帳號:guest(3.144.102.156)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉家辰
作者(外文):Liu, Chia-Chen
論文名稱(中文):開發具標靶及功能性奈米光熱/光動力治療傳輸系統於前列腺癌治療應用
論文名稱(外文):Targeted Delivery of Functionalized Nanotherapeutics for Externally Triggered Photothermal/Photodynamic Therapies of Prostate Cancer
指導教授(中文):邱信程
指導教授(外文):Chiu, Hsin-Cheng
口試委員(中文):黃郁棻
駱俊良
口試委員(外文):Huang, Yu-Fen
Lo, Chun-Liang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:105012509
出版年(民國):107
畢業學年度:107
語文別:中文
論文頁數:67
中文關鍵詞:奈米載體酸鹼應答光動力治療光熱治療碳氟化物
外文關鍵詞:nanoparticlespHphotothermalphotodynamicperfluorooctyl bromide
相關次數:
  • 推薦推薦:0
  • 點閱點閱:30
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究目的為開發增加腫瘤組織累積能力及功能性高分子脂質載藥奈米粒子,可於腫瘤微環境中轉換表面電性增加藥物累積於腫瘤,同時攜帶氧氣強化藥物於腫瘤缺氧區的治療效果,並施予近紅外雷射結合光熱與光動力的雙重治療抑制腫瘤細胞生長。
本研究透過常見的酯質分子二棕櫚酰磷脂酰膽鹼 (DPPC) 作為主體包覆疏水液滴PFOB (攜帶氧氣) 於中心,利用膽固醇 (Cholesterol) 穩固酯質載體結構,並透過疏水作用力包覆光熱藥物 (IR-780) 及光動力藥物 (mTHPC) 兩種藥物於疏水介面,透過表面修飾合成具酸鹼應答的N-Acetyl-Histidine modified D-α-tocopheryl poly(ethylene glycol) succinate (NAcHis-TPGS) 幫助載體於水溶液分散。研究中透過薄膜水合法 (thin film hydration method) 及一次奈米乳化的方式製備出直徑約為250 nm及藥物包覆率70%以上的載藥奈米微粒。在載體物化特性鑑定實驗之中,帶有Histidine的NAcHis-TPGS製作出的奈米微粒成功證實具有表面電位於微酸環境轉正電之功能,同時包覆PFOB的載體藉由溶氧測定實驗證明其攜氧能力。於細胞實驗中,證實於微酸環境下電性轉換能力有效增加細胞攝取載體的數量,並於缺氧環境下,攜帶氧氣的奈米微粒能有效提升光治療對於細胞毒殺的效果。於動物腫瘤抑制實驗結果亦可以發現,具酸鹼應答標靶載體能大幅提升藥物載體累積於腫瘤組織的效果,並利用近紅外光照射所產生光熱效應,促使氧氣於腫瘤缺氧區釋放,進一步強化光動力治療的效果,於小鼠皮下腫瘤抑制實驗中,透過結合光熱及光動力的合併治療,能夠有效抑制小鼠腫瘤生長。綜合上述成果,本研究成功開發具標靶及功能性奈米光熱/光動力治療傳輸系統於前列腺癌治療上應用。
In order to enhance tumor uptake and therapeutic efficacy of photothermal/dynamic treatments of prostate cancer, a functionalized nanoparticle-based therapy system comprising perfluorooctyl bromide (PFOB) enclosed with the lipid membranes assembling from dipalmitoylphosphati dylcholine (DPPC), cholesterol and N-acetyl histidine modified D-a-tocopheryl polyethylene glycol succinate (NAcHis-TPGS) is developed in this work (PFOB@IMHNPs). The nanotherapeutics with switchable surface charges in response to tumor extracellular acidity (pHe) were capable of selectively co-delivering photosensitizers, IR-780 for photothermal therapy (PTT) and mTHPC for photodynamic therapy (PDT). Moreover, pronounced cytotoxicity by NIR-triggered PDT in hypoxia can be achieved due to the excellent oxygen carrying capacity of PFOB within NPs. As a result, the ex vivo imaging of IMHNPs and PFOB@IMHNPs in tumor-bearing mice showed enhanced tumor accumulation alongside excellent hyperthermia effect on tumor ablation. Consequently, in vivo tumor growth inhibition study shows that the incorporation of photothermal and photodynamic therapy with the smart nanoparticles exhibit effective antitumor efficacy. Based on the above results, this study provides a great potential strategy for the development of photothermal/phototdynamic drug delivery nanotherapeutics for tumor therapy.
Abstract I
摘要 II
目錄 i
圖目錄 v
表目錄 viii
一、研究動機 1
二、文獻回顧 3
2.1 惡性腫瘤 3
2.2 腫瘤微環境 3
2.2.1 Enhanced Permeation and Retention effect (EPR effect) 5
2.2.2 腫瘤微環境 pH 值 6
2.2.3 腫瘤缺氧區域 7
2.3 奈米微粒現況 8
2.3.1 奈米藥物載體傳遞系統 8
2.3.2 奈米乳化液體 9
2.4 D-α-tocopheryl poly(ethylene glycol) succinate (TPGS)簡介 10
2.5 Histamine與Imidazole contain polymer 於藥物傳遞系統之應用 11
2.6 光敏感藥物 (Photosensitizer) 及光治療 (Phototherapy) 12
2.6.1 IR-780 12
2.6.2 5,10,15,20-tetrakis(3-hydroxyphenyl) chlorin (mTHPC) 13
2.6.3 光熱治療 (Photothermal therapy) 13
2.6.4 光動力治療 (Photodynamic therapy) 14
2.7 全氟碳化合物(PFCs) 14
2.7.1 Perfluorooctylbromide (PFOB) 15
三、實驗方法與步驟 17
3.1 高分子合成與性質鑑定 17
3.1.1 無水有機溶液之製備 17
3.1.2 N-Acetyl-Histidine-TPGS合成 17
3.1.3 N-Acetyl-Histidine-TPGS高分子之組成鑑定 18
3.2 奈米微粒製備與性質分析 18
3.2.1 載藥奈米微粒的製備 18
3.2.2奈米微粒的粒徑分布 19
3.2.3 載藥奈米微粒氧氣釋放 21
3.2.4 奈米微粒的藥物裝載量 22
3.2.5搭載光熱藥物IR-780之奈米微粒升溫能力評估 22
3.2.6 活性氧物質生成測定(ROS treatment) 23
3.3 體外細胞實驗 23
3.3.1細胞來源 23
3.3.2 細胞繼代 24
3.3.3細胞計數 24
3.3.4細胞對奈米微粒吞噬情形分析 24
3.3.5 共軛焦雷射掃描螢光顯微鏡(CLSM)觀察細胞內ROS生成情形 26
3.3.6近紅外光雷射作用下之細胞毒性分析 27
3.3.7 Hoechst 33342/PI雙重染色分析 29
3.4動物實驗 29
3.4.1動物來源 29
3.4.2 腫瘤模型建立 29
3.4.3 腫瘤內載體累積時間分布 30
3.4.4 動物體內奈米微粒累積分布 30
3.4.5腫瘤抑制評估 30
3.4.6 動物犧牲與組織包埋 31
3.4.7 組織切片 31
3.4.8 組織切片免疫螢光染色 31
3.5 數據統計 32
四、結果與討論 33
4.1 材料鑑定與分析 33
4.1.1 NAcHis-TPGS 組成分析鑑定 33
4.2 奈米微粒性質分析 34
4.2.1 奈米微粒大小及電性分析 34
4.2.2 奈米微粒穩定度分析 36
4.2.3 奈米微粒之表面電荷轉換分析 37
4.2.4 奈米微粒包覆藥物穩定性分析 38
4.2.5 奈米微粒的升溫能力測試 41
4.2.6 奈米微粒攜帶氧氣的分析 41
4.2.7 奈米微粒產生ROS的能力評估 43
4.3 細胞實驗 45
4.3.1 奈米微粒生物相容性測試 45
4.3.2 奈米微粒之細胞吞噬評估 45
4.3.3 奈米微粒經NIR treatment熱治療後的分析 48
4.3.4 奈米微粒於不同環境下NIR treatment後細胞毒性分析 49
4.3.5 奈米微粒ROS產生能力測試 51
4.4動物實驗 53
4.4.1 藥物載體於動物體內累積分布 53
4.4.2 腫瘤區升溫能力測試 53
4.4.3 經熱治療後腫瘤缺氧區表現評估 55
4.4.4 腫瘤抑制評估 56
六、參考資料 63
[1] D. Hanahan and R. A. Weinberg, "The hallmarks of cancer," cell, vol. 100, no. 1, pp. 57-70, 2000.
[2] D. F. Quail and J. A. Joyce, "Microenvironmental regulation of tumor progression and metastasis," Nature medicine, vol. 19, no. 11, p. 1423, 2013.
[3] O. Trédan, C. M. Galmarini, K. Patel, and I. F. Tannock, "Drug resistance and the solid tumor microenvironment," Journal of the National Cancer Institute, vol. 99, no. 19, pp. 1441-1454, 2007.
[4] H. Maeda, J. Wu, T. Sawa, Y. Matsumura, and K. Hori, "Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review," Journal of controlled release, vol. 65, no. 1-2, pp. 271-284, 2000.
[5] D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, and R. Langer, "Nanocarriers as an emerging platform for cancer therapy," Nature nanotechnology, vol. 2, no. 12, p. 751, 2007.
[6] K. Stockhofe, J. M. Postema, H. Schieferstein, and T. L. Ross, "Radiolabeling of nanoparticles and polymers for PET imaging," Pharmaceuticals, vol. 7, no. 4, pp. 392-418, 2014.
[7] F. Danhier, O. Feron, and V. Préat, "To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery," Journal of controlled release, vol. 148, no. 2, pp. 135-146, 2010.
[8] H. Kobayashi, R. Watanabe, and P. L. Choyke, "Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target?," Theranostics, vol. 4, no. 1, p. 81, 2014.
[9] C. He, Y. Hu, L. Yin, C. Tang, and C. Yin, "Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles," Biomaterials, vol. 31, no. 13, pp. 3657-3666, 2010.
[10] J. W. Erickson and R. A. Cerione, "Glutaminase: a hot spot for regulation of cancer cell metabolism?," Oncotarget, vol. 1, no. 8, p. 734, 2010.
[11] P. Vaupel, O. Thews, and M. Hoeckel, "Treatment resistance of solid tumors," Medical oncology, vol. 18, no. 4, pp. 243-259, 2001.
[12] P. Vaupel, A. Mayer, and M. Höckel, "Tumor hypoxia and malignant progression," in Methods in enzymology, vol. 381: Elsevier, 2004, pp. 335-354.
[13] P. Vaupel, S. Briest, and M. Höckel, "Hypoxia in breast cancer: pathogenesis, characterization and biological/therapeutic implications," Wiener Medizinische Wochenschrift, vol. 152, no. 13‐14, pp. 334-342, 2002.
[14] S. Kizaka‐Kondoh, M. Inoue, H. Harada, and M. Hiraoka, "Tumor hypoxia: a target for selective cancer therapy," Cancer science, vol. 94, no. 12, pp. 1021-1028, 2003.
[15] J.-P. Cosse and C. Michiels, "Tumour hypoxia affects the responsiveness of cancer cells to chemotherapy and promotes cancer progression," Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), vol. 8, no. 7, pp. 790-797, 2008.
[16] J. A. Bertout, S. A. Patel, and M. C. Simon, "The impact of O 2 availability on human cancer," Nature Reviews Cancer, vol. 8, no. 12, p. 967, 2008.
[17] D. R. Luke, B. L. Kasiske, G. R. Matzke, W. M. Awni, and W. F. Keane, "Effects of cyclosporine on the isolated perfused rat kidney," Transplantation, vol. 43, no. 6, pp. 795-799, 1987.
[18] R. K. Jain, "Delivery of molecular and cellular medicine to solid tumors1," Advanced drug delivery reviews, vol. 46, no. 1-3, pp. 149-168, 2001.
[19] Y. Singh et al., "Nanoemulsion: Concepts, development and applications in drug delivery," Journal of Controlled Release, vol. 252, pp. 28-49, 2017.
[20] Y. Zhang et al., "Nanoemulsion for solubilization, stabilization, and in vitro release of pterostilbene for oral delivery," AAPS PharmSciTech, vol. 15, no. 4, pp. 1000-1008, 2014.
[21] Z. Zhang, S. Tan, and S.-S. Feng, "Vitamin E TPGS as a molecular biomaterial for drug delivery," Biomaterials, vol. 33, no. 19, pp. 4889-4906, 2012.
[22] G. Szakács, J. K. Paterson, J. A. Ludwig, C. Booth-Genthe, and M. M. Gottesman, "Targeting multidrug resistance in cancer," Nature reviews Drug discovery, vol. 5, no. 3, p. 219, 2006.
[23] E.-M. Collnot et al., "Mechanism of inhibition of P-glycoprotein mediated efflux by vitamin E TPGS: influence on ATPase activity and membrane fluidity," Molecular pharmaceutics, vol. 4, no. 3, pp. 465-474, 2007.
[24] E.-M. Collnot, C. Baldes, U. F. Schaefer, K. J. Edgar, M. F. Wempe, and C.-M. Lehr, "Vitamin E TPGS P-glycoprotein inhibition mechanism: influence on conformational flexibility, intracellular ATP levels, and role of time and site of access," Molecular pharmaceutics, vol. 7, no. 3, pp. 642-651, 2010.
[25] Y. Mi, Y. Liu, and S.-S. Feng, "Formulation of docetaxel by folic acid-conjugated D-α-tocopheryl polyethylene glycol succinate 2000 (Vitamin E TPGS2k) micelles for targeted and synergistic chemotherapy," Biomaterials, vol. 32, no. 16, pp. 4058-4066, 2011.
[26] M. S. Muthu, S. A. Kulkarni, A. Raju, and S.-S. Feng, "Theranostic liposomes of TPGS coating for targeted co-delivery of docetaxel and quantum dots," Biomaterials, vol. 33, no. 12, pp. 3494-3501, 2012.
[27] Y. Guo, J. Luo, S. Tan, B. O. Otieno, and Z. Zhang, "The applications of Vitamin E TPGS in drug delivery," European Journal of Pharmaceutical Sciences, vol. 49, no. 2, pp. 175-186, 2013.
[28] R. V. Benjaminsen, M. A. Mattebjerg, J. R. Henriksen, S. M. Moghimi, and T. L. Andresen, "The possible “proton sponge” effect of polyethylenimine (PEI) does not include change in lysosomal pH," Molecular Therapy, vol. 21, no. 1, pp. 149-157, 2013.
[29] E. S. Lee, H. J. Shin, K. Na, and Y. H. Bae, "Poly (l-histidine)–PEG block copolymer micelles and pH-induced destabilization," Journal of Controlled Release, vol. 90, no. 3, pp. 363-374, 2003.
[30] L. Qiu et al., "Self-assembled pH-responsive hyaluronic acid–g-poly (l-histidine) copolymer micelles for targeted intracellular delivery of doxorubicin," Acta biomaterialia, vol. 10, no. 5, pp. 2024-2035, 2014.
[31] X. Pang, Y. Jiang, Q. Xiao, A. W. Leung, H. Hua, and C. Xu, "pH-responsive polymer–drug conjugates: design and progress," Journal of Controlled Release, vol. 222, pp. 116-129, 2016.
[32] Y. Zhao et al., "Tumor-specific pH-responsive peptide-modified pH-sensitive liposomes containing doxorubicin for enhancing glioma targeting and anti-tumor activity," Journal of controlled release, vol. 222, pp. 56-66, 2016.
[33] S. Li et al., "pH-responsive biocompatible fluorescent polymer nanoparticles based on phenylboronic acid for intracellular imaging and drug delivery," Nanoscale, vol. 6, no. 22, pp. 13701-13709, 2014.
[34] S. P. Edgcomb and K. P. Murphy, "Variability in the pKa of histidine side‐chains correlates with burial within proteins," Proteins: Structure, Function, and Bioinformatics, vol. 49, no. 1, pp. 1-6, 2002.
[35] S. A. Kulkarni and S.-S. Feng, "Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery," Pharmaceutical research, vol. 30, no. 10, pp. 2512-2522, 2013.
[36] C. G. Alves, R. Lima-Sousa, D. de Melo-Diogo, R. O. Louro, and I. J. Correia, "IR780 based nanomaterials for cancer imaging and photothermal, photodynamic and combinatorial therapies," International journal of pharmaceutics, vol. 542, no. 1-2, pp. 164-175, 2018.
[37] M. O. Senge, "mTHPC–A drug on its way from second to third generation photosensitizer?," Photodiagnosis and Photodynamic Therapy, vol. 9, no. 2, pp. 170-179, 2012.
[38] X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, "Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods," Journal of the American Chemical Society, vol. 128, no. 6, pp. 2115-2120, 2006.
[39] J. Chen et al., "New technology for deep light distribution in tissue for phototherapy," The Cancer Journal, vol. 8, no. 2, pp. 154-163, 2002.
[40] A. M. Rkein and D. M. Ozog, "Photodynamic therapy," Dermatologic clinics, vol. 32, no. 3, pp. 415-425, 2014.
[41] S. Choudhary, K. Nouri, and M. L. Elsaie, "Photodynamic therapy in dermatology: a review," Lasers in medical science, vol. 24, no. 6, pp. 971-980, 2009.
[42] B. P. Fuhrman, P. R. Paczan, and M. Defrancisis, "Perfluorocarbon-associated gas exchange," Critical care medicine, vol. 19, no. 5, pp. 712-722, 1991.
[43] C. L. Leach, B. P. Fuhrman, and M. Rath, "Perfluorocarbon-associated gas exchange (partial liquid ventilation) in respiratory distress syndrome: a prospective, randomized, controlled study," Critical care medicine, vol. 21, no. 9, pp. 1270-1278, 1993.
[44] A. G. Mayes and K. Mosbach, "Molecularly imprinted polymer beads: suspension polymerization using a liquid perfluorocarbon as the dispersing phase," Analytical Chemistry, vol. 68, no. 21, pp. 3769-3774, 1996.
[45] C. S. Cohn and M. M. Cushing, "Oxygen therapeutics: perfluorocarbons and blood substitute safety," Critical care clinics, vol. 25, no. 2, pp. 399-414, 2009.
[46] R. B. Hirschl et al., "A prospective, randomized pilot trial of perfluorocarbon-induced lung growth in newborns with congenital diaphragmatic hernia," Journal of pediatric surgery, vol. 38, no. 3, pp. 283-289, 2003.
[47] M. D. Conway et al., "Perfluorooctylbromide (PFOB) as a vitreous substitute in non-human primates," International ophthalmology, vol. 17, no. 5, pp. 259-264, 1993.
[48] C. Thomas, J. Riess, and M. Guichard, "Influence of the 100% w/v perfluorooctyl bromide (PFOB) emulsion dose on tumour radiosensitivity," International journal of radiation biology, vol. 59, no. 2, pp. 433-445, 1991.
[49] E. Pisani et al., "Perfluorooctyl bromide polymeric capsules as dual contrast agents for ultrasonography and magnetic resonance imaging," Advanced Functional Materials, vol. 18, no. 19, pp. 2963-2971, 2008.
[50] Z. Wan et al., "Highly efficient hierarchical micelles integrating photothermal therapy and singlet oxygen-synergized chemotherapy for cancer eradication," Theranostics, vol. 4, no. 4, p. 399, 2014.
[51] M. Zheng et al., "Robust ICG theranostic nanoparticles for folate targeted cancer imaging and highly effective photothermal therapy," ACS applied materials & interfaces, vol. 6, no. 9, pp. 6709-6716, 2014.
[52] M. C. Geralde, S. Pratavieira, and V. S. Bagnato, "Stability of indocyanine green for clinical use," in European Conference on Biomedical Optics, 2017, p. 104170S: Optical Society of America.
[53] X. Zheng, F. Zhou, B. Wu, W. R. Chen, and D. Xing, "Enhanced tumor treatment using biofunctional indocyanine green-containing nanostructure by intratumoral or intravenous injection," Molecular pharmaceutics, vol. 9, no. 3, pp. 514-522, 2012.
[54] P. S. Yarmolenko et al., "Thresholds for thermal damage to normal tissues: an update," International Journal of Hyperthermia, vol. 27, no. 4, pp. 320-343, 2011.
[55] J. Wang et al., "All-in-One Theranostic Nanoplatform Based on Hollow MoSx for Photothermally-maneuvered Oxygen Self-enriched Photodynamic Therapy," Theranostics, vol. 8, no. 4, p. 955, 2018.
[56] D. Sheng et al., "Perfluorooctyl bromide & indocyanine green co-loaded nanoliposomes for enhanced multimodal imaging-guided phototherapy," Biomaterials, vol. 165, pp. 1-13, 2018.
[57] Y. Gu, N. Dong, A. Shan, Q. Ma, J. Li, and B. Cheng, "Antitumor effect of the antimicrobial peptide GLI13-8 derived from domain of the avian β-defensin-4," Acta Biochim Biophys Sin, vol. 45, no. 11, pp. 904-911, 2013.
[58] L. Zhang et al., "Mitochondria‐Targeted Artificial “Nano‐RBCs” for Amplified Synergistic Cancer Phototherapy by a Single NIR Irradiation," Advanced Science, p. 1800049, 2018.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 研發氧化鐵/白蛋白奈米複合材料作為新穎藥物傳遞 平台及其於大腸癌動物模式之光熱治療應用
2. 開發智慧型治療系統以結合多重療法於腦部疾病之治療
3. 使用熱透鏡顯微鏡偵測單一奈米粒子
4. 多功能之酸鹼應答型高分子複合液胞於藥物傳遞與核磁共振應用之探討
5. 酸鹼應答型聚麩胺酸/二硬酯酸甘油脂共聚合高分子複合液胞於藥物傳遞系統之應用
6. 開發具抗癌藥物傳輸與核磁共振顯影之多功能環境應答接枝共聚合高分子自組裝系統
7. 開發具磁性與酸鹼應答性複合高分子液胞作為腫瘤標的藥物傳遞及MR影像顯影之診斷治療奈米平台
8. 酸鹼/溫度應答型交聯式高分子/藥物複合微胞於細胞內藥物傳遞之應用
9. 裝載高分子氣胞/載藥液胞的單核白血球於超音波操控藥物傳遞之評估
10. 利用腫瘤趨向性單核球傳輸功能性高分子奈米粒子以增進腫瘤缺氧區之治療效果
11. 利用腫瘤趨向性單核球對腫瘤缺氧區域傳遞裝載超順磁奈米氧化鐵/Chlorin e6的高分子含氧氣胞用以改善磁熱及光動力治療的療效
12. 開發智慧型‟中途接駁”藥物傳遞系統 對深層腫瘤區域進行化療
13. 利用腫瘤趨向性脂肪幹細胞攜帶智慧型奈米微粒對膠質母細胞瘤進行靶向傳遞及化學治療
14. 具增強腫瘤組織滲透與細胞吞噬之智慧型表面電荷轉換奈米給藥傳輸系統應用於影像導引之光熱及化學複合式腫瘤治療
15. 開發具氧化應答性奈米給藥傳輸系統於放射/化學複合療法應用
 
* *