|
[1] A. Z. Wang, R. Langer, and O. C. Farokhzad, "Nanoparticle delivery of cancer drugs," Annu Rev Med, vol. 63, pp. 185‐98, 2012. [2]. Barth, Rolf F., et al. "Boron neutron capture therapy for cancer. Realities and prospects." Cancer 70.12 (1992): 2995-3007. [3]. Snyder, H. R., Albert J. Reedy, and Wm J. Lennarz. "Synthesis of Aromatic Boronic Acids. Aldehydo Boronic Acids and a Boronic Acid Analog of Tyrosine1." Journal of the American Chemical Society 80.4 (1958): 835-838. [4]. Liver Cancer Study Group of Japan. "The general rules for the clinical and pathological study of primary liver cancer." The Japanese journal of surgery 19.1 (1989): 98-129. [5] Joseph W. Nichols , You Han Bae" EPR: Evidence and fallacy"Journal of Controlled Release 190 (2014) 451–464 [6] E.A. Azzopardi, E.L. Ferguson, D.W. Thomas, The enhanced permeability retention effect: a new paradigm for drug targeting in infection, J. Antimicrob. Chemother. 68 (2) (Feb. 2013) 257–274. [7] J. Fang, H. Nakamura, H. Maeda, Y. Matsukado, The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect, Adv. Drug Deliv. Rev. 63 (3) (Mar. 2011) 136–151. [8] T. Konno, H. Maeda, K. Iwai, S. Maki, S. Tashiro, M. Uchida, Y. Miyauchi, Selective targeting of anti-cancer drug and simultaneous image enhancement in solid tumors by arterially administered lipid contrast medium, Cancer 54 (11) (Dec.1984) 2367–2374. [9] Y. Matsumura, H. Maeda, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS, Cancer Res. 46 (12 Pt 1) (1986) 6387–6392. [10] Y. Matsumura, H. Maeda, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS, Cancer Res. 46 (12 Pt 1) (1986) 6387–6392. [11] M.R. Dreher,W. Liu, C.R.Michelich,M.W. Dewhirst, F. Yuan, A. Chilkoti, Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers, J. Natl. Cancer Inst. 98 (5) (Mar. 2006) 335–344. [12] A.J. Leu, D.A. Berk, A. Lymboussaki, K. Alitalo, R.K. Jain, Absence of functional lymphaticswithin a murine sarcoma: a molecular and functional evaluation, Cancer Res. 60 (16) (Aug. 2000) 4324–4327. [13] T. Roose, P.A. Netti, L.L.Munn, Y. Boucher, R.K. Jain, Solid stress generated by spheroid growth estimated using a linear poroelasticity model, Microvasc. Res. 66 (3) (Nov. 2003) 204–212. [14] D.M. McDonald, P. Baluk, Significance of blood vessel leakiness in cancer, Cancer Res. 62 (18) (Sep. 2002) 5381–5385. [15] J. Fang, H. Nakamura, H. Maeda, Y. Matsukado, The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect, Adv. Drug Deliv. Rev. 63 (3) (Mar. 2011) 136–151. [16] H. Maeda, Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects, Bioconjug. Chem. 21 (5) (May 2010) 797–802. [17] T. Konno, H. Maeda, K. Iwai, S. Maki, S. Tashiro, M. Uchida, Y. Miyauchi, Selective targeting of anti-cancer drug and simultaneous image enhancement in solid tumors by arterially administered lipid contrast medium, Cancer 54 (11) (Dec. 1984) 2367–2374. [18] E.J. Potchen, A.J. Elliott, B.A. Siegel, R. Studer, R.G. Evens, Pathophysiologic basis of soft tissue tumor scanning, J. Surg. Oncol. 3 (6) (1971) 593–602. [19] V.J. Richardson, B.E. Ryman, R.F. Jewkes, K. Jeyasingh,M.N. Tattersall, E.S. Newlands, S.B. Kaye, Tissue distribution and tumour localization of 99m-technetium-labelled liposomes in cancer patients, Br. J. Cancer 40 (1) (Jul. 1979) 35–43. [20] G. Gregoriadis, D.E. Neerunjun, R. Hunt, Fate of a liposome-associated agent injected into normal and tumour-bearing rodents. Attempts to improve localization in tumour tissues, Life Sci. 21 (3) (1977) 357–369. [21] L. Grislain, P. Couvreur, V. Lenaerts, M. Roland, D. Deprez-Decampeneere, P. Speiser, Pharmacokinetics and distribution of a biodegradable drug-carrier, Int. J. Pharm. 15 (3) (1983) 335–345. [22] B. Sylven, I. Bois, Protein content and enzymatic assays of interstitial fluid from some normal tissues and transplanted mouse tumors, Cancer Res. 20 (6) (Jul. 1960) 831–836. [23] R.T. Proffitt, L.E. Williams, C.A. Presant, G.W. Tin, J.A. Uliana, R.C. Gamble, J.D. Baldeschwieler, Tumor-imaging potential of liposomes loaded with In-111-NTA: biodistribution in mice, J. Nucl. Med. 24 (1) (Jan. 1983) 45–51. [24] V.J. Richardson, K. Jeyasingh, R.F. Jewkes, B.E. Ryman, M.H. Tattersall, Properties of [99mTc] technetium-labelled liposomes in normal and tumour-bearing rats,Biochem. Soc. Trans. 5 (1) (Jan. 1977) 290–291. [25] K.J. Widder, A.E. Senyei, B. Sears, Experimental methods in cancer therapeutics, J. Pharm. Sci. 71 (4) (Apr. 1982) 379–387. [26] V.J. Richardson, K. Jeyasingh, R.F. Jewkes, B.E. Ryman, M.H. Tattersall, Possible tumor localization of Tc-99m-labeled liposomes: effects of lipid composition, charge, and liposome size, J. Nucl. Med. 19 (9) (Sep. 1978) 1049–1054. [27] T.P. Butler, F.H. Grantham, P.M. Gullino, Bulk transfer of fluid in the interstitial compartment of mammary tumors, Cancer Res. 35 (11 Pt 1) (Nov. 1975) 3084–3088. [28] G. Gregoriadis, D.E. Neerunjun, R. Hunt, Fate of a liposome-associated agent injected into normal and tumour-bearing rodents. Attempts to improve localization in tumour tissues, Life Sci. 21 (3) (1977) 357–369. [29] V.J. Richardson, K. Jeyasingh, R.F. Jewkes, B.E. Ryman, M.H. Tattersall, Properties of [99mTc] technetium-labelled liposomes in normal and tumour-bearing rats, Biochem. Soc. Trans. 5 (1) (Jan. 1977) 290–291. [30] V.J. Richardson, K. Jeyasingh, R.F. Jewkes, B.E. Ryman, M.H. Tattersall, Possible tumor localization of Tc-99m-labeled liposomes: effects of lipid composition, charge, and liposome size, J. Nucl. Med. 19 (9) (Sep. 1978) 1049–1054. [31] A.A. Gabizon, D. Papahadjopoulos, Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors, Proc. Natl. Acad. Sci. 85 (18) (Sep. 1988) 6949–6953. [32] T. Allen, J. Everest, Effect of liposome size and drug release properties on pharmacokinetics of encapsulated drug in rats, J. Pharmacol. Exp. Ther. 226 (2) (Aug. 1983) 539–544. [33] I.H. Goldberg, Free radical mechanisms in neocarzinostatin-induced DNA damage, Free Radic. Biol. Med. 3 (1) (1987) 41–54. [34] S.-K. Sim, J.William Lown, The mechanism of the neocarzinostatin-induced cleavage of DNA, Biochem. Biophys. Res. Commun. 81 (1) (1978) 99–105. [35] H.Maeda, SMANCS and polymer-conjugatedmacromolecular drugs: advantages in cancer chemotherapy, Adv. Drug Deliv. Rev. 46 (1–3) (Mar. 1991) 169–185. [36] H. Maeda, Y. Sano, J. Takeshita, Z. Iwai, H. Kosaka, T. Marubayashi, Y. Matsukado, A pharmacokinetic simulation model for chemotherapy of brain tumor with an antitumor protein antibiotic, neocarzinostatin, Cancer Chemother. Pharmacol. 5 (4)(Jun. 1981) 243–249. [37] T. Oda, F. Sato, H. Yamamoto, M. Akagi, H. Maeda, Cytotoxicity of SMANCS in comparison with other anticancer agents against various cells in culture, Anticancer Res. 9 (2) (1989) 261–266. [38] H.Maeda, SMANCS and polymer-conjugatedmacromolecular drugs: advantages in cancer chemotherapy, Adv. Drug Deliv. Rev. 46 (1–3) (Mar. 1991) 169–185. [39] S. Hirayama, F. Sato, T. Oda, H.Maeda, Stability of highmolecular weight anticancer agent SMANCS and its transfer from oil-phase to water-phase. Comparative study with neocarzinostatin, Jpn. J. Antibiot. 39 (3) (Mar. 1986) 815–822. [40] H. Maeda, M. Ueda, T. Morinaga, T. Matsumoto, Conjugation of poly(styrene-comaleic acid) derivatives to the antitumor protein neocarzinostatin: pronounced improvements in pharmacological properties, J. Med. Chem. 28 (4) (Apr. 1985) 455–461. [41] K. Iwai, H. Maeda, T. Konno, Use of oily contrast medium for selective drug targeting to tumor: enhanced therapeutic effect and X-ray image, Cancer Res. 44 (5) (May 1984) 2115–2121. [42] H. Maeda, T. Matsumoto, T. Konno, K. Iwai,M. Ueda, Tailor-making of protein drugs by polymer conjugation for tumor targeting: a brief review on SMANCS, J. Protein Chem. 3 (2) (Apr. 1984) 181–193. [43] A.A. Gabizon, D. Papahadjopoulos, Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors, Proc. Natl. Acad. Sci. 85 (18) (Sep. 1988) 6949–6953. [44] T. Allen, J. Everest, Effect of liposome size and drug release properties on pharmacokinetics of encapsulated drug in rats, J. Pharmacol. Exp. Ther. 226 (2) (Aug. 1983) 539–544. [45] J.M. Harris, R.B. Chess, Effect of pegylation on pharmaceuticals, Nat. Rev. Drug Discov. 2 (3) (Mar. 2003) 214–221. [46] A. Abuchowski, J.R. McCoy, N.C. Palczuk, T. van Es, F.F. Davis, Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase, J. Biol. Chem. 252 (11) (Jun. 1977) 3582–3586. [47] T. Lammers, G. Pasut, F.M. Veronese, State of the art in PEGylation: the great versatility achieved after forty years of research, J. Control. Release 161 (2) (2012) 461–472. [48] J.-W. Yoo, E. Chambers, S. Mitragotri, Factors that control the circulation time of nanoparticles in blood: challenges, solutions and future prospects, Curr. Pharm. Des. 16 (21) (Jul. 2010) 2298–2307. [49] M. Schuler, D. Trentin,M. Textor, S.G.P. Tosatti, Biomedical interfaces: titaniumsurface technology for implants and cell carriers, Nanomedicine (Lond) 1 (4) (Dec. 2006) 449–463. [50] L. Grislain, P. Couvreur, V. Lenaerts, M. Roland, D. Deprez-Decampeneere, P. Speiser, Pharmacokinetics and distribution of a biodegradable drug-carrier, Int. J. Pharm. 15 (3) (1983) 335–345. [51] M.S. Hershfield, R.H. Buckley, M.L. Greenberg, A.L. Melton, R. Schiff, C. Hatem, J. Kurtzberg, M.L. Markert, R.H. Kobayashi, A.L. Kobayashi, Treatment of adenosine deaminase deficiency with polyethylene glycol-modified adenosine deaminase, N. Engl. J. Med. 316 (10) (Mar. 1987) 589–596. [52] N.V. Katre, The conjugation of proteins with polyethylene glycol and other polymers, Adv. Drug Deliv. Rev. 10 (1) (Jan. 1993) 91–114. [53] K. Kitajima, M. Fukuoka, Studies on the appropriate administration of cisplatin based on pharmacokinetics and toxicity, Gan to kagaku ryoho 14 (8) (Aug. 1987) 2517–2523. [54] R.L. Juliano, D. Stamp, Pharmacokinetics of liposome-encapsulated anti-tumor drugs, Biochem. Pharmacol. 27 (1) (1978) 21–27. [55] M. Ostro, P. Cullis, Use of liposomes as injectable-drug delivery systems, Am. J. Health Syst. Pharm. 46 (8) (Aug. 1989) 1576–1587. [56] V.J. Richardson, K. Jeyasingh, R.F. Jewkes, B.E. Ryman, M.H. Tattersall, Possible tumor localization of Tc-99m-labeled liposomes: effects of lipid composition, charge, and liposome size, J. Nucl. Med. 19 (9) (Sep. 1978) 1049–1054. [57] M. Ostro, P. Cullis, Use of liposomes as injectable-drug delivery systems, Am. J. Health Syst. Pharm. 46 (8) (Aug. 1989) 1576–1587. [58] A. Soundararajan, A. Bao, W.T. Phillips, R. Perez, B.A. Goins, [(186)Re]Liposomal doxorubicin (Doxil): in vitro stability, pharmacokinetics, imaging and biodistribution in a head and neck squamous cell carcinoma xenograft model, Nucl. Med. Biol. 36 (5) (Jul. 2009) 515–524. [59] M. Winterhalter, D.D. Lasic, Liposome stability and formation: experimental parameters and theories on the size distribution, Chem. Phys. Lipids 64 (1) (1993) 35–43. [60] A.A. Gabizon, Liposome circulation time and tumor targeting: implications for cancer chemotherapy, Adv. Drug Deliv. Rev. 16 (2–3) (Sep. 1995) 285–294. [61] T.M. Allen, C. Hansen, F.Martin, C. Redemann, A. Yau-Young, Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo, Biochim. Biophys. Acta Biomembr. 1066 (1) (1991) 29–36. [62] G. Gregoriadis, D.E. Neerunjun, R. Hunt, Fate of a liposome-associated agent injected into normal and tumour-bearing rodents. Attempts to improve localization in tumour tissues, Life Sci. 21 (3) (1977) 357–369. [63] A.J. Bradley, D.V. Devine, S.M. Ansell, J. Janzen, D.E. Brooks, Inhibition of liposomeinduced complement activation by incorporated poly(ethylene glycol)-lipids, Arch. Biochem. Biophys. 357 (2) (Sep. 1998) 185–194. [64] J. Szebeni, P. Bedőcs, Z. Rozsnyay, Liposome-induced complement activation and related cardiopulmonary distress in pigs: factors promoting reactogenicity of Doxil and AmBisome, Nanomedicine 8 (2) (Feb. 2012) 176–184. [65] R.B. Weiss, The anthracyclines: will we ever find a better doxorubicin? Semin. Oncol. 19 (6) (Dec. 1992) 670–686. [66] D.D. Von Hoff, M.W. Layard, P. Basa, H.L. Davis, A.L. Von Hoff, M. Rozencweig, F.M. Muggia, Risk factors for doxorubicin-induced congestive heart failure, Ann. Intern. Med. 91 (5) (Nov. 1979) 710–717. [67] D.L. Keefe, Anthracycline-induced cardiomyopathy, Semin. Oncol. 28 (No.4 Suppl. 12) (Aug. 2001) 2–7. [68] L.D. Mayer, M.B. Bally, M.J. Hope, P.R. Cullis, Uptake of antineoplastic agents into large unilamellar vesicles in response to a membrane potential, Biochim. Biophys. Acta 816 (2) (Jun. 1985) 294–302. [69] Y. Barenholz, Doxil(r)—the first FDA-approv [70] T.M. Allen, C. Hansen, F.Martin, C. Redemann, A. Yau-Young, Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo, Biochim. Biophys. Acta Biomembr. 1066 (1) (1991) 29–36. [71] D. Papahadjopoulos, T.M. Allen, A.A. Gabizon, E. Mayhew, K. Matthay, S.K. Huang, K.D. Lee, M.C.Woodle, D.D. Lasic, C. Redemann, Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy, Proc. Natl. Acad. Sci. 88 (24) (Dec. 1991) 11460–11464. [72] A.J. Bradley, D.V. Devine, S.M. Ansell, J. Janzen, D.E. Brooks, Inhibition of liposomeinduced complement activation by incorporated poly(ethylene glycol)-lipids, Arch. Biochem. Biophys. 357 (2) (Sep. 1998) 185–194. [73] P.Working, M. Newman, Pharmacokinetics, biodistribution and therapeutic efficacy of doxorubicin encapsulated in Stealth(r) liposomes (Doxil(r)), Liposome 4 (1) (Jan. 1994) 667–687. [74] D.E. Owens, N.A. Peppas, Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles, Int. J. Pharm. 307 (no. 1) (Jan. 2006) 93–102. [75] A.A. Gabizon, Y. Barenholz, M. Bialer, Prolongation of the circulation time of doxorubicin encapsulated in liposomes containing a polyethylene glycol-derivatized phospholipid: pharmacokinetic studies in rodents and dogs, Pharm. Res. 10 (5) (May 1993) 703–708. [76] A.A. Gabizon, Selective tumor localization and improved therapeutic index of anthracyclines encapsulated in long-circulating liposomes, Cancer Res. 52 (4) (Feb. 1992) 891–896. [77] A.A. Gabizon, D. Papahadjopoulos, Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors, Proc. Natl. Acad. Sci. 85 (18) (Sep. 1988) 6949–6953. [78] A.A. Gabizon, R. Catane, B. Uziely, B. Kaufman, T. Safra, R. Cohen, F. Martin, A. Huang, Y. Barenholz, Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes, Cancer Res. 54 (4) (Feb. 1994) 987–992. [79] T.M. Allen, C. Hansen, F.Martin, C. Redemann, A. Yau-Young, Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo, Biochim. Biophys. Acta Biomembr. 1066 (1) (1991) 29–36. [80] T. Lammers, G. Pasut, F.M. Veronese, State of the art in PEGylation: the great versatility achieved after forty years of research, J. Control. Release 161 (2) (2012) 461–472. [81] J.W. Nichols, Y.H. Bae, Odyssey of a cancer nanoparticle: from injection site to site of action, Nano Today 7 (6) (Dec. 2012) 606–618. [82] N.A. Peppas, R.K. Jain, Delivery of molecular and cellular medicine to solid tumors, Adv. Drug Deliv. Rev. 64 (2012) 353–365. [83] L. Eikenes, Ø.S. Bruland, C. Brekken, C.D.L. Davies, Collagenase increases the transcapillary pressure gradient and improves the uptake and distribution of monoclonal antibodies in human osteosarcoma xenografts, Cancer Res. 64 (14) (Jul. 2004) 4768–4773. [84] R.K. Jain, Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy, Science 307 (5706) (Jan. 2005) 58–62. [85]Josias H. Hamman, Chitosan Based Polyelectrolyte Complexes as Potential Carrier Materials in Drug Delivery Systems, Mar. Drugs 2010, 8, 1305-1322; doi:10.3390/md8041305
[86] Argüelles-Monal, W.; Cabrera, G.; Peniche, C.; Rinaudo, M. Conductimetric study of the interpolyelectrolyte reaction between chitosan and polygalacturonic acid. Polymer 2000, 41, 2373–2378. [87].Gamzazade, A.I.; Nasibov, S.M. Formation and properties of polyelectrolyte complexes of chitosan hydrochloride and sodium dextransulfate. Carbohydr. Polym. 2002, 50, 339–343. [88].Maciel, J.S.; Silva, D.A.; Paula, H.C.B.; de Paula, R.C.M. Chitosan/carboxymethyl cashew gum polyelectrolyte complex: synthesis and thermal stability. Eur. Polym. J. 2005, 41, 2726–2733. [89]Sashina, E.S.; Novoselov, N.P. Polyelectrolyte complexes of fibroin with chitosan. Macromol. Chem. Polym Mater. 2005, 78, 493–497
[90] Zhao, Q.; Qian, J.; An, Q.; Gao, C.; Gui, Z.; Jin, H. Synthesis and characterization of soluble chitosan/sodium carboxymethyl cellulose polyelectrolyte complexes and the pervaporation dehydration of their homogenous membranes. J. Membr. Sci. 2009, 333, 68–78. [91]Oliveira, M.A.; Ciarlini, P.C.; Feitosa, J.P.A.; de Paula, R.C.M.; Paula, H.C.B. Chitosan/”angico” gum nanoparticles: Synthesis and characterization. Mater. Sci. Eng. C 2009, 29, 448–451. [92] Sankalia, M.G.; Mashru, R.C.; Sankalia, J.M.; Sutariya, V.B. Reversed chitosan-alginate polyelectrolyte complex for stability improvement of alpha-amylase: Optimization and physicochemical characterization. Eur. J. Pharm. Biopharm. 2007, 65, 215–232. [93] Beneke, C.E.; Viljoen, A.M.; Hamman, J.H. Polymeric plant-derived excipients in drug delivery. Molecules 2009, 14, 2602–2620. [94] Hein, S.; Wang, K.; Stevens, W.F.; Kjems, J. Chitosan composites for biomedical applications: status, challenges and perspectives. Mater. Sci. Technol. 2008, 24, 1053–1061. [95] Li, X.; Xie, H.; Lin, J.; Xie, W.; Ma, X. Characterization and biodegradation of chitosan-alginate polyelectrolyte complexes. Polym. Degrad. Stab. 2009, 94, 1–6. [96] Sæther, H.V.; Holme, H.K.; Maurstad, G.; Smidsrød, O.; Stokke, B.T. Polyelectrolyte complex formation using alginate and chitosan. Carbohydr. Polym. 2008, 74, 813–821. [97] Sankalia, M.G.; Mashru, R.C.; Sankalia, J.M.; Sutariya, V.B. Reversed chitosan-alginate polyelectrolyte complex for stability improvement of alpha-amylase: Optimization and physicochemical characterization. Eur. J. Pharm. Biopharm. 2007, 65, 215–232. [98] Liao, I-C.; Wan, A.C.A.; Yim, E.K.F.; Leong, K.W. Controlled release from fibers of polyelectrolyte complexes. J. Control. Release 2005, 104, 347–358. [99] Beneke, C.E.; Viljoen, A.M.; Hamman, J.H. Polymeric plant-derived excipients in drug delivery. Molecules 2009, 14, 2602–2620. [100]Coviello, T.; Alhaique, F.; Dorigo, A.; Matricardi, P.; Grassi, M. Two galactomannans and scleroglucan as matrices for drug delivery: Preparation and release studies. Eur. J. Pharm. Biopharm. 2007, 66, 200–209. [101] Shumilina, E.V; Shchipunov, Y.A. Chitosan-carrageenan gels. Colloid J. 2002, 64, 372–378. [102]Briones, A.V.; Sato, T. Encapsulation of glucose oxidase (GOD) in polyelectrolyte complexes of chitosan-carrageenan. React. Funct. Polym. 2010, 70, 19–27. [103] Fry, S.C. Primary cell wall metabolism, tracking the careers of wall polymers in living plant cells. New Phytol. 2004, 161,641–675. [104] Sriamornsak, P.; Thirawong, N.; Weerapol, Y.; Nunthanid, J.; Sungthongjeen, S. Swelling and erosion of pectin matrix tablets and their impact on drug release behavior. Eur. J. Pharm. Biopharm. 2007, 67,211–219. [105] Cárdenas, A.; Goycoolea, F.M.; Rinaudo, M. On the gelling behaviour of „nopal‟ (Opuntia ficus indica) low metholoxyl pectin. Carbohydr. Polym. 2008, 73, 212–222. [106] Bernabe, P.; Peniche, C.; Argüelles-Monal, W. Swelling behavior of chitosan/pectin polyelectrolyte complex membranes. Effect of thermal cross-linking. Polym. Bull. 2005, 55, 367–375. [107] Bigucci, F.; Luppi, B.; Cerchiara, T.; Sorrenti, M.; Bettinetti, G.; Rodriquez, L.; Zecchi, V. Chitosan/pectin polyelectrolyte complexes: Selection of suitable preparative conditions for colon-specific delivery of vancomycin. Eur. J. Pharm. Sci. 2008, 35, 435–441. [108] Mundargi, R.; Patil, S.A.; Aminabhavi, T.M. Evaluation of acrylamide-grafted-xanthan gum copolymer matrix tablets for oral controlled delivery of antihypertensive drugs. Carbohydr. Polym. 2007, 69, 130–141.
[109]Magnin, D.; Lefebvre, J.; Chornet, E.; Dumitriu, S. Physicochemical and structural characterisation of a polyionic matrix of interest in biotechnology, in the pharmaceutical and biomedical fields. Carbohydr. Polym. 2004, 55, 437–453. [110] Dumitriu, S.; Magny, P.; Montane, D.; Vidal, P.F.; Chornet, E. Polyionic hydrogels obtained by complexation: Their properties as support for enzyme immobilization. J. Bioact. Compat. Polym. 1994, 9, 184–209. [111]Dumitriu, S.; Chornet, E.; Vidal, P.F.; Moresoli, C. Polyionic hydrogels as support for immobilization of lipase. Biotechnol. Tech. 1995, 9, 833–836. [112]Magnin, D.; Lefebvre, J.; Chornet, E.; Dumitriu, S. Physicochemical and structural characterisation of a polyionic matrix of interest in biotechnology, in the pharmaceutical and biomedical fields. Carbohydr. Polym. 2004, 55, 437–453. [113]Kriwet, B.; Kissel, T. Interactions between bioadhesive poly (acrylic acid) and calcium ions. Int. J. Pharm. 1996, 127, 135–145. [114] Lee, M.-H.; Chun, M.-K.; Choi, H.-K. Preparation of Carbopol/Chitosan interpolymer complex as a controlled release tablet matrix; effects of complex formation medium on drug release characteristics. Arch. Pharm. Res. 2008, 31, 932–937. [115] Park, S.-H.; Chun, M.-K.; Choi, H.-K. Preparation of an extended release matrix tablet using chitosan/Carbopol interpolymer complex. Int. J. Pharm. 2008, 347, 39–44. [116]Silva, C.L.; Pereira, J.C.; Ramalho, A.; Pais, A.A.C.C.; Sousa, J.S.J. Films based on chitosan polyelectrolyte complexes for skin drug delivery: Development and characterisation. J. Memb. Sci. 2008, 320, 268–279. [117] Lu, Z.; Chen, W.; Hamman, J.H. Chitosan-polycarbophil complexes in swellable matrix systems for controlled drug release. Curr. Drug Deliv. 2007, 4, 257–263. [118] Lu, Z.; Chen, W.; Olivier, E.I.; Hamman, J.H. Matrix polymeric excipients: Comparing a novel polyelectrolyte complex with hydroxypropylmethylcellulose. Drug Deliv. 2008, 15, 87–96. [119]Lankalapalli, S.; Kolapalli, V.R.M. Polyelectrolyte complexes: A review of their applicability in drug delivery technology. Ind. J. Pharm. Sci. 2009, 71, 481–487. [120] Shiraishi, S.; Imai, T.; Otagiri, M. Controlled release of indomethacin by chitosan-polyelectrolyte complex: Optimization and in vivo/in vitro evaluation. J. Control. Release 1993, 25, 217–225. [121] Soheyla Honary and Foruhe Zahir, Effect of Zeta Potential on the Properties of Nano-Drug Delivery Systems - A Review (Part 1), Tropical Journal of Pharmaceutical Research April 2013; 12 (2): 255-264 [122] Chun MS, Cho H, Songb I. Electrokinetic behavior ofmembrane zeta potential during the filtration ofcolloidal suspensions. Desalination 2002; 148: 363-367. [123] Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics:an emerging treatment modality for cancer. Nat.Rev. Drug Discov. 2008; 7: 771-782. [124] Prokop A, Kozlov E, Carlesso J, Davidson M. Hydrogelbasedcolloidal polymeric system for protein anddrug delivery: physical and chemicalcharacterization permeability control andapplications. Adv. Polymer res. 2002; 160: 119-173. [125] Huynh NT, Passirani C, Saulnier P, Benoit JP. Lipid nanocapsules, A new platform for nanomedicine.Int. J. Pharm. 2009; 379: 201-209. [126] Singh R, Lillard JR. Nanoparticle-based targeted drug delivery, Experimental and Molecular Pathology. Exp.Mol. Pathol. 2009; 86: 215-223. [127]Agnihotri SA, Mallikavjund NN, Aminabhavi TM. Recent advances on chitosan-based micro and nanoparticles in drug delivery. J. control. Release 2004; 100: 5-28. [128]Rabinovich-Guilatt L, Couvreur P, Lambert G, Goldstein D, Benita S,Dubernet C. Extensive surface studies help to analyse zeta potential data: the case of cationic emulsions. Chem.phys.lipid. 2004; 131:.1–13. [129] Huynh NT, Passirani C, Saulnier P, Benoit JP. Lipid nanocapsules, A new platform for nanomedicine.Int. J. Pharm. 2009; 379: 201-209. [130]Huynh NT, Passirani C, Saulnier P, Benoit JP. Lipid nanocapsules, A new platform for nanomedicine.Int. J. Pharm. 2009; 379: 201-209. [131] Jabr-Milane LS, van Vlerken LE, Yadav S, Amiji MM.Multi-functional nanocarriers to overcome tumor drug resistance. Cancer Treat. Rev. 2008; 34: 592–602. [132] Shan X, Liu C, Yuan Y, Xu F, Tao X, Sheng Y, Zhou H.In vitro macrophage uptake and in vivobiodistribution of long-circulation nanoparticles withpoly (ethylene-glycol)-modified PLA (BAB type)triblock copolymer. Colloids surface B 2009; 72:303-311. [133] Panyam J, Zhou WZ, Probha S, Sahoo S, LabhasetwarV. Rapid endo-lysosomal escape of poly (D,Llactide-co-glycolide) nanoparticles: implications fordrug and gene delivery. FASEB 2002; 16: 1217-1226. [134] Langer K, Balthasar S, Vogel V, Dinauer N, Briesen H,Schubert D. Optimization of the preparationprocess for human serum albumin (HSA)nanoparticles. Int. J. Pharm. 2003; 257: 169-180. [135] León-Rodrigueza L, Leiro-Vidalb J, lanco-Méndeza J,Luzardo-Álvarez A. Incorporation of PVMMA toPLGA MS enhances lectin grafting and their in vitro activity in macrophages. Int. J. Pharm. 2010; 402:165–174. [136] Butsele KV, Sibreta P, Fustin CA, Gohyb JF, PassiraniC, Benoitc JP. Synthesis and pH-dependentmicellization of diblock copolymer mixtures. J.Colloid. Interf. Sci. 2009; 329: 235- 243. [137] Butsele KV, Sibreta P, Fustin CA, Gohyb JF, PassiraniC, Benoitc JP. Synthesis and pH-dependentmicellization of diblock copolymer mixtures. J.Colloid. Interf. Sci. 2009; 329: 235- 243. [138] Kedar U, Phutane P, Shidhaye S, Kadam V. Advancesin polymeric micelles for drug delivery and tumortargeting’ Nanomed- Nanotechnol. 2010; 6: 714–729. [139] Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F.Nanocapsulation I. methods for preparation of drug-loaded polymeric nanoparticles. Nanomed-Nanotechnol. 2006; 2: 8-21. [140]Ciani L, Ristori S, Bonechi C, Rossi C, Martini G. Effect of the preparation procedure on the structural properties of oligonucleotide/cationic liposome complexes (lipoplexes) studied byelectron spin resonance and Zeta potential. Biophys. Chem.2007; 131: 80–87. [141] Patila S, Sandberg A, Heckert E, Self W, Sea S. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential.Biomaterials 2007; 28: 4600–4607. [142] Chen Ch, Tsai TH, Huang ZR, Fang JY. Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers:Physicochemical characterization and pharmacokinetics. Eur. J. Pharm. Biopharm. 2010;74: 474–482. [143] Bernfild M, Gotte M, Park PW, Reizes O, Fitzgerald ML,Lincecum J, Zako M. Functions of cell surfaceheparan sulphate proteoglycans. Annu. Rev.Biochem. 1999; 68: 729-777. [144] Mislick K A, Baldeschwieler JD. Evidence for the role of proteoglycans in cation-mediated gene transfer.Proc. Natl. Acad. Sci. U.S.A 1996; 93: 12349-12354. [145] Panyam P, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cell and tissue. Adv. Drug. Deliv. Rev. 2003; 55: 329-347. [146] Harting SM, Greene RR, Dikov MM, Prokop A. Davidson JM, Multifunctional nanoparticulate polyelectrolyte complexes. Pharm. Res. 2007; 24: 2353-2369. [147] Wilhelma C, Billoteya C, Rogerc JN, Bacria J, Gazeau F. Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials 2003; 24: 1001–1011. [148] Sahay G, Alakhova DY, Kabanov AV. Endocytosis ofnanomedicines. J. Control. Release 2010; 145:182–195. [149] Bernfild M, Gotte M, Park PW, Reizes O, Fitzgerald ML,Lincecum J, Zako M. Functions of cell surface heparan sulphate proteoglycans. Annu. Rev.Biochem. 1999; 68: 729-777. [150] Patila S, Sandberg A, Heckert E, Self W, Sea S. Proteinadsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential.Biomaterials 2007; 28: 4600–4607. [1551] Limbach LK, Li Y, Grass RN, Brunner TJ, Hintermann MA, Muller M. Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ. Sci. Technol. 2005; 39: 9370–9376. [152] Win KY, Feng SS. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 2005; 26: 2713–2722. [153] Nam HY. Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles. J. control. Release 2009; 135: 259–267. [154] Cheng H, Zeng J, Jing Y, Zhang X, Zhuo R. Targeted gene delivery mediated by folate-polyethylenimineblock- poly(ethylene glycol) with receptor selectivity.Bioconjugate. Chem. 2009; 20: 481–487. [155] Patila S, Sandberg A, Heckert E, Self W, Sea S. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential.Biomaterials 2007; 28: 4600–4607. [156] Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv. drug deliver. Rev. 2001; 47: 65–81. [157] Park JS, Han TH, Lee KY, Han SS, Hwang JJ, Mon DH,Kim SY, Cho YW. N-acetyl histidine-conjugatedglycol chitosan self-assembled nanoparticles forintracytoplasmic delivery of drugs: Endocytosis,exocytosis and drug release. J. Control. Release2006; 115: 37–45. [158] Staples M, Daniel K, Cima MJ, Langer R. Application ofMicro- and Nano-Electromechanical Devices toDrug Delivery. Pharm. Res. 2006; 23: 847-863. [159] Staples M, Daniel K, Cima MJ, Langer R. Application ofMicro- and Nano-Electromechanical Devices toDrug Delivery. Pharm. Res. 2006; 23: 847-863. [160] Chang JH, Cho MA, Son HH, Lee CK, Yoon MS, ChoHH, Seo DS, Kim KJ. Characterization and formation of phospholipid nanoemulsion coatingson Mg-modified sericite surface. J. Ind. Eng. Chem,2006;12: 635-638. [161] Hoeller S, Sperge, A, Valenta C. Lecithin based nanoemulsions: A comparative study of theinfluence of non-ionic surfactants and the cationic phytosphingosine on physicochemical behaviourand skin permeation. Int. J. Pharm. 2009; 370:181–186. [162] Hoeller S, Sperger A, Valenta C. Lecithin based nanoemulsions: A comparative study of the influence of non-ionic surfactants and the cationic phytosphingosine onphysicochemical behavior and skin permeation. Int. J. Pharm. 2009; 370:181–186. [163] Coulmana SA, Anstey A, Gateleyb C, Morrisseyc A,McLoughlind C, Allendera C, Birchall JC.Microneedle mediated delivery of nanoparticles intohuman skin. Int. J. Pharm. 2009; 366: 190–200. [164] Ran S, Downes A, Thorpe PE. Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res. 2002; 62: 6132–6140. [165] Yang R, Han X, Shia, X, Cheng G, Shim Ch, Cui F.Cationic formulation of paclitaxel-loaded poly D,Llactic-co-glycolic acid (PLGA) nanoparticles using an emulsion-solvent diffusion method. Asian J.Pharmaceut. Sci. 2009; 4: 89-95. [166] Lee ES, Na K, Bae YH. Polymeric micelle for tumor pH and folate-mediated targeting. J. Control. Release.2003; 91: 103–113. [167] Mahoney BP, Raghunand N, Baggett B, Gillies RJ.Tumor acidity, ion trapping and chemotherapeutics.I. Acid pH affects the distribution of chemotherapeutic agents in vitro. Biochem.Pharmacol. 2003; 66: 1207–1218. [168] Garcia-Martin ML, Martinez GV, Raghunand N, Sherry AD, Zhang S, Gillies RJ. High resolution pHeimaging of rat glioma using pH-dependent relaxivity. Magn. Reson. Med. 2006; 55: 309–315. [169] Yang R, Shima WS, Cuic FD, Chengc G, Hanc X, Jin QR, Kima DD, Chunga S, Shima CK. Enhanced electrostatic interaction between chitosan-modified PLGA nanoparticle and tumor. Int. J. Pharm. 2009;371: 142–147. [170] Chen X, Wang X, Wang Y, Yang, L, Hu J, Xiao W, FuA, Cai L, Li X, Ye X, Liu Y, Wu W, Shao X., Mao Y,Wei Y, Chen L. Improved tumor-targeting drugdelivery and therapeutic efficacy by cationicliposome modified with truncated bFGF peptide. J.Control. Release 2010; 145: 17-25. [171]Sethuraman VA, Han Bae Y. TAT peptide-based micelle system for potential active targeting of anti-canceragents to acidic solid tumors. J. Control. Release2007; 118: 216-224. [172] Needham D, Ponce A. Nanoscale drug delivery vehicles for Solid tumors, Nanotechnology for cancer therapy, CRC Press, Taylor & Francis;2002; p 677. [173] Needham D, Ponce A. Nanoscale drug deliveryvehicles for Solid tumors, Nanotechnology for cancer therapy, CRC Press, Taylor & Francis;2002; p 677. [174] Dubernet BC, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliver. Re.,2002; 54: 631–651. [175] Cafaggi S, Russo E, Stefani R, Leardi R, Caviglioli G,Parodi B, Bignardi G, Detotero D, Viale M.Preparation and evaluation of nanoparticles madeof chitosan or N-trimethyl chitosan and a cisplatin–alginate complex. J. Control. Release 2007; 121:110–123. [176] Yang R, Yong SG, Shim WS, Cui F, Cheng G, Kim IW,Kim DD, Chung SJ, Shim CK. Lung-specificdelivery of paclitaxel by chitosan-modified PLGAnanoparticles via transient formation ofmicroaggregates. J. pharm Sci. 2009; 98: 970-984. [177] Cafaggi S, Russo E, Stefani R, Leardi R, Caviglioli G,Parodi B, Bignardi G, Detotero D, Viale M.Preparation and evaluation of nanoparticles made of chitosan or N-trimethyl chitosan and a cisplatin–alginate complex. J. Control. Release 2007; 121:110–123. [178] Kommareddy S, Shenoy DB, Amiji MM. Long-circulatingpolymeric nanoparticles for drug and gene deliveryto tumors, Nano technology for cancer therapy,CRC Press, Taylor & Francis; 2007; p 231. [179] Chun ChJ, Lee SM, Kim S, Yang H, Song SC.Thermosensitive poly(organophosphazene)–paclitaxel conjugate gels for antitumor applications.Biomaterials 2009; 30: 2349-2360. [180] Robert BCampbell, Positively-charged liposomes for targeting tumor vasculature, Nano technology for cancer therapy, CRC Press, Taylor & Francis;2007. 613p. [181] Gregoriadis G. Liposomes technology, Volume III CRC Press, Taylor & Francis; 2007. 156p. [182] Beduneau A, Saulnier P, Benoit JP. Active targeting ofbrain tumors using nanocarriers. Biomaterials2007; 28: 4947–4967. [183] Park JH, Lee S, Kim J, Park K, Kim K, Kwon IC.Polymer nanomedicine for cancer therapy. Prog.Polym. Sci. 2008; 33: 113-137. [184] Yang R, Yong SG, Shim WS, Cui F, Cheng G, Kim IW,Kim DD, Chung SJ, Shim CK. Lung-specificdelivery of paclitaxel by chitosan-modified PLGA nanoparticles via transient formation ofmicroaggregates. J. pharm Sci. 2009; 98: 970-984. [185] Juillerat-Jeanneret L. The targeted delivery of cancer drugs across the blood–brain barrier: chemical modifications of drugs or drug-nanoparticles. DrugDiscov. Today 2008; 13: 1099-1106. [186] Park JS, Han TH, Lee KY, Han SS, Hwang JJ, Mon DH,Kim SY, Cho YW. N-acetyl histidine-conjugated glycol chitosan self-assembled nanoparticles for intracytoplasmic delivery of drugs: Endocytosis, exocytosis and drug release. J. Control. Release 2006; 115: 37–45. [187] Beduneau A, Saulnier P, Benoit JP. Active targeting of brain tumors using nanocarriers. Biomaterials2007; 28: 4947–4967. [188] Parikh T, Bommana MM, Squillante E. Efficacy of surface charge in targeting pegylated nanoparticles of sulpiride to the brain. Eur. J. Pharm. Biopharm. 2010; 74: 442–450. [189] Wanga S, Jianga T, Maa M, Hua Y, Zhangb J. Preparation and evaluation of anti-neuroexcitation peptide (ANEP) loaded N-trimethyl chitosanchloride nanoparticles for brain-targeting. Int. J.Pharmaceut. 2010; 386: 249–255. .[190] Huang M, Khor E, Lim LY. Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of deacetylation.Pharm. Res. 2004; 21: 344–353. [191] Amidi M, Romeijn SG, Verhoef JC, Junginger HE, Bungener L, Huckriede A, Crommelin DJA, JiskootW. N-Trimethyl chitosan (TMC) nanoparticlesloaded with influenza subunit antigen for intranasal vaccination: biological properties and immunogenicity in a mouse model. Vaccine 2007;25: 144–153. [192] T, Bommana MM, Squillante E. Efficacy ofsurface charge in targeting pegylated nanoparticlesof sulpiride to the brain. Eur. J. Pharm. Biopharm.2010; 74: 442–450. [193] A.Wittig,ab,l W. A. Sauerweinb and J. A. Coderrea, Mechanisms of Transport of p-Borono-Phenylalanine through the Cell Membrane In Vitro, Radiation Research, Vol. 153, No. 2 (Feb., 2000), pp. 173-180 [194] M. Papaspyrou, L. E. Feinendegen and H-W. Miiller-Giirtner, Pre- loading with L-tyrosine increases the uptake of boronophenylalanine in mouse melanoma cells. Cancer Res. 54, 6311-6314 (1994). [195] G. C. Gazzola, V. Dall'Asta and G. Guidotti, The transport of neutral amino acids in cultured human fibroblasts. J. Biol. Chem. 225, 929- 936 (1980). [196]J. R. Jara, J. H. Martinez-Liarte, E Solano and R. Pefiafiel, Transport of L-tyrosine by B16/F10 melanoma cells: The effect of the intra- cellular content of other amino acids. J. Cell Sci. 97, 479-485 (1990). [197]G. C. Gazzola, V. Dall'Asta and G. Guidotti, The transport of neutral amino acids in cultured human fibroblasts. J. Biol. Chem. 225, 929- 936 (1980). [198]M. A. Shotwell, M. S. Kilberg and D. L. Oxender, Regulation of ami- no acid system L in CHO cells. J. Biol. Chem. 257, 2974-2980 (1982). [199]J. A. Coderre, A. D. Chanana, D. D. Joel, E. H. Elowitz, P. L. Micca, M. M. Nawrocky, M. Chadha, J-O. Gebbers, M. Shady and D. N. Slatkin, Biodistribution of boronophenylalanine in patients with glio- blastoma multiforme: Boron concentration correlates with tumor cel- lularity. Radiat. Res. 149, 163-170 (1998) [200]J. A. Coderre, T. M. Button, P. L. Micca, C. Fisher, M. M. Nawrocky and H. B. Liu, Neutron capture therapy of the rat 9L gliosarcoma using the p-boronophenylalanine-fructose complex. Int. J. Radiat. Oncol. Biol. Phys. 30, 643-652 (1994). [201]Y. Mishima, M. Ichihashi, C. Honda, M. Shiono, T Nakagawa, H. Obara, J. Shirakawa, J. Hiratsuka, K. Kanda and T. Nozaki, Advances in the control of cutaneous primary and metastatic melanoma by thermal neutron capture therapy. In Progress in Boron Neutron Cap- ture Therapy for Cancer (B. J. Allen, D. E. Moore and B. V. Har- rington, Eds.), pp. 577-583. Plenum Press, New York, 1992. [202] J. A. Coderre, E. H. Elowitz, M. Chadha, R. Bergland, J. Capala, D. D. Joel, H. B. Liu, D. N. Slatkin and A. D. Chanana, Boron neu- tron capture therapy for glioblastoma multiforme using p-borono- phenylalanine and epithermal neutrons: Trial design and early clinical results. J. Neurooncol. 33, 141-152 (1997). [203] J. A. Coderre, D. J. Glass, R. G. Fairchild, U. Roy, S. Cohen and I. Fand, Selective targeting of boronophenylalanine to melanoma in BALB/c mice for boron neutron capture therapy. Cancer Res. 47, 6377-6383 (1987). [204] E. H. Elowitz, R. M. Bergland, J. A. Coderre, D. D. Joel, M. Chadha and A. D. Chanana, Biodistribution of p-boronophenlyalanine (BPA) in patients with glioblastoma multiforme for use in boron neutron capture therapy. Neurosurgery 42, 463-469 (1998). [205]J. A. Coderre, A. D. Chanana, D. D. Joel, E. H. Elowitz, P. L. Micca, M. M. Nawrocky, M. Chadha, J-O. Gebbers, M. Shady and D. N. Slatkin, Biodistribution of boronophenylalanine in patients with glio- blastoma multiforme: Boron concentration correlates with tumor cel- lularity. Radiat. Res. 149, 163-170 (1998). [206] J. Capala, M. S. Makar and J. A. Coderre, Accumulation of boron in malignant and normal cells incubated in vitro with boronophenyl- alanine, mercaptoborane or boric acid. Radiat. Res. 146, 554-560 (1996). [207]M. S. Kilberg, Amino acid transport in isolated rat hepatocytes. J. Membr. Biol. 69, 1-12 (1982). [208] T. Kuwert, S. Probst-Cousin, B. Woesler, C. Morgenroth, H. Lerch, P. Matheja, S. Palkovic, M. Schhifers, H. Wassmann and 0. Schober, Iodine-123-ct-methyl tyrosine in gliomas: Correlation with cellular density and proliferative activity. J. Nucl. Med. 38, 1551-1555 (1997). [209]T. Kuwert, S. Probst-Cousin, B. Woesler, C. Morgenroth, H. Lerch, P. Matheja, S. Palkovic, M. Schhifers, H. Wassmann and 0. Schober, Iodine-123-ct-methyl tyrosine in gliomas: Correlation with cellular density and proliferative activity. J. Nucl. Med. 38, 1551-1555 (1997). [210] J. Imahori, U. Satoshi, Y. Ohmori, T. Kusuki, K. Ono and T. Ido, Fluorine-18-labeled fluoroboronophenylalanine PET in patients with glioma. J. Nucl. Med. 39, 325-333 (1998). [211]G. G. Guidotti, G. C. Gazzola, A. E Borghetti and R. Franchi-Gaz- zola, Adaptive regulation of amino acid transport across the cell membrane in avian and mammalian tissues. Biochim. Biophys. Acta 406, 264-279 (1975) [212]R. K. Singh, C. A. Rinehart, J. P. Kim, S. Tolleston-Rinehart, L. E Lawing, D. G. Kaufmann and G. P. Siegal, Tumor cell invasion of basement membrane in vitro is regulated by amino acids. Cancer Invest. 14, 6-18 (1996). [213]R. A. Berjan, P. M. Kanter, H. S. Bhahoo, M. H. Tan and D. D. Lawrence, Pretreatment effects on the uptake retention kinetics of L- DOPA in Harding-Passey melanoma. J. Invest. Dermatol. 86, 560- 562 (1986). [214] G. Bartholini and A. Pletscher, Cerebral accumulation and metabo- lism of C14-dopa after selective inhibition of peripheral decarbox- ylase. J. Pharmacol. Exp. Ther. 161, 14-20 (1968). [215] Hollstein M, Sidransky D, Vogelstein B, Harris CC. 1991.” p53mutations in human cancers. Science” 253:49 – 53. [216] Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW.1991. Participation of p53 protein in the cellular response to DNA damage. Cancer Research 51:6304 – 6311. [217] Russell P, Nurse P. 1987. Negative regulation of mitosis by wee1t, a gene encoding a protein kinase homolog. Cell 49:559 – 567. [218] Obayashi S, Kato I, Ono K, Masunaga S, Suzuki M, Nagata K,Sakurai Y, Yura Y. 2004. Delivery of 10boron to oral squamous cell carcinoma using boronophenylalanine and borocaptate sodium for boron neutron capture therapy. Oral Oncology 40:474 – 482. [219] Masunaga S, Ono K, Takahashi A, Sakurai Y, Ohnishi K,Kobayashi T, Kinashi Y, Takagaki M, Ohnishi T. 2002.Impact of the p53 status of the tumor cells on the effect of reactor neutron beam irradiation, with emphasis on the response of intratumor quiescent cells. Japanese Journal of Cancer Research 93:1366 – 1377. [220] AKITOSHI KAMIDA, YUSEI FUJITA, ITSURO KATO,’’ Effect of neutron capture therapy on the cell cycle of human squamous cell carcinoma cells’’, Int. J. Radiat. Biol., Vol. 84, No. 3, March 2008, pp. 191 – 199 [221] Russell P, Nurse P. 1987. Negative regulation of mitosis by wee1t, a gene encoding a protein kinase homolog. Cell 49:559 – 567 [222] Boulares AH, Yakovlev AG, Ivanova V, Stoica BA, Wang G,Iyer S, Smulson M. 1999. Role of poly(ADP-ribose) polymerase(PARP) cleavage in apoptosis. Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells. The Journal of Biological Chemistry 274:22932 –22940. [223] Y. Wu, A. Duong, L. J. Lee, and B. E. Wyslouzil, "Electrospray production of nanoparticles for drug/nucleic acid delivery," in The Delivery of Nanoparticles: InTech, 2012. [224] B. Furtmann et al., "Electrospray synthesis of PLGA nanoparticles encapsulating peptides to enhance proliferation of antigen‐specific CD8+ T cells," Journal of Pharmaceutical Sciences, 2017 [225] Dong-Yan Wua, Yu Maa, Xiao-Shuang Hou,’’ Co-delivery of antineoplastic and protein drugs by chitosannanocapsules for a collaborative tumor treatment’’, Carbohydrate Polymers157 (2017) 1470–1478
|