[206] J. Capala, M. S. Makar and J. A. Coderre, Accumulation of boron in malignant and normal cells incubated in vitro with boronophenyl- alanine, mercaptoborane or boric acid. Radiat. Res. 146, 554-560 (1996).
[207]M. S. Kilberg, Amino acid transport in isolated rat hepatocytes. J. Membr. Biol. 69, 1-12 (1982).
[208] T. Kuwert, S. Probst-Cousin, B. Woesler, C. Morgenroth, H. Lerch, P. Matheja, S. Palkovic, M. Schhifers, H. Wassmann and 0. Schober, Iodine-123-ct-methyl tyrosine in gliomas: Correlation with cellular density and proliferative activity. J. Nucl. Med. 38, 1551-1555 (1997).
[209]T. Kuwert, S. Probst-Cousin, B. Woesler, C. Morgenroth, H. Lerch, P. Matheja, S. Palkovic, M. Schhifers, H. Wassmann and 0. Schober, Iodine-123-ct-methyl tyrosine in gliomas: Correlation with cellular density and proliferative activity. J. Nucl. Med. 38, 1551-1555 (1997).
[210] J. Imahori, U. Satoshi, Y. Ohmori, T. Kusuki, K. Ono and T. Ido, Fluorine-18-labeled fluoroboronophenylalanine PET in patients with glioma. J. Nucl. Med. 39, 325-333 (1998).
[211]G. G. Guidotti, G. C. Gazzola, A. E Borghetti and R. Franchi-Gaz- zola, Adaptive regulation of amino acid transport across the cell membrane in avian and mammalian tissues. Biochim. Biophys. Acta 406, 264-279 (1975)
[212]R. K. Singh, C. A. Rinehart, J. P. Kim, S. Tolleston-Rinehart, L. E Lawing, D. G. Kaufmann and G. P. Siegal, Tumor cell invasion of basement membrane in vitro is regulated by amino acids. Cancer Invest. 14, 6-18 (1996).
[213]R. A. Berjan, P. M. Kanter, H. S. Bhahoo, M. H. Tan and D. D. Lawrence, Pretreatment effects on the uptake retention kinetics of L- DOPA in Harding-Passey melanoma. J. Invest. Dermatol. 86, 560- 562 (1986).
[214] G. Bartholini and A. Pletscher, Cerebral accumulation and metabo- lism of C14-dopa after selective inhibition of peripheral decarbox- ylase. J. Pharmacol. Exp. Ther. 161, 14-20 (1968).
[215] Hollstein M, Sidransky D, Vogelstein B, Harris CC. 1991.” p53mutations in human
cancers. Science” 253:49 – 53.
[216] Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW.1991. Participation of p53 protein in the cellular response to DNA damage. Cancer Research 51:6304 – 6311.
[217] Russell P, Nurse P. 1987. Negative regulation of mitosis by wee1t, a gene encoding a protein kinase homolog. Cell 49:559 – 567.
[218] Obayashi S, Kato I, Ono K, Masunaga S, Suzuki M, Nagata K,Sakurai Y, Yura Y. 2004. Delivery of 10boron to oral squamous cell carcinoma using boronophenylalanine and borocaptate sodium for boron neutron capture therapy. Oral Oncology 40:474 – 482.
[219] Masunaga S, Ono K, Takahashi A, Sakurai Y, Ohnishi K,Kobayashi T, Kinashi Y, Takagaki M, Ohnishi T. 2002.Impact of the p53 status of the tumor cells on the effect of reactor neutron beam irradiation, with emphasis on the response of intratumor quiescent cells. Japanese Journal of Cancer Research 93:1366 – 1377.
[220] AKITOSHI KAMIDA, YUSEI FUJITA, ITSURO KATO,’’ Effect of neutron capture therapy on the cell cycle of human squamous cell carcinoma cells’’, Int. J. Radiat. Biol., Vol. 84, No. 3, March 2008, pp. 191 – 199
[221] Russell P, Nurse P. 1987. Negative regulation of mitosis by wee1t, a gene encoding a protein kinase homolog. Cell 49:559 – 567
[222] Boulares AH, Yakovlev AG, Ivanova V, Stoica BA, Wang G,Iyer S, Smulson M. 1999. Role of poly(ADP-ribose) polymerase(PARP) cleavage in apoptosis. Caspase 3-resistant
PARP mutant increases rates of apoptosis in transfected cells. The Journal of Biological Chemistry 274:22932 –22940.
[223] Y. Wu, A. Duong, L. J. Lee, and B. E. Wyslouzil, "Electrospray production of
nanoparticles for drug/nucleic acid delivery," in The Delivery of Nanoparticles: InTech,
2012.
[224] B. Furtmann et al., "Electrospray synthesis of PLGA nanoparticles encapsulating
peptides to enhance proliferation of antigen‐specific CD8+ T cells," Journal of
Pharmaceutical Sciences, 2017
[225] Dong-Yan Wua, Yu Maa, Xiao-Shuang Hou,’’ Co-delivery of antineoplastic and protein drugs by chitosannanocapsules for a collaborative tumor treatment’’, Carbohydrate Polymers157 (2017) 1470–1478
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *