帳號:guest(18.117.185.132)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):章孝銘
作者(外文):Chang, Hsiao-Ming
論文名稱(中文):腫瘤巨噬細胞透過機械力訊號驅動 星狀細胞瘤之球體形成
論文名稱(外文):Tumor-associated macrophages drive astrocytoma spheroid formation through the mechanosignal transmission
指導教授(中文):陳之碩
指導教授(外文):Chen, Chi-Shuo
口試委員(中文):江啟勳
吳順吉
柳源德
口試委員(外文):Chiang, Chi-Shiun
Wu, Shun Chi
Liu, Daniel Yuan Teh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:105012507
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:48
中文關鍵詞:腫瘤巨噬細胞細胞牽引力機械訊號細胞聚集
外文關鍵詞:Tumor-associated macrophageTraction force microscopyMechanosignalCell assembly
相關次數:
  • 推薦推薦:0
  • 點閱點閱:93
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
神經膠質瘤 (glioma) 是人類致死率最高的腫瘤之一,其平均存活時間約為2-5年。當中,高惡性度神經膠質瘤 (high-grade glioma) 容易侵略至周邊的正常腦組織,導致術後仍有高達90 %的患者有復發的情況。隨著神經膠質瘤的發展,腫瘤巨噬細胞 (TAMs) 會大量滲入腫瘤當中,而這些非腫瘤細胞會透過釋放細胞因子 (cytokine) 幫助腫瘤的生長、轉移甚至躲避免疫攻擊。我們利用第三級膠質瘤細胞株 (ALTS1C1) 及中樞神經系統中的巨噬細胞株 (BV2) 作為細胞模型。在本研究中證明了BV2與ALTS1C1的細胞接觸會影響ALTS1C1的球體形成,其形成的原因可能來自ALTS1C1細胞間機械交互作用力的失衡及細胞遷徙 (migration) 能力的上升。腫瘤微環境硬度的增加會促使細胞-基質間機械作用力上升,同時,我們也注意到細胞間黏附似乎有下降的趨勢。此外,mRNA的相對表現量暗示隙型連結 (gap junction) 可能是膠質瘤間主要的黏附結構,而非鈣依賴型的黏連結合 (adherens junction)。根據上述結果與臨床觀察資料,我們推論,前期的柔軟組織環境及TAM的侵入促使癌細胞聚集,進而形成有利生長的腫瘤型態;惡化程度的增加及腦壓的上升,使得癌細胞傾向於入侵周邊健康組織,造成不易治療的擴散結構。本研究以細胞力學的觀點,透過細胞間的機械交互作用力解釋了腫瘤形成的可能原因,並期望藉由進一步瞭解TAM 與腫瘤微環境的關係,能對將來的臨床治療方法有一定程度的貢獻。
High-grade glioma is frequently accompanied with the increased intracranial pressure and the prognosis of the patient is about 2-5 years, and the high invasive capacity of glioma leads to 90 % recurrence after surgery. During the glioma development, tumor-associated macrophages (TAM) infiltrate into the solid tumor, and the roles of TAM in glioma formation have not been fully explored yet. In this study, from the perspective of biophysics, we utilize the grade III astrocytoma (ALTS1C1) and the CNS resident macrophage (BV2) as the cell model, to study the mechanosignal transmission in TAM-glioma structure assembly. We notice that the physical contacts between BV2 and glioma are essential for tumor spheroid formation. A tug-of-war model was established to interpret the imbalanced traction force in the 3-dimensional TAM-glioma spheroid formation. The quantitative mRNA results indicated gap junction may serve a role in tumor formation progress. Engineered hydrogels with various physiological stiffness are utilized to modulate the TAM-glioma interactions, and the results implied that the soft tissue and TAM infiltration can contribute to the formation of 3-dimensional TAM-glioma cell architecture. Our results demonstrated mechanosignals may play essential roles in brain tumor formation, and the findings are expected to contribute to our understanding about tumor progression.
摘要 I
Abstract II
致謝 III
Table of Contents IV
List of Figures VI
Chapter 1 Introduction 1
1.1 Astrocytoma 1
1.2 Tumor-Associated Macrophage 4
1.3 Cellular Mechanotransduction 6
1.4 Mechanical properties 8
1.5 Motivation and Purpose 10
Chapter 2 Materials and Methods 11
2.1 Cell Culture 11
2.2 Microglia Contact Analysis 12
2.3 Artificial Spheroid Assay 12
2.3.1 Preparation of Dots Array Spheroid Formation Device 12
2.3.2 Preparation of Artificial Spheroids 13
2.4 Preparation of Hydrogel Substrate 13
2.4.1 Traction Force Microscopy (TFM) 15
2.4.2 Traction force reconstruction 16
2.5 RNA Isolation & Quantitative Real-Time PCR (qRT-PCR) 17
Chapter 3 Experimental Results and Discussion 19
3.1 The Necessity of BV2 Contact 19
3.1.1 BV2 Contact Analysis 19
3.1.2 Artificial Spheroid Assay 21
3.2 Cellular Traction Force Quantification 26
3.2.1 Cell Adhesion Types 26
3.2.2 Stiffening Microenvironment 27
3.3 Spheroid Formation Process Analysis 28
3.4 Morphology of Spheroid Formation 34
3.4.1 Normal Condition 34
3.4.2 Contractility Inhibition 35
3.4.3 Low Calcium Condition 37
3.5 Expression of Membrane Protein 39
Chapter 4 Conclusion 41
References 42
1. Hamard, L., D.Ratel, L.Selek, F.Berger, B.van derSanden, andD.Wion.2016.The brain tissue response to surgical injury and its possible contribution to glioma recurrence. J. Neurooncol. 128: 1-8.
2. Iacob, G., andE.B.Dinca.2009.Current data and strategy in glioblastoma multiforme. J. Med. Life. 2: 386-93.
3. Pang, L., J.Qin, L.Han, W.Zhao, J.Liang, Z.Xie, P.Yang, andJ.Wang.2016.Exploiting macrophages as targeted carrier to guide nanoparticles into glioma. Oncotarget. 7: 37081-37091.
4. Salmaggi, A., A.Boiardi, M.Gelati, A.Russo, C.Calatozzolo, E.Ciusani, F.L.Sciacca, A.Ottolina, E.A.Parati, C.LaPorta, G.Alessandri, C.Marras, D.Croci, andM.DeRossi.2006.Glioblastoma-derived tumorospheres identify a population of tumor stem-like cells with angiogenic potential and enhanced multidrug resistance phenotype. Glia. 54: 850-860.
5. Fedrigo, C.A., I.Grivicich, D.P.Schunemann, I.M.Chemale, D.D.Santos, T.Jacovas, P.S.Boschetti, G.P.Jotz, A.B.Filho, andA.B.daRocha.2011.Radioresistance of human glioma spheroids and expression of HSP70, p53 and EGFr. Radiat. Oncol. 6: 156.
6. Khaitan, D., S.Chandna, M.B.Arya, andB.S.Dwarakanath.2006.Establishment and characterization of multicellular spheroids from a human glioma cell line; implications for tumor therapy. J. Transl. Med. 4: 1-13.
7. Ostrom, Q.T., H.Gittleman, P.Liao, T.Vecchione-Koval, Y.Wolinsky, C.Kruchko, andJ.S.Barnholtz-Sloan.2017.CBTRUS Statistical Report: Primary brain and other central nervous system tumors diagnosed in the United States in 2010-2014. Neuro. Oncol. 19: v1-v88.
8. Ostrom, Q.T., H.Gittleman, L.Stetson, S.M.Virk, andJ.S.Barnholtz-Sloan.2015.Epidemiology of Gliomas. In: RaizerJ, AParsa, editors.Cancer treatment and research. Cham: Springer International Publishing. pp. 1-14.
9. Grotzer, M.A., A.Neve, andM.Baumgartner.2016.Dissecting brain tumor growth and metastasis in vitro and ex vivo. J. Cancer Metastasis Treat. 2: 149.
10. Graeber, M.B., B.W.Scheithauer, andG.W.Kreutzberg.2002.Microglia in brain tumors. Glia. 40: 252-259.
11. Mostofa, A.G.M., S.R.Punganuru, H.R.Madala, M.Al-Obaide, andK.S.Srivenugopal.2017.The process and regulatory components of inflammation in brain oncogenesis. Biomolecules. 7: 1-33.
12. Roos, A., Z.Ding, J.C.Loftus, andN.L.Tran.2017.Molecular and Microenvironmental Determinants of Glioma Stem-Like Cell Survival and Invasion. Front. Oncol. 7: 1-8.
13. Sasaki, A.2017.Microglia and brain macrophages: An update. Neuropathology. 37: 452-464.
14. Morantz, R.A., G.W.Wood, M.Foster, M.Clark, andK.Gollahon.1979.Macrophages in experimental and human brain tumors Part 2: Studies of the macrophage content of human brain tumors. J. Neurosurg. 50: 298-304.
15. Komohara, Y., K.Ohnishi, J.Kuratsu, andM.Takeya.2008.Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J. Pathol. 216: 15-24.
16. Guiet, R., E.VanGoethem, C.Cougoule, S.Balor, A.Valette, T.AlSaati, C.A.Lowell, V.LeCabec, andI.Maridonneau-Parini.2011.The Process of Macrophage Migration Promotes Matrix Metalloproteinase-Independent Invasion by Tumor Cells. J. Immunol. 187: 3806-3814.
17. Pukrop, T., F.Dehghani, H.N.Chuang, R.Lohaus, K.Bayanga, S.Heermann, T.Regen, D.VanRossum, F.Klemm, M.Schulz, L.Siam, A.Hoffmann, L.Tr?mper, C.Stadelmann, I.Bechmann, U.K.Hanisch, andC.Binder.2010.Microglia promote colonization of brain tissue by breast cancer cells in a Wnt-dependent way. Glia. 58: 1477-1489.
18. Hambardzumyan, D., D.H.Gutmann, andH.Kettenmann.2015.The role of microglia and macrophages in glioma maintenance and progression. Nat. Neurosci. 19: 20-27.
19. Amado-Azevedo, J., E.T.Valent, andG.P.VanNieuw Amerongen.2014.Regulation of the endothelial barrier function: A filum granum of cellular forces, Rho-GTPase signaling and microenvironment. Cell Tissue Res. 355: 557-576.
20. Keung, A.J., E.M.DeJuan-Pardo, D.V.Schaffer, andS.Kumar.2011.Rho GTPases mediate the mechanosensitive lineage commitment of neural stem cells. Stem Cells. 29: 1886-1897.
21. Manning, T.J., J.C.Parker, andH.Sontheimer.2000.Role of lysophosphatidic acid and Rho in glioma cell motility. Cell Motil. Cytoskeleton. 45: 185-199.
22. Salhia, B., F.Rutten, M.Nakada, C.Beaudry, M.Berens, A.Kwan, andJ.T.Rutka.2005.Inhibition of Rho-kinase affects astrocytoma morphology, motility, and invasion through activation of Rac1. Cancer Res. 65: 8792-8800.
23. Umesh, V., A.D.Rape, T.A.Ulrich, andS.Kumar.2014.Microenvironmental Stiffness Enhances Glioma Cell Proliferation by Stimulating Epidermal Growth Factor Receptor Signaling. PLoS One. 9: e101771.
24. Grundy, T.J., E.DeLeon, K.R.Griffin, B.W.Stringer, B.W.Day, B.Fabry, J.Cooper-White, andG.M.O'Neill.2016.Differential response of patient-derived primary glioblastoma cells to environmental stiffness. Sci. Rep. 6: 23353.
25. Raab, M., andD.E.Discher.2017.Matrix rigidity regulates microtubule network polarization in migration. Cytoskeleton. 74: 114-124.
26. Lo, C.M., H.B.Wang, M.Dembo, andY.L.Wang.2000.Cell movement is guided by the rigidity of the substrate. Biophys. J. 79: 144-152.
27. Zarkoob, H., S.Bodduluri, S.V.Ponnaluri, J.C.Selby, andE.A.Sander.2015.Substrate Stiffness Affects Human Keratinocyte Colony Formation. Cell. Mol. Bioeng. 8: 32-50.
28. Tambe, D.T., C.Corey Hardin, T.E.Angelini, K.Rajendran, C.Y.Park, X.Serra-Picamal, E.H.Zhou, M.H.Zaman, J.P.Butler, D.A.Weitz, J.J.Fredberg, andX.Trepat.2011.Collective cell guidance by cooperative intercellular forces. Nat. Mater. 10: 469-475.
29. Sunyer, R., V.Conte, J.Escribano, A.Elosegui-Artola, A.Labernadie, L.Valon, D.Navajas, J.M.Garc?a-Aznar, J.J.Mu?oz, P.Roca-Cusachs, andX.Trepat.2016.Collective cell durotaxis emerges from long-range intercellular force transmission. Science (80-. ). 353.
30. Ingber, D.E.2006.Cellular mechanotransduction: putting all the pieces together again. FASEB J. 20: 811-827.
31. Mammoto, T., andD.E.Ingber.2010.Mechanical control of tissue and organ development. Development. 137: 1407-1420.
32. Petridou, N.I., Z.Spir?, andC.P.Heisenberg.2017.Multiscale force sensing in development. Nat. Cell Biol. 19: 581-588.
33. Novak, U., andA.H.Kaye.2000.Extracellular matrix and the brain: Components and function. J. Clin. Neurosci. 7: 280-290.
34. Rauch, U.2004.Extracellular matrix components associated with remodeling processes in brain. Cell. Mol. Life Sci. 61: 2031-2045.
35. Streitberger, K.J., M.Reiss-Zimmermann, F.B.Freimann, S.Bayerl, J.Guo, F.Arlt, J.Wuerfel, J.Braun, K.T.Hoffmann, andI.Sack.2014.High-resolution mechanical imaging of glioblastoma by multifrequency magnetic resonance elastography. PLoS One. 9.
36. Reiss-Zimmermann, M., K.J.Streitberger, I.Sack, J.Braun, F.Arlt, D.Fritzsch, andK.T.Hoffmann.2015.High Resolution Imaging of Viscoelastic Properties of Intracranial Tumours by Multi-Frequency Magnetic Resonance Elastography. Clin. Neuroradiol. 25: 371-378.
37. Miroshnikova, Y.A., J.K.Mouw, J.M.Barnes, M.W.Pickup, J.N.Lakins, Y.Kim, K.Lobo, A.I.Persson, G.F.Reis, T.R.McKnigh, E.C.Holland, J.J.Phillips, andV.M.Weaver.2016.Tissue mechanics promote IDH1-dependent HIF1α-tenascin C feedback to regulate glioblastoma aggression. Nat. Cell Biol. 18: 1336-1345.
38. Pogoda, K., R.Bucki, F.J.Byfield, K.Cruz, T.Lee, C.Marcinkiewicz, andP.A.Janmey.2017.Soft Substrates Containing Hyaluronan Mimic the Effects of Increased Stiffness on Morphology, Motility, and Proliferation of Glioma Cells. Biomacromolecules. 18: 3040-3051.
39. Levental, I., P.C.Georges, andP.A.Janmey.2007.Soft biological materials and their impact on cell function. Soft Matter. 3: 299-306.
40. Pogoda, K., L.Chin, P.C.Georges, F.J.Byfield, R.Bucki, R.Kim, M.Weaver, R.G.Wells, C.Marcinkiewicz, andP.A.Janmey.2014.Compression stiffening of brain and its effect on mechanosensing by glioma cells. New J. Phys. 16: 075002.
41. Wang, S.C., J.H.Hong, C.Hsueh, andC.S.Chiang.2012.Tumor-secreted SDF-1 promotes glioma invasiveness and TAM tropism toward hypoxia in a murine astrocytoma model. Lab. Investig. 92: 151-162.
42. Ulrich, T.A., E.M.DeJuan Pardo, andS.Kumar.2009.The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Res. 69: 4167-4174.
43. Tse, J.R., andA.J.Engler.2010.Preparation of hydrogel substrates with tunable mechanical properties. Curr. Protoc. Cell Biol. : 1-16.
44. Knoll, S.G., M.Y.Ali, andM.T.A.Saif.2014.A Novel Method for Localizing Reporter Fluorescent Beads Near the Cell Culture Surface for Traction Force Microscopy. J. Vis. Exp. : 1-10.
45. Colin-York, H., C.Eggeling, andM.Fritzsche.2017.Dissection of mechanical force in living cells by super-resolved traction force microscopy. Nat. Protoc. 12: 783-796.
46. Lin, Y.-C., D.T.Tambe, C.Y.Park, M.R.Wasserman, X.Trepat, R.Krishnan, G.Lenormand, J.J.Fredberg, andJ.P.Butler.2010.Mechanosensing of substrate thickness. Phys. Rev. E. 82: 041918.
47. Tusan, C.G., Y.H.Man, H.Zarkoob, D.A.Johnson, O.G.Andriotis, P.J.Thurner, S.Yang, E.A.Sander, E.Gentleman, B.Sengers, andN.Evans.2018.Collective cell behaviour in mechanosensing of substrate thickness. bioRxiv. 44: 228478.
48. Rudnicki, M.S., H.A.Cirka, M.Aghvami, E.A.Sander, Q.Wen, andK.L.Billiar.2013.Nonlinear Strain Stiffening Is Not Sufficient to Explain How Far Cells Can Feel on Fibrous Protein Gels. Biophys. J. 105: 11-20.
49. Yin, M., X.Li, S.Tan, H.J.Zhou, W.Ji, S.Bellone, X.Xu, H.Zhang, A.D.Santin, G.Lou, andW.Min.2016.Tumor-associated macrophages drive formation during early transcoelomic metastasis of ovarian cancer. 126: 4157-4173.
50. Duguay, D., R.A.Foty, andM.S.Steinberg.2003.Cadherin-mediated cell adhesion and tissue segregation: qualitative and quantitative determinants. Dev. Biol. 253: 309-323.
51. Foty, R.A., andM.S.Steinberg.2005.The differential adhesion hypothesis: A direct evaluation. Dev. Biol. 278: 255-263.
52. Chen, Z., X.Feng, C.J.Herting, V.A.Garcia, K.Nie, W.W.Pong, R.Rasmussen, B.Dwivedi, S.Seby, S.A.Wolf, D.H.Gutmann, andD.Hambardzumyan.2017.Cellular and molecular identity of tumor-associated macrophages in glioblastoma. Cancer Res. 77: 2266-2278.
53. Esquenazi, Y., V.P.Lo, andK.Lee.2017.Critical Care Management of Cerebral Edema in Brain Tumors. J. Intensive Care Med. 32: 15-24.
54. Bollmann, L., D.E.Koser, R.Shahapure, H.O.B.Gautier, G.A.Holzapfel, G.Scarcelli, M.C.Gather, E.Ulbricht, andK.Franze.2015.Microglia mechanics: immune activation alters traction forces and durotaxis. Front. Cell. Neurosci. 9.
55. Tanaka, A., Y.Fujii, N.Kasai, T.Okajima, andH.Nakashima.2018.Regulation of neuritogenesis in hippocampal neurons using stiffness of extracellular microenvironment. PLoS One. 13: 1-16.
56. Maruthamuthu, V., B.Sabass, U.S.Schwarz, andM.L.Gardel.2011.Cell-ECM traction force modulates endogenous tension at cell-cell contacts. Proc. Natl. Acad. Sci. 108: 4708-4713.
57. Liu, Z., J.L.Tan, D.M.Cohen, M.T.Yang, N.J.Sniadecki, S.A.Ruiz, C.M.Nelson, andC.S.Chen.2010.Mechanical tugging force regulates the size of cell-cell junctions. Proc. Natl. Acad. Sci. 107: 9944-9949.
58. Bangasser, B.L., G.A.Shamsan, C.E.Chan, K.N.Opoku, E.T?zel, B.W.Schlichtmann, J.A.Kasim, B.J.Fuller, B.R.McCullough, S.S.Rosenfeld, andD.J.Odde.2017.Shifting the optimal stiffness for cell migration. Nat. Commun. 8: 1-10.
59. Wong, S.Y., T.A.Ulrich, L.P.Deleyrolle, J.L.MacKay, J.M.G.Lin, R.T.Martuscello, M.A.Jundi, B.A.Reynolds, andS.Kumar.2015.Constitutive activation of myosin-dependent contractility sensitizes glioma tumor-initiating cells to mechanical inputs and reduces tissue invasion. Cancer Res. 75: 1113-1122.
60. Leal-Ega?a, A., G.Letort, J.Martiel, A.Christ, T.Vignaud, C.Roelants, O.Filhol, andM.Th?ry.2017.The size-speed-force relationship governs migratory cell response to tumorigenic factors. Mol. Biol. Cell. 28: 1612-1621.
61. Trepat, X., M.R.Wasserman, T.E.Angelini, E.Millet, D.A.Weitz, J.P.Butler, andJ.J.Fredberg.2009.Physical forces during collective cell migration. Nat Phys. 5: 426-430.
62. Sunyer, R., V.Conte, J.Escribano, A.Elosegui-Artola, A.Labernadie, L.Valon, D.Navajas, J.M.Garcia-Aznar, J.J.Munoz, P.Roca-Cusachs, andX.Trepat.2016.Collective cell durotaxis emerges from long-range intercellular force transmission. Science (80-. ). 353: 1157-1161.
63. Giannone, G., P.Rond?, M.Gaire, J.Beaudouin, J.Haiech, J.Ellenberg, andK.Takeda.2004.Calcium rises locally trigger focal adhesion disassembly and enhance residency of focal adhesion kinase at focal adhesions. J. Biol. Chem. 279: 28715-28723.
64. Zhu, M., L.Chen, P.Zhao, H.Zhou, C.Zhang, S.Yu, Y.Lin, andX.Yang.2014.Store-operated Ca2+ entry regulates glioma cell migration and invasion via modulation of Pyk2 phosphorylation. J. Exp. Clin. Cancer Res. 33: 1-11.
65. Mertz, A.F., Y.Che, S.Banerjee, J.M.Goldstein, K.A.Rosowski, S.F.Revilla, C.M.Niessen, M.C.Marchetti, E.R.Dufresne, andV.Horsley.2013.Cadherin-based intercellular adhesions organize epithelial cell-matrix traction forces. Proc. Natl. Acad. Sci. U. S. A. 110: 842-7.
66. Cerchiari, A.E., J.C.Garbe, N.Y.Jee, M.E.Todhunter, K.E.Broaders, D.M.Peehl, T.A.Desai, M.A.LaBarge, M.Thomson, andZ.J.Gartner.2015.A strategy for tissue self-organization that is robust to cellular heterogeneity and plasticity. Proc. Natl. Acad. Sci. 112: 2287-2292.
67. Mui, K.L., C.S.Chen, andR.K.Assoian.2016.The mechanical regulation of integrin-cadherin crosstalk organizes cells, signaling and forces. J. Cell Sci. 129: 1093-1100.
68. Crespin, S., G.Fromont, M.Wager, P.Levillain, L.Cronier, A.Monvoisin, N.Defamie, andM.Mesnil.2016.Expression of a gap junction protein, connexin43, in a large panel of human gliomas: new insights. Cancer Med. 5: 1742-1752.
69. Oliveira, R., C.Christov, J.Guillamo, S.DeBo?ard, S.Palfi, L.Venance, M.Tardy, andM.Peschanski.2005.Contribution of gap junctional communication between tumor cells and astroglia to the invasion of the brain parenchyma by human glioblastomas. BMC Cell Biol. 6: 7.
70. Aftab, Q., W.-C.Sin, andC.C.Naus.2015.Reduction in gap junction intercellular communication promotes glioma migration. Oncotarget. 6: 11447-11464.
71. Winkler, F., andW.Wick.2018.Harmful networks in the brain and beyond. Science (80-. ). 359: 1100-1101.
72. Osswald, M., G.Solecki, W.Wick, andF.Winkler.2016.A malignant cellular network in gliomas: Potential clinical implications. Neuro. Oncol. 18: 479-485.
73. Ariazi, J., A.Benowitz, V.DeBiasi, M.L.DenBoer, S.Cherqui, H.Cui, N.Douillet, E.A.Eugenin, D.Favre, S.Goodman, K.Gousset, D.Hanein, D.I.Israel, S.Kimura, R.B.Kirkpatrick, N.Kuhn, C.Jeong, E.Lou, R.Mailliard, S.Maio, G.Okafo, M.Osswald, J.Pasquier, R.Polak, G.Pradel, B.deRooij, P.Schaeffer, V.A.Skeberdis, I.F.Smith, A.Tanveer, N.Volkmann, Z.Wu, andC.Zurzolo.2017.Tunneling Nanotubes and Gap Junctions-Their Role in Long-Range Intercellular Communication during Development, Health, and Disease Conditions. Front. Mol. Neurosci. 10: 1-12.
74. Wang, Y., J.Cui, X.Sun, andY.Zhang.2011.Tunneling-nanotube development in astrocytes depends on p53 activation. Cell Death Differ. 18: 732-742.
75. Rostami, J., S.Holmqvist, V.Lindstr?m, J.Sigvardson, G.T.Westermark, M.Ingelsson, J.Bergstr?m, L.Roybon, andA.Erlandsson.2017.Human Astrocytes Transfer Aggregated Alpha-Synuclein via Tunneling Nanotubes. J. Neurosci. 37: 11835-11853.
76. Jung, E., M.Osswald, J.Blaes, B.Wiestler, F.Sahm, T.Schmenger, G.Solecki, K.Deumelandt, F.T.Kurz, R.Xie, S.Weil, O.Heil, C.Thom?, M.G?mmel, M.Syed, P.H?ring, P.E.Huber, S.Heiland, M.Platten, A.vonDeimling, W.Wick, andF.Winkler.2017.Tweety-Homolog 1 Drives Brain Colonization of Gliomas. J. Neurosci. 37: 6837-6850.
77. Chatelin, S., J.Vappou, S.Roth, J.S.Raul, andR.Willinger.2012.Towards child versus adult brain mechanical properties. J. Mech. Behav. Biomed. Mater. 6: 166-173.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *