帳號:guest(3.15.193.249)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):廖崇淳
作者(外文):Liao, Chung-Chun
論文名稱(中文):輔酶Q10合併放射治療下於腦瘤之複合性反應
論文名稱(外文):The compounding effects of Coenzyme Q10 and radiation treatment on glial fibrillary acidic protein network of glioma in vitro
指導教授(中文):陳之碩
指導教授(外文):Chen, Chi-Shuo
口試委員(中文):江啟勳
卓奕均
口試委員(外文):Chiang, Chi-Shiun
Juo, Yi-Jiun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:105012505
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:65
中文關鍵詞:輻射腦瘤輔酶Q10
外文關鍵詞:RadiationGliomaCoenzyme Q10
相關次數:
  • 推薦推薦:0
  • 點閱點閱:52
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
前言: 在成人中,星狀膠質瘤是一種相當具有侵略轉移性的原位腦瘤。放射治療目前對此依舊具有顯著的治療效果,但是其中對於周邊的星狀細胞,不樂見的副作用即是正常細胞的傷害,包括細胞骨架(膠質纖維酸性蛋白)有不正常的分布且與腦損傷息息相關。
目的: 為了解決這個困境,許多的抗氧化物都曾經被用以輔助放射治療。在眾多的抗氧化物中,輔酶Q10是少數不具有使用過量幫助腫瘤生長的副作用。然而,目前已知對於輔酶Q10合併放射治療的研究是有限的。在本篇研究,我們將致力於探討輔酶Q10合併腦瘤放射治療的潛在療效。
材料與方法: 星狀細胞與星狀膠質瘤之細胞被預先培養在含有輔酶Q10的培養基中,並於其後照射伽馬射線鈷六十(60Co)達十格雷的劑量。觀察照射後造成的粒線體活性改變,膠質纖維酸性蛋白的分布情況與其他有關於細胞表現型的指標,例如:型態、爬行速度與細胞貼附面積。另外,為了模擬體內環境,我們也建立共培養的模型,分別檢視細胞存活的比例與立體入侵能力。
結果: 我們的研究結果顯示,輔酶Q10酶能夠有效維持過氧化物在癌細胞粒線體的蓄積,降低其在正常細胞的濃度,調控細胞骨架的穩定性與分布,而導致合併輻射治療有加成效果,甚至在共培養的模型中,發現即便有活化態星狀膠質細胞增強腫瘤輻射保護性,輔酶Q10也能有一樣的效果。
結論: 我們的實驗結果說明輔酶Q10對於星狀膠質細胞的保護性,並且在共培養模型中發現輔酶Q10能增加放射治療的成效,此外,輔酶Q10能維持星狀細胞的正常功能與降低癌細胞的惡性程度,因此,輔酶Q10能改善暴露劑量產生的負面影響並使星狀膠質細胞損傷程度降低進而提升放射治療的療效。
Introduction: Astrocytoma is an aggressive primary malignant brain tumor in adults. Radiation therapy has been an effective medical treatment, but one of its undesired side-effects is the induced cell damage of surrounding astrocytes, which can lead abnormal distribution of Glial fibrillary acidic protein and associates with severe brain injury [1].
Purpose: In order to cope with this problem, various antioxidants have been applied with radiation therapy. Among antioxidants, the Coenzyme Q10 (Q10) is one of the few candidates without tumor promotional effect. However, the understanding about Q10 therapeutic effect on radiological protection is limited. In this study, we aimed to investigate the potential therapeutic effects of Q10 on brain tumor radiation treatment.
Materials and Methods: Astrocyte and glioma cell lines were cultivated with Q10 and treated with to 10Gy single dose of Cobalt-60 (60Co) γ-ray. Mitochondrial viability was analyzed using MTT assay, GFAP responses was analyzed by immunofluorescence staining and quantitative reverse transcription polymerase chain reaction, and other cell phenotype indices, such as the morphology and migration. Moreover, to simulate the microenvironment within the human body, we further evaluated tumor invasion ability and cell viability in co-culture model.
Results: Our results indicated that radiation with Q10 treatment triggered high concentration of mitochondrial ROS in astrocytoma, but not in astrocyte. In addition, Q10 reduce the GFAP interference by radiation, by which indicated minor injury of astrocyte and reducing astrocytoma migration. From the 2D and 3D co-culture models, combined with radiation treatment, we showed Q10 can eliminate the tumor progression.
Conclusions: Our results demonstrated that Q10 can improve the therapeutic effectiveness of radiation therapy in vitro. With further studies, we expected Q10 can benefit glioma treatment in near future.
中文摘要 i
Abstract ii
Table of Contents iv
List of Figures vii
Chapter1. Introduction 1
1.1 Radiation therapy on brain tumor 1
1.2 Therapeutic effect of Coenzyme Q10 on various cancer researches 3
1.3 Importance of Glial fibrillary acidic protein (GFAP) 5
1.4 Research purpose and structure 7
Chapter2. Materials and Methods 9
2.1 Experimental Material 9
2.2 Cell Lines and Subculture 9
2.2.1 Cell lines 9
2.2.2 Subculture 9
2.3 Experimental Protocol 10
2.3.1 Reagent preparation 10
2.3.2 Radiation treatment 10
2.3.3 Real-time qPCR analysis 11
2.3.4 Immunofluorescence staining 11
2.3.5 Fluorescence microscopy 12
2.3.6 96-well plate fabrication and 3D Spheroid formation 12
2.3.7 3D invasion assay 12
2.3.8 MTT assay 13
2.3.9 mROS production assay 13
2.3.10 Intracellular ROS staining and Viability assay for Flow Cytometry 14
2.3.11 Wound healing assay 14
2.3.12 Statistical analysis 14
Chapter3. Results and Discussion 16
3.1 Influence of Q10 on radio-resistance in 2D co-culture model 16
3.1.1 2D co-culture model establish 16
3.1.2 Determine the labeling concentration and confirm the labeling efficiency 19
3.1.3 Cell viability assay in 2D co-culture model 23
3.2 Influence of Q10 on radio-resistance in 3D co-culture model 26
3.2.1 Tumor spheroid formation with surface modification 26
3.2.2 3D Invasion assay measurement 29
3.3 Compounding effect of radiation and Q10 treatment in astrocyte 31
3.3.1 Normal astrocyte remains high radiation resistance in early stage 31
3.3.2 Q10 regulates oxidative stress balance of normal astrocyte after radiation exposure 32
3.3.3 Q10 modulates GFAP network of astrocyte after radiation treatment 35
3.3.4 Q10 alters injury response of astrocyte cell area and migration speed 38
3.4 Compounding effect of radiation and Q10 treatment in astrocytoma 40
3.4.1 Radio-sensitizing effect of Q10 on astrocytoma cell in early stage 40
3.4.2 Q10 maintains mitochondrial oxidative stress in astrocytoma after radiation treatment 42
3.4.3 Q10 eliminates the cell stress of astrocytoma via GFAP network 44
3.4.4 Q10 eliminates the deterioration possibility and metastatic ability of astrocytoma radiation treatment- cell area and migration speed 46
Chapter4. Conclusion and Future works 51
References 54
1. Toivola, D.M., et al., Intermediate filaments take the heat as stress proteins. Trends Cell Biol, 2010. 20(2): p. 79-91.
2. Louis, D.N., et al., The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol, 2016. 131(6): p. 803-20.
3. Thakkar, J.P., et al., Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol Biomarkers Prev, 2014. 23(10): p. 1985-96.
4. Meng, X., et al., Predictive biomarkers in PD-1/PD-L1 checkpoint blockade immunotherapy. Cancer Treat Rev, 2015. 41(10): p. 868-76.
5. Blanco, E., H. Shen, and M. Ferrari, Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol, 2015. 33(9): p. 941-51.
6. Bilimagga, R.S., et al., Role of palliative radiotherapy in brain metastases. Indian journal of palliative care, 2009. 15(1): p. 71-75.
7. Watza, D., et al., Transcriptional programs of tumor infiltrating T-cells provide insight into mechanisms of immune response and new targets for immunotherapy. Journal of Thoracic Disease, 2017. 9(11): p. 4162-4164.
8. Barani, I.J. and D.A. Larson, Radiation Therapy of Glioblastoma, in Current Understanding and Treatment of Gliomas, J. Raizer and A. Parsa, Editors. 2015, Springer International Publishing: Cham. p. 49-73.
9. Miyatake, S.-I., et al., Boron Neutron Capture Therapy for Malignant Brain Tumors. Neurologia medico-chirurgica, 2016. 56(7): p. 361-371.
10. Van Dyk, J. and J.J. Battista, Cobalt-60: An old modality, a renewed challenge.
11. Wodinsky, H.B. and R.D. Jenkin, The cost of radiation treatment at an Ontario regional cancer centre. CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne, 1987. 137(10): p. 906-909.
12. Read, G., Estimating the cost of radiotherapy. Clinical Oncology, 1994. 6(1): p. 35-39.
13. Munro, A.J. and S. Potter, Waiting times for radiotherapy treatment: Not all that mysterious and certainly preventable. Clinical Oncology, 1994. 6(5): p. 314-318.
14. Desouky, O., N. Ding, and G. Zhou, Targeted and non-targeted effects of ionizing radiation. Journal of Radiation Research and Applied Sciences, 2015. 8(2): p. 247-254.
15. Baskar, R., et al., Biological response of cancer cells to radiation treatment. Front Mol Biosci, 2014. 1: p. 24.
16. J. Gregory Cairncross, M., M. Jae-Ho Kim, and M. and Jerome B. Posner, Radation Therapy for Brain Metastases. Annals of Neurology, 1979.
17. Deutsch, M., V. Albo, and M.R. Wollman, Radiotherapy for cerebral metastases in children. Int J Radiat Oncol Biol Phys, 1982. 8(8): p. 1441-6.
18. Roger Stupp, M.D., Warren P. Mason, M.D., Martin J. van den Bent, M.D.,, et al., Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. The New England Journal of Medicine, 2005.
19. Barca-Mayo, O., et al., Astrocyte deletion of Bmal1 alters daily locomotor activity and cognitive functions via GABA signalling. Nat Commun, 2017. 8: p. 14336.
20. Burda, J.E., A.M. Bernstein, and M.V. Sofroniew, Astrocyte roles in traumatic brain injury. Exp Neurol, 2016. 275 Pt 3: p. 305-315.
21. Clare Howarth, et al., A Critical Role for Astrocytes in Hypercapnic Vasodilation in Brain. The Journal of Neuroscience, 2017.
22. Jha, M.K., et al., Functional dissection of astrocyte-secreted proteins: Implications in brain health and diseases. Progress in Neurobiology, 2018. 162: p. 37-69.
23. Yamamizu K, et al., In Vitro Modeling of Blood-Brain Barrier with Human iPSC-Derived Endothelial Cells, Pericytes, Neurons, and Astrocytes via Notch Signaling. Stem Cell Reports, 2018.
24. Henneberger, C., et al., Long-term potentiation depends on release of D-serine from astrocytes. Nature, 2010. 463(7278): p. 232-6.
25. S., K., et al., Thrombospondins Are Astrocyte Secreted Proteins that Promote CNS Synaptogenesis. Cell, 2005.
26. Belka, C., et al., Radiation induced CNS toxicity – molecular and cellular mechanisms. British Journal of Cancer, 2001. 85(9): p. 1233-1239.
27. Kyrkanides, S., et al., TNFα and IL-1β mediate intercellular adhesion molecule-1 induction via microglia–astrocyte interaction in CNS radiation injury. Journal of Neuroimmunology, 1999. 95(1): p. 95-106.
28. Sanchez, M.C., et al., Alterations in Glutamate Uptake in NT2-Derived Neurons and Astrocytes after Exposure to Gamma Radiation. Radiation Research, 2009. 171(1): p. 41-52.
29. Rodick TC, S.D., Babu JR, Huggins KW, Ren G, Mathews ST, Potential role of coenzyme Q10 disease conditions. Dove Medical Press, 2017. 14 February 2018 Volume 2018:10 Pages 1—11.
30. Papucci, L., et al., Coenzyme q10 prevents apoptosis by inhibiting mitochondrial depolarization independently of its free radical scavenging property. J Biol Chem, 2003. 278(30): p. 28220-8.
31. S. Di Giovanni, et al., Coenzyme Q10 reverses pathological phenotype and reduces apoptosis in familial CoQ10 deficiency. NEUROLOGY, 2001.
32. Quinzii, C.M. and M. Hirano, Coenzyme Q and mitochondrial disease. Dev Disabil Res Rev, 2010. 16(2): p. 183-8.
33. Frederick L. Cranea and P. Navasb, The Diversity of Coenzyme Q Function. Molecular Aspects of Medicine, 1997.
34. Bouayed, J. and T. Bohn, Exogenous Antioxidants—Double-Edged Swords in Cellular Redox State: Health Beneficial Effects at Physiologic Doses versus Deleterious Effects at High Doses. Oxidative Medicine and Cellular Longevity, 2010. 3(4): p. 228-237.
35. Fuchs-Tarlovsky, V., Role of antioxidants in cancer therapy. Nutrition, 2013. 29(1): p. 15-21.
36. Mark A. Hawk, Chelsea McCallister, and Z.T. Schafer, Antioxidant Activity during Tumor Progression: A Necessity for the Survival of Cancer Cells? 2016.
37. Jastroch, M., et al., Mitochondrial proton and electron leaks. Essays in biochemistry, 2010. 47: p. 53-67.
38. Portakal, O., et al., Coenzyme Q10 concentrations and antioxidant status in tissues of breast cancer patients. Clinical Biochemistry, 2000. 33(4): p. 279-284.
39. Lockwood, K., et al., Progress on therapy of breast cancer with vitamin Q10 and the regression of metastases. Biochem Biophys Res Commun, 1995. 212(1): p. 172-7.
40. Rodick, T.C., et al., Potential role of coenzyme Q10 in health and disease conditions. Nutrition and Dietary Supplements, 2018. Volume 10: p. 1-11.
41. Xue, R., et al., Coenzyme Q10 inhibits the activation of pancreatic stellate cells through PI3K/AKT/mTOR signaling pathway. Oncotarget, 2017. 8(54): p. 92300-92311.
42. Bahar, M., et al., Exogenous coenzyme Q10 modulates MMP-2 activity in MCF-7 cell line as a breast cancer cellular model. Nutrition Journal, 2010. 9(1): p. 62.
43. Huo, J., et al., Coenzyme Q10 Prevents Senescence and Dysfunction Caused by Oxidative Stress in Vascular Endothelial Cells. Oxid Med Cell Longev, 2018. 2018: p. 3181759.
44. Souri, Z., A. Bidmeshki-Pour, and I. Karimi, Effect of coenzyme Q10 supplementation on p53 tumor suppressor gene expression in mouse model of andropause. Biharean Biol, 2017. 11: p. 53-56.
45. Gutierrez-Mariscal, F.M., et al., Mediterranean diet supplemented with coenzyme Q10 induces postprandial changes in p53 in response to oxidative DNA damage in elderly subjects. Age (Dordrecht, Netherlands), 2012. 34(2): p. 389-403.
46. Bouayed, J. and T. Bohn, Exogenous antioxidants--Double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxidative medicine and cellular longevity, 2010. 3(4): p. 228-237.
47. Stevens, B., et al., The classical complement cascade mediates CNS synapse elimination. Cell, 2007. 131(6): p. 1164-78.
48. Lei, J., et al., Glial fibrillary acidic protein as a biomarker in severe traumatic brain injury patients: a prospective cohort study. Critical Care, 2015. 19.
49. Middeldorp, J. and E.M. Hol, GFAP in health and disease. Progress in Neurobiology, 2011. 93(3): p. 421-443.
50. Wilhelmsson, U., et al., Absence of glial fibrillary acidic protein and vimentin prevents hypertrophy of astrocytic processes and improves post-traumatic regeneration. J Neurosci, 2004. 24(21): p. 5016-21.
51. Eliasson, C., et al., Intermediate filament protein partnership in astrocytes. Journal of Biological Chemistry, 1999. 274(34): p. 23996-24006.
52. Vos, P.E., et al., GFAP and S100B are biomarkers of traumatic brain injury: an observational cohort study. Neurology, 2010. 75(20): p. 1786-93.
53. de Pablo, Y., et al., Intermediate filaments are important for astrocyte response to oxidative stress induced by oxygen-glucose deprivation and reperfusion. Histochem Cell Biol, 2013. 140(1): p. 81-91.
54. Y. Nobuhara, et al., Juvenile form of Alexander disease with GFAP mutation and mitochondrial abnormality. 2004.
55. Tracy L. Hagemann, Jolien X. Connor, and A. Messing, . 1999.
56. Sahlgren, C.M., et al., A nestin scaffold links Cdk5/p35 signaling to oxidant-induced cell death. The EMBO Journal, 2006. 25(20): p. 4808-4819.
57. Huang, Y.-L., et al., Nestin Serves as a Prosurvival Determinant that is Linked to the Cytoprotective Effect of Epidermal Growth Factor in Rat Vascular Smooth Muscle Cells. The Journal of Biochemistry, 2009. 146(3): p. 307-315.
58. Bylicky, M.A., G.P. Mueller, and R.M. Day, Mechanisms of Endogenous Neuroprotective Effects of Astrocytes in Brain Injury. Oxidative medicine and cellular longevity, 2018. 2018: p. 6501031-6501031.
59. Shinozaki, Y., et al., Transformation of Astrocytes to a Neuroprotective Phenotype by Microglia via P2Y1 Receptor Downregulation. Cell Reports, 2017. 19(6): p. 1151-1164.
60. Saha, G.B., Physics and radiobiology of nuclear medicine. 2010: Springer Science & Business Media.
61. Wang, S.C., et al., Tumor-secreted SDF-1 promotes glioma invasiveness and TAM tropism toward hypoxia in a murine astrocytoma model. Lab Invest, 2012. 92(1): p. 151-62.
62. Badie, B., et al., Combined radiation and p53 gene therapy of malignant glioma cells. Cancer Gene Therapy, 1999. 6: p. 155.
63. Eshleman, J.S., et al., Inhibition of the Mammalian Target of Rapamycin Sensitizes U87 Xenografts to Fractionated Radiation Therapy. Cancer Research, 2002. 62(24): p. 7291.
64. Wellemans, V., et al., Immunostimulatory properties of a novel adjuvant administered with inactivated influenza virus vaccine. Vet Res, 2007. 38(1): p. 1-14.
65. Zhao, Y., et al., Solubility Measurements and Prediction of Coenzyme Q10 Solubility in Different Solvent Systems. Journal of Solution Chemistry, 2013. 42(4): p. 764-771.
66. Tsai, W.C., R.D. Sheu, and S.H. Jiang, Evaluation of the dose rate distribution for an air-type 60CO irradiation facility. Radiation Protection Dosimetry, 2005. 116(1-4): p. 352-358.
67. Liddelow, S.A., et al., Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 2017. 541(7638): p. 481-487.
68. Chen, X., et al., ADAM17 regulates self-renewal and differentiation of U87 glioblastoma stem cells. Neuroscience Letters, 2013. 537: p. 44-49.
69. Bao, S., et al., Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 2006. 444: p. 756.
70. Lee, Y., et al., Thermo-sensitive, injectable, and tissue adhesive sol–gel transition hyaluronic acid/pluronic composite hydrogels prepared from bio-inspired catechol-thiol reaction. Soft Matter, 2010. 6(5): p. 977-983.
71. Eke, I., et al., 3D matrix-based cell cultures: Automated analysis of tumor cell survival and proliferation. International journal of oncology, 2015. 48(1): p. 313-321.
72. Hoarau-Véchot, J., et al., Halfway between 2D and Animal Models: Are 3D Cultures the Ideal Tool to Study Cancer-Microenvironment Interactions? International journal of molecular sciences, 2018. 19(1): p. 181.
73. Vinci, M., C. Box, and S.A. Eccles, Three-dimensional (3D) tumor spheroid invasion assay. Journal of visualized experiments : JoVE, 2015(99): p. e52686-e52686.
74. Jordan, J.P., et al., Test for chemotherapeutic sensitivity of cerebral gliomas: use of colorimetric MTT assay. Journal of Neuro-Oncology, 1992. 14(1): p. 19-35.
75. Hori, Y.S., et al., Chloroquine potentiates temozolomide cytotoxicity by inhibiting mitochondrial autophagy in glioma cells. Journal of Neuro-Oncology, 2015. 122(1): p. 11-20.
76. Yang, J.-T., et al., An Oxidative Stress Mechanism of Shikonin in Human Glioma Cells. PLOS ONE, 2014. 9(4): p. e94180.
77. Baker, G.J., M.G. Castro, and P.R. Lowenstein, Isolation and Flow Cytometric Analysis of Glioma-infiltrating Peripheral Blood Mononuclear Cells. J Vis Exp, 2015(105).
78. Valster, A., et al., Cell migration and invasion assays. Methods, 2005. 37(2): p. 208-215.
79. Zhan, J.S., et al., Astrocytes in Migration. Neurochemical Research, 2017. 42(1): p. 272-282.
80. Zhai, H., F.L. Heppner, and S.E. Tsirka, Microglia/macrophages promote glioma progression. Glia, 2011. 59(3): p. 472-485.
81. Hurst, R.D. and I.B. Fritz, Properties of an immortalised vascular endothelial/glioma cell co-culture model of the blood-brain barrier. Journal of Cellular Physiology, 1996. 167(1): p. 81-88.
82. Espinoza, I., et al., Notch signaling: targeting cancer stem cells and epithelial-to-mesenchymal transition. Onco Targets Ther, 2013. 6: p. 1249-59.
83. Teodorczyk, M. and M.H.H. Schmidt, Notching on Cancer's Door: Notch Signaling in Brain Tumors. Front Oncol, 2014. 4: p. 341.
84. Wasilewski, D., et al., Reactive Astrocytes in Brain Metastasis. Front Oncol, 2017. 7: p. 298.
85. Guan, X., et al., Reactive Astrocytes in Glioblastoma Multiforme. Mol Neurobiol, 2018. 55(8): p. 6927-6938.
86. Xing, F., et al., Reactive astrocytes promote the metastatic growth of breast cancer stem-like cells by activating Notch signalling in brain. EMBO Mol Med, 2013. 5(3): p. 384-96.
87. Short, S.C., et al., DNA repair after irradiation in glioma cells and normal human astrocytes. Neuro Oncol, 2007. 9(4): p. 404-11.
88. Furnari, F.B., et al., Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes & development, 2007. 21(21): p. 2683-2710.
89. Lin, Q., et al., Astrocytes protect glioma cells from chemotherapy and upregulate survival genes via gap junctional communication. Molecular medicine reports, 2016. 13(2): p. 1329-1335.
90. Sereika, M., et al., GFAP expression is influenced by astrocytoma grade and rs2070935 polymorphism. J Cancer, 2018. 9(23): p. 4496-4502.
91. Wilhelmsson, U., et al., Loss of GFAP expression in high-grade astrocytomas does not contribute to tumor development or progression. Oncogene, 2003. 22(22): p. 3407-11.
92. Zhang, W., et al., Direct Gap Junction Communication between Malignant Glioma Cells and Astrocytes. Cancer Research, 1999. 59(8): p. 1994.
93. Giometto, B., et al., Immune infiltrates and cytokines in gliomas. Acta Neurochirurgica, 1996. 138(1): p. 50-56.
94. Kim, S.-H., et al., EZH2 Protects Glioma Stem Cells from Radiation-Induced Cell Death in a MELK/FOXM1-Dependent Manner. Stem Cell Reports, 2015. 4(2): p. 226-238.
95. Ivanov, V.N., J. Wu, and T.K. Hei, Regulation of human glioblastoma cell death by combined treatment of cannabidiol, γ-radiation and small molecule inhibitors of cell signaling pathways. Oncotarget, 2017. 8(43): p. 74068-74095.
96. Lampidis, T.J., et al., Selective Toxicity of Rhodamine 123 in Carcinoma Cells in Vitro. Cancer Research, 1983. 43(2): p. 716.
97. O'Brien, J., et al., Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. European Journal of Biochemistry, 2000. 267(17): p. 5421-5426.
98. Yu-Chih Chen, X.L., Zhixiong Zhang, Patrick Ingram, Euisik Yoon, High-Throughput Cancer Cell Sphere Formation for Characterizing the Efficacy of Photo Dynamic Therapy in 3D Cell Cultures. 2015.
99. Koller, I.B.C.E.G.H.J.S.M.G.A.F.R.B.B.O.P.M.R., Optoinjection for efficient targeted delivery of a broad range of compounds and macromolecules into diverse cell types. 2006.
100. Chung, S., et al., Quantitative analysis of cell proliferation by a dye dilution assay: Application to cell lines and cocultures. Cytometry Part A, 2017. 91(7): p. 704-712.
101. Cronin, K., et al., RADIATION THERAPY AND SURGERY FOR FIBROSARCOMA IN 33 CATS. Veterinary Radiology & Ultrasound, 1998. 39(1): p. 51-56.
102. Dubey, A.K., et al. Why and How to Combine Chemotherapy and Radiation Therapy in Breast Cancer Patients. 1998. Berlin, Heidelberg: Springer Berlin Heidelberg.
103. Kessel, S.C., S. Dery, O. Kuksin, D. Sincoff, E. Qiu, J. Chan, L. L., High-Throughput 3D Tumor Spheroid Screening Method for Cancer Drug Discovery Using Celigo Image Cytometry. SLAS Technol, 2017. 22(4): p. 454-465.
104. Weiswald, L.B., D. Bellet, and V. Dangles-Marie, Spherical cancer models in tumor biology. Neoplasia, 2015. 17(1): p. 1-15.
105. Gao, L., et al., Wnt/beta-catenin signaling pathway inhibits the proliferation and apoptosis of U87 glioma cells via different mechanisms. PLoS One, 2017. 12(8): p. e0181346.
106. Zanoni, M., et al., 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Sci Rep, 2016. 6: p. 19103.
107. Patra, B., et al., Drug testing and flow cytometry analysis on a large number of uniform sized tumor spheroids using a microfluidic device. Sci Rep, 2016. 6: p. 21061.
108. Hirschhaeuser, F., et al., Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol, 2010. 148(1): p. 3-15.
109. Kamel, R.M., Prevention of postoperative peritoneal adhesions. European Journal of Obstetrics & Gynecology and Reproductive Biology, 2010. 150(2): p. 111-118.
110. Amaral, R.L.F., et al., Comparative Analysis of 3D Bladder Tumor Spheroids Obtained by Forced Floating and Hanging Drop Methods for Drug Screening. Frontiers in Physiology, 2017. 8(605).
111. Stock, K., et al., Capturing tumor complexity in vitro: Comparative analysis of 2D and 3D tumor models for drug discovery. Scientific Reports, 2016. 6: p. 28951.
112. Zanoni, M., et al., 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Scientific Reports, 2016. 6: p. 19103.
113. Yang, C.S., et al., Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nature Reviews Cancer, 2009. 9(6): p. 429.
114. Nishikawa, M., et al., Inhibition of metastatic tumor growth by targeted delivery of antioxidant enzymes. Journal of controlled release, 2005. 109(1-3): p. 101-107.
115. Gali-Muhtasib, H., et al., Thymoquinone reduces mouse colon tumor cell invasion and inhibits tumor growth in murine colon cancer models. Journal of Cellular and Molecular Medicine, 2008. 12(1): p. 330-342.
116. Nath, S. and G.R. Devi, Three-dimensional culture systems in cancer research: Focus on tumor spheroid model. Pharmacology & Therapeutics, 2016. 163: p. 94-108.
117. Watkins, S. and H. Sontheimer, Hydrodynamic cellular volume changes enable glioma cell invasion. Journal of Neuroscience, 2011. 31(47): p. 17250-17259.
118. Sifuentes-Franco, S., et al., The Role of Oxidative Stress, Mitochondrial Function, and Autophagy in Diabetic Polyneuropathy. Journal of diabetes research, 2017. 2017: p. 1673081-1673081.
119. Brouazin-Jousseaume, V., et al., GSH level and IL-6 production increased in Sertoli cells and astrocytes after gamma irradiation. Anticancer research, 2002. 22(1A): p. 257-262.
120. West, A.P., et al., TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature, 2011. 472(7344): p. 476-80.
121. Kawamura, K., F. Qi, and J. Kobayashi, Potential relationship between the biological effects of low-dose irradiation and mitochondrial ROS production. J Radiat Res, 2018. 59(suppl_2): p. ii91-ii97.
122. Vianello, A., et al., The mitochondrial permeability transition pore (PTP) - an example of multiple molecular exaptation? Biochim Biophys Acta, 2012. 1817(11): p. 2072-86.
123. Wang, W., et al., Superoxide flashes in single mitochondria. Cell, 2008. 134(2): p. 279-90.
124. Kalogeris, T., Y. Bao, and R.J. Korthuis, Mitochondrial reactive oxygen species: A double edged sword in ischemia/reperfusion vs preconditioning. Redox Biology, 2014. 2: p. 702-714.
125. Madamanchi Nageswara, R. and S. Runge Marschall, Mitochondrial Dysfunction in Atherosclerosis. Circulation Research, 2007. 100(4): p. 460-473.
126. Wu, S., et al., High fluence low-power laser irradiation induces mitochondrial permeability transition mediated by reactive oxygen species. J Cell Physiol, 2009. 218(3): p. 603-11.
127. Peng, T.-I. and M.-J. Jou, Mitochondrial Swelling and Generation of Reactive Oxygen Species Induced by Photoirradiation Are Heterogeneously Distributed. Annals of the New York Academy of Sciences, 2004. 1011(1): p. 112-122.
128. Sridharan, V., et al., Radiation-induced alterations in mitochondria of the rat heart. Radiat Res, 2014. 181(3): p. 324-34.
129. Loureiro, R., et al., Mitochondria in cancer stem cells: a target for therapy. Recent patents on endocrine, metabolic & immune drug discovery, 2013. 7(2): p. 102-114.
130. Saito, Y., et al., Characterization of cellular uptake and distribution of coenzyme Q10 and vitamin E in PC12 cells. J Nutr Biochem, 2009. 20(5): p. 350-7.
131. Li, H., et al., Water-soluble coenzyme q10 inhibits nuclear translocation of apoptosis inducing factor and cell death caused by mitochondrial complex I inhibition. Int J Mol Sci, 2014. 15(8): p. 13388-400.
132. Devun, F., et al., Ubiquinone analogs: a mitochondrial permeability transition pore-dependent pathway to selective cell death. PloS one, 2010. 5(7): p. e11792-e11792.
133. McBean, G.J., Cysteine, Glutathione, and Thiol Redox Balance in Astrocytes. Antioxidants (Basel, Switzerland), 2017. 6(3): p. 62.
134. Arroyo, A., et al., NADH and NADPH-Dependent Reduction of Coenzyme Q at the Plasma Membrane. Antioxidants & Redox Signaling, 2000. 2(2): p. 251-262.
135. Tomasetti, M., et al., Coenzyme Q10 enrichment decreases oxidative DNA damage in human lymphocytes. Free Radical Biology and Medicine, 1999. 27(9): p. 1027-1032.
136. Jing, L., et al., Coenzyme Q10 protects astrocytes from ROS-induced damage through inhibition of mitochondria-mediated cell death pathway. International journal of biological sciences, 2015. 11(1): p. 59.
137. Schiweck, J., B.J. Eickholt, and K. Murk, Important Shapeshifter: Mechanisms Allowing Astrocytes to Respond to the Changing Nervous System During Development, Injury and Disease. Frontiers in Cellular Neuroscience, 2018. 12(261).
138. C.S. Chiang, W.H. McBride, and H.R. Withers, . 1993.
139. Viedma-Poyatos, Á., et al., The cysteine residue of glial fibrillary acidic protein is a critical target for lipoxidation and required for efficient network organization. Free Radical Biology and Medicine, 2018. 120: p. 380-394.
140. Bonora, M. and P. Pinton, The mitochondrial permeability transition pore and cancer: molecular mechanisms involved in cell death. Frontiers in oncology, 2014. 4: p. 302-302.
141. Brenner, C. and S. Grimm, The permeability transition pore complex in cancer cell death. Oncogene, 2006. 25(34): p. 4744.
142. Fulda, S., L. Galluzzi, and G. Kroemer, Targeting mitochondria for cancer therapy. Nature reviews Drug discovery, 2010. 9(6): p. 447.
143. Li, N., et al., A mitochondria-targeted nanoradiosensitizer activating reactive oxygen species burst for enhanced radiation therapy. Chemical Science, 2018. 9(12): p. 3159-3164.
144. Memmel, S., et al., Cell surface area and membrane folding in glioblastoma cell lines differing in PTEN and p53 status. PLoS One, 2014. 9(1): p. e87052.
145. Sant, S. and P.A. Johnston, The production of 3D tumor spheroids for cancer drug discovery. Drug Discovery Today: Technologies, 2017. 23: p. 27-36.
146. Gutmann, D.H., et al., Heterozygosity for the neurofibromatosis 1 (NF1) tumor suppressor results in abnormalities in cell attachment, spreading and motility in astrocytes. Human Molecular Genetics, 2001. 10(26): p. 3009-3016.
147. Raptis, L., et al., Beyond structure, to survival: activation of Stat3 by cadherin engagement. Biochem Cell Biol, 2009. 87(6): p. 835-43.
148. von Manstein, V. and B. Groner, Tumor cell resistance against targeted therapeutics: the density of cultured glioma tumor cells enhances Stat3 activity and offers protection against the tyrosine kinase inhibitor canertinib. Medchemcomm, 2017. 8(1): p. 96-102.
149. Wank, M., et al., Human Glioma Migration and Infiltration Properties as a Target for Personalized Radiation Medicine. Cancers (Basel), 2018. 10(11).
150. Liu, C.A., et al., Migration/Invasion of Malignant Gliomas and Implications for Therapeutic Treatment. Int J Mol Sci, 2018. 19(4).

(此全文限內部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *