帳號:guest(3.15.18.221)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉依柔
作者(外文):Liu, Yi-Jou
論文名稱(中文):水相中銅錯合物之羥基對於光反應性探討
論文名稱(外文):The Role of the Hydroxyl Group on the Photoreactivity of Copper(II) Complexes in Aqueous Solution
指導教授(中文):吳劍侯
指導教授(外文):Wu, Chien-Hou
口試委員(中文):吳淑褓
王本誠
黃郁棻
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:105012515
出版年(民國):107
畢業學年度:107
語文別:中文
論文頁數:86
中文關鍵詞:銅錯合物羥基光反應性量子產率
外文關鍵詞:copper complexeshydroxyl groupphotoreactivityquantum yields
相關次數:
  • 推薦推薦:0
  • 點閱點閱:56
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
多種有機配位基與二價銅所形成錯合物的光化學氧化還原反應,在環境、工業與生物作用過程中的潛在應用是相當重要的。本文探討配位基中羥基對水溶液中二價銅錯合物之光反應性的效應。於波長313 nm的單光照射下,在廣泛的pH值、二價銅濃度以及配位基濃度範圍中,觀察由二價銅錯合物光致生成一價銅的動力學。對於一配位的銅胺基酸錯合物而言,其一價銅的量子產率(ΦCu(I),CuL)的大小依循以下趨勢:alanine (0.096 ± 0.014) > serine (0.065 ± 0.004) > threonine (0.033 ± 0.003)。對於二配位的銅胺基酸錯合物而言,其一價銅的量子產率(ΦCu(I),CuL2)遵循相同的趨勢:alanine (0.068 ± 0.013) > serine (0.058 ± 0.006) > threonine (0.055 ± 0.006)。此趨勢可能是由於胺基酸中的β-羥基使一價銅再被氧化為二價銅。對於一配位帶有α-羥基的銅羧酸鹽錯合物而言,其一價銅的量子產率(ΦCu(I),CuL)依循以下趨勢:malate (0.16 ± 0.01) > succinate (0.11 ± 0.02),推測α-羥基可穩定由光反應形成的自由基。然而,在不同羧基數的錯合物系統中,其一價銅的量子產率(ΦCu(I),CuL)的大小依循下列趨勢:lactate (0.28 ± 0.03) > malate (0.16 ± 0.01) > citrate (0.010 ± 0.003‒0.048 ± 0.003),表示越多的羧基並非能增強錯合物的光反應性。本研究中,羥基的位置顯著影響其錯合物的光反應性,α-羥基能增強光反應性,但β-羥基卻會使光反應生成的自由基不穩定。
The photochemical redox reactions of copper(II) complexes with various organic ligands are of crucial important for their potential uses in environmental, industrial, and biological processes. This study investigated the effect of hydroxyl groups of the organic ligands on the photoreactivity of Cu(II) complexes in aqueous solution. Under monochromatic light irradiation at 313 nm, the kinetics of Cu(I) photoformation from Cu(II) complexes were observed over an extensive range of pH, Cu(II) concentration, and ligand concentration. For Cu(amino acid), the Cu(I) quantum yields (ΦCu(I),CuL) follow the trend: alanine (0.096 ± 0.014) > serine (0.065 ± 0.004) > threonine (0.033 ± 0.003). For Cu(amino acid)2, the Cu(I) quantum yields (ΦCu(I),CuL2) follow the same trend: alanine (0.068 ± 0.013) > serine (0.058 ± 0.006) > threonine (0.055 ± 0.006). This trend may be ascribed to the β-hydroxyl group of the amino acid leading the Cu(I) to be reoxidized to Cu(II). For Cu(carboxylate), the Cu(I) quantum yields (ΦCu(I),CuL) by the α-hydroxyl group in the acid system: malate (0.16 ± 0.01) > succinate (0.11 ± 0.02), it may be inferred that the α-hydroxy group stabilizes the radical from photoreaction. While in different numbers of carboxyl systems, the Cu(I) quantum yields (ΦCu(I),CuL) follows the trend: lactate (0.28 ± 0.03) > malate (0.16 ± 0.01) > citrate (0.010 ± 0.003‒0.048 ± 0.003), the more carboxyl groups do not increase the photoreactivity of the complexes. In the study, the position of the hydroxyl group greatly affects its photoreactivity, the α‒hydroxy group enhances the photoreactivity, but the β‒hydroxy group makes the free radical from photoreaction unstable.
摘要...................................I
ABSTRACT..............................II
謝誌.................................III
目錄..................................IV
圖目錄................................VI
表目錄...............................VII
第一章 前言............................1
1.1簡介................................1
1.2研究動機............................2
1.3研究目的............................2
第二章 文獻回顧.........................3
2.1銅..................................3
2.2配位基..............................3
2.3銅錯合物光反應.......................6
2.3光化學反應機制.......................8
2.4化學光度計..........................11
2.5銅錯合物循環........................13
2.6量測一價銅試劑......................14
2.7反應模型假設........................15
2.7.1符號解說..........................16
2.7.2 溶液中個別二價銅錯合物的吸收度.....16
2.7.3銅物種光反應......................17
第三章 研究方法........................19
3.1 實驗裝置..........................19
3.1.1銅錯合物光反應系統的各項實驗器材...19
3.1.2 其他儀器........................22
3.1.3 實驗藥品........................22
3.1.4母液配製.........................23
3.2實驗分析流程.......................24
3.2.1莫耳吸收係數.....................24
3.2.2光化學反應步驟...................25
3.2.3 MINTEQ.........................26
3.2.4 NIST46.8熱力學資料庫............27
3.2.5離子強度之修正....................28
第四章 結果與討論.......................30
4.1數據處理方法.........................30
4.1.1量測各金屬物種的莫耳吸收係數.........30
4.1.2量測一價銅.........................30
4.1.3光強度量測.........................32
4.1.4計算一價銅的量子產率................33
4.2莫耳吸收係數.........................34
4.3不同配位基光反應.....................38
4.3.1銅絲胺酸..........................39
4.3.2銅蘇胺酸..........................41
4.3.3銅乳酸............................43
4.3.4銅蘋果酸..........................45
4.3.5銅檸檬酸..........................46
4.4光反應性比較........................56
第五章 結論............................59
第六章 未來展望.........................59
參考文獻...............................60
附錄一 配位基性質.......................64
附錄二 金屬錯合物物種之熱力學常數表.......65
附錄三 電子轉移方式......................66
附錄四 錯合物結構........................67
附錄五 銅錯合物莫耳吸收係數原始數據.......68
附錄六 銅錯合物光化學反應之原始數據........71
附錄七 NIST46.8使用說明..................74
附錄八 VISUAL MINTEQ3.1.................79





Allen, J. M.; Allen, S. K.; Baertschi, S. W. 2-Nitrobenzaldehyde: a convenient UV-A and UV-B chemical actinometer for drug photostability testing. J. Pharm. Biomed. Anal. 2000, 24, 167−178.
Azenha, M.; Vasconcelos, M. T. Organic ligand reduce copper toxicity in pseudomonas syringae. Environ. Toxicol. Chem. 1995, 14, 369–373.
Brauer, H.-D.; Schmidt, R. A new reusable chemical actinometer for uv irradiation in the 248-334 nm range. Photochem. Photobiol. 1983, 37, 587−591.
Bunce, N. J.; Lamarre, J.; Vaish, S. P. Photorearrangement of azoxybenzene to 2-hydroxyazobenzene: a convenient chemical actinometer. Photochem. Photobiol. 1984, 39, 531−533.
Buxton G. V.; Green J. C. Reactions of Some Simple α- and β-Hydroxyalkyl Radicals with Cu2+ and Cu+ Ions in Aqueous Solution. J. Chem. Soc., Faraday Trans. 1, 1978, 74, 697−714.
Das, S.; Johnson, G. R. A. Ligand decomposition in the photolysis of copper(II)-amino-acid complexes in aqueous solution. J. Chem. SOC., Faraday Trans. 1, 1984, 80, 2759–2766.
Chen, T.; Kitada, A.; Seki, Y.; Fukami, K.; Usmanov, D.T.; Chen, L. C.; Hiraoka, K.; Murase, K. Identification of Copper(II)–Lactate Complexes in Cu2O Electrodeposition Baths: Deprotonation of the α-Hydroxyl Group in Highly Concentrated Alkaline Solution. J. Electrochem Soc. 2018, 165, D444–D451.
Deshmukh, A. P.; Pacheco, C.; Hay, M. B.; Myneni, S. C.B. Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 2: 2D NMR spectroscopy. Geochim. Cosmochim. Acta 2007, 71, 3533–3544.
Faust, B. C. Experimental determination of molar absorptivities and quantum yields for individual complexes of a labile metal in dilute solution. Environ. Sci. Technol. 1996, 30, 1919–1922.
Galbavy, E. S.; Ram, K.; Anastasio, C. 2-Nitrobenzaldehyde as a chemical actinometer for solution and ice photochemistry. J. Photochem. Photobiol., A 2010, 209, 186−192.
Ge, Q.; Chung T. -S.; Su, J.; Cui, Y. US Patent No. 000,154, 2016.
Goldberg, M. C.; Cunningham, K. M.; Weiner, E. R. Aquatic photolysis: photolytic redox reactions between goethite and adsorbed organic acids in aqueous solutions. Photochem. Photobial. A: Chem., 1993, 73, 105–120.
Han, B.-C.; Jeng, W.-L.; Hung, T.-C.; Wen, M.-Y. Relationship between copper speciation in sediments and bioaccumulation by marine bivalves of Taiwan. Environ. Pollut. 1996, 91, 35–39.
Hatchard, C. G.; Parker, C. A. A new sensitive chemical actinometer II. Potassium ferrioxalate as a standard chemical actinometer. Mathematical and Physical Sciences 1956, 235, 518−536.
Hecky, R. E.; Mopper, K.; Kilham, P.; Degens, E. T. The amino acid and sugar composition of diatom cell-walls. Mar Biol. 1973, 19, 323–331.
Kabra, K.; Chaudhary, R.; Sawhney, R.L. Solar photocatalytic removal of Cu(II), Ni(II), Zn(II) and Pb(II): Speciation modeling of metal–citric acid complexes. J. Hazard. Mater. 2008, 155, 424–432.
Kaczmarek, H.; Fabek, J. F. Photoinitiated degradation of polymers by metal salts-recent developments. Angew. Makromol. chem. 1997, 247, 111–130.
Keith, L.; Telliard, W. Priority pollutants: i. a perspective view. Environ. Sci. Technol. 1979, 13, 416–423.
Lin, C.-J.; Hsu, C.-S.; Wang, P.-Y.; Lin, Y.-L.; Lo, Y.-S.; Wu, C.-H. Photochemical redox reactions of copper(II)−alanine complexes in aqueous solutions. Inorg. Chem. 2014, 53, 4934−4943.
Mailhot, G.; Andrianirinaharivelo, S. L.; Bolte, M. Photochemical transformation of iminodiacetic acid induced by complexation with copper(II) in aqueous solution. J. Photochem. Photobiol., A 1995, 87, 31–36.
Moffett, J. W.; Zika, R. G. Oxidation kinetics of Cu(I) in seawater: implications for its existence in the marine environment. Mar Chem. 1983, 13, 239–251.
Moffett, J. W.; Zika, R. G.; Petasne, R. G. Evaluation of bathocuproine for the spectrophotometric determination of copper(I) in copper redox studies with applications in studies of natural waters. Anal. Chim. Acta 1985, 175, 171–179.
Moffett, J. W.; Zika, R. G. Measurement of copper(I) in surface waters of the subtropical Atlantic and Gulf of Mexico. Geochim. Cosmochim. Acta 1988, 52, 1849–1857.
Moffett, J. W.; Zika, R. G. In Photochemistry of Environmental Aquatic Systems; Zika, R. G., Cooper, W. J., Eds.; Am. Chem. Soc. Symp. Ser. 327; 1987; Chapter 9
Moffett, J. W.; Zika, R. G. Measurement of copper(I) in surface waters of the subtropical Atlantic and Gulf of Mexico. Geochim. Cosmochim. Acta 1988, 52, 1849–1857.
Moss, M. L.; Mellon, M. G. Colorimetric Determination of Copper with 1, 10-Phenanthroline. Ind. Eng. Chem. Anal. Ed. 1943, 15, 116–118
Phillips, G. J.; Simpson, W. R. Verification of snowpack radiation transfer models using actinometry, J. Geophys. Res. 2005, 110, D08306
Poznyak, A. L.; Pavlovski, V. L. Photochemical Reactions of Ligands in Transition-Metal Complexes. Anqew Chem. Int Ed. Engl. 1988, 27, 789–1796.
Sharrock, P.; Haran, R. Serine, threonine and α-hydroxyamine coordination to cupric ions by hydroxyl-oxygen-metal bonds. J. Coord. Chem. 1981, 11, 117–124.
Smith, G. F.; McCurdy, W. H. Jr. 2,9-Dimethyl-1,10-phenanthroline. Anal. Chem. 1952, 24, 371–373.
Stauber, J. L.; Florence, T. M. Mechanism of toxicity of ionic copper and copper complexes to algae. Mar Biol. 1987, 94, 511–519.
Stevenson, F. J. Cycles of Soil: Carbon, Nitrogen, Phosphorus, Sulfur, Micronutrients; Wiley: New York, 1986; pp 731–750.
Sun, L.; Wu, C.-H.; Faust, B. C. Photochemical redox reactions of inner-sphere copper(II)-dicarboxylate complexes:effects of the dicarboxylate ligand structure on copper(I) quantum yields. J. Phys. Chem. A 1998, 102, 8664–8672.
Sýkora, J. Photochemistry of copper complexes and their environmental aspect. Coord. Chem. Rev. 1997, 159, 95−108.
Thurman, R. B.; Gerba, C. P. The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses. Crit Rev Environ Sci Technol. 1989, 18, 295–315.
Trivett, T. L.; Meyer, E. A. Citrate cycle and related metabolism of listeria. J. Bacteriol. 1971, 107, 770–779.
Weller, C.; Horn, S.; Herrmann, H. Photolysis of Fe(III) carboxylato complexes: Fe(II) quantum yields and reaction mechanisms. J. Photochem. Photobiol., A 2013, 268, 24−36.
Wu, C.-H.; Sun, L.; Faust, B. C. Photochemical formation of copper(I) from copper(II)-dicarboxylate complexes: effects of outer-sphere versus inner-sphere coordination and of quenching by malonate. J. Phys. Chem. A 2000, 104, 4989–4996.
Zak, B. Simple procedure for the single sample determination of serum copper and iron. Clin. Chim. Acta 1958, 3, 328–334.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *