帳號:guest(18.191.154.174)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳維辰
作者(外文):Chen, Wei-Chen
論文名稱(中文):可注射型多孔金奈米腦/微米水膠球複合材料應用於創傷性腦損傷治療
論文名稱(外文):Injection of Microporous Annealing Au Nanobrain/Microhydrogel with Controlled Drug Release for Traumatic Brain Injury Therapy
指導教授(中文):胡尚秀
指導教授(外文):Hu, Shang-Hsiu
口試委員(中文):陳冠宇
姜文軒
彭志剛
口試委員(外文):Chen, Guan-Yu
Chiang, Wen-Hsuan
Peng, Chih-Kang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:105012503
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:58
中文關鍵詞:腦創傷水膠球奈米金粒子普羅布考星狀膠疤痕神經新生
外文關鍵詞:TBIgold nanoparticleprobucolglial scarneuron reborn
相關次數:
  • 推薦推薦:0
  • 點閱點閱:174
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在現今的日常生活中,許多原因可能造成腦創傷(TBI),例如車禍,激烈的運動,或是來自外界的直接重挫都有可能造成腦創傷,程度較輕的腦創傷會造成頭痛,暈眩,四肢不協調等,嚴重的情形則是會造成語言困難,四肢癱瘓,甚至是造成死亡。腦創傷的症狀只會不斷地變嚴重,不會自然的好轉,原因是因為在創傷的邊界會形成一個膠質疤痕,這疤痕會阻擋神經祖細胞進入創傷處分化成新生的神經細胞。在本研究中,我們製備出可注射的水膠球,可以注入腦創傷區使星狀膠細胞不會聚集於創傷邊界並且成為一個細胞支架,使新生細胞能隨著支架中的空隙生長,另外我們結合了可以應用於外部磁場以控制釋放藥物的多孔性金奈米粒子,透過電子顯微鏡(SEM)的觀察,可以看到奈米金粒子的外觀有如大腦一樣,其表面有著交錯的條狀結構,提供奈米金多孔的特性,這多孔的特性使奈米金具有攜帶藥物的能力,並在藉由外界高週波的刺激,瞬間的相反電場可使藥物釋放,達到治療的效果。在本研究中,我們使用的藥物為普羅布考(probucol),此藥物原為用於降血脂的功能,於近期發現,此藥物可以抗氧化並且使細胞的能量消耗降低,以達到保護神經細胞的效果。經過表面電荷分析,改質後的金表面電荷為+12mV,可以由靜電吸引力吸附於表面電荷為-8mV的水膠球上,另外,測得普羅布考的電荷為負電,因此,除了可藉由金的多孔性吸附於孔洞中,亦可經由其靜電吸引力吸附。在本研究中發現,使細胞與水膠球共培養7天後,再以共軛焦顯微鏡拍攝,可以看到細胞能攀附在水膠球上,並且能將水膠球固定於基底上。在動物實驗中,我們以電鑽磨開老鼠的頭蓋骨,並再以生物穿孔器,於老鼠的大腦挖出一個直徑2mm,深度2mm的創傷,並以抗沾黏膜覆蓋住,再將傷口縫起來,於4天後再將傷口打開,填入水膠球於傷口中,並於3天後犧牲並將大腦切片。我們以GFAP來染色星狀膠細胞,以觀察疤痕的厚度以及其傷口周圍的螢光強度,可以發現疤痕的厚度由原本的200μm,經過水膠填入後,可以使疤痕的厚度幾乎消失,Iba-1用以微染膠質細胞,以觀察傷口處附近的免疫反應情形,以NeuN作為神經細胞的標靶,觀察藥物對於神經細胞保護的情形,最後再以BrdU染色新生的細胞,觀察傷口周圍是否有新生細胞的產生,最後以螢光強度分析,此水膠球與奈米金和藥物的結合,對於治療腦創傷有著不錯的治療潛力。

In today's daily life, many causes may cause trauma brain injury (TBI). For example, car accidents, intense sports, or direct heavy losses from the outside world can cause brain trauma. Lesser degree of brain trauma can cause headaches, dizziness, incompatibility of limbs, etc. In severe cases, it can cause language difficulties, limb paralysis, and even death. The symptoms of brain trauma will only continue to become severe and will not naturally improve, because a glial scar is formed at the boundary of the wound, which will block the neural progenitor cells from entering the wound and differentiate into new nerve cells. In this study, we prepared an injectable microgel ball that can be injected into the brain wound area so that the astrocyte does not accumulate at the wound boundary and becomes a cell scaffold, allowing the new cells to grow on the microgel scaffold. In addition, we combined porous gold nanoparticles that can be applied to an external magnetic field to control the release of drugs. Through observation by electron microscopy (SEM), it can be seen that the appearance of nano-gold particles is like the brain, and the surface has staggered strips. The structure provides the porous nature of nanogold. This porous property makes nanogold have the ability to carry drugs, and by the external high-frequency stimulation, the instantaneous opposite electric field can release the drug to achieve the therapeutic effect. In this study, the drug we used was probucol, which was originally used to lower blood fat. It was recently discovered that the drug can resist oxidation and reduce the energy consumption of cells to protect nerve cells. After zeta poential analysis, the modified gold surface charge is +12mV, which can be adsorbed on the water gel ball with a surface charge of -8mV by electrostatic attraction. In addition, the charge of probucol is negative, so probucol could be adsorbed in the pores and can also be adsorbed via its electrostatic attraction. In the present study, it was found that after the cells were co-cultured with the water-gel ball for 7 days, and then photographed with a conjugated focus microscope, it was observed that the cells could adhere to the microgel ball and the ball could be fixed on the substrate. In vivo experiment, we used the electric drill to open the skull of the mouse, and then used a biopunch to dig a wound with a diameter of 2 mm and a depth of 2 mm in the brain of the mouse, and covered it with anti-adhesion film, and then stitched the wound. The wound was opened 4 days later, filled with a water gel ball in the wound, and sacrificed 3 days later and the brain was sliced. We stained astrocyte cells with GFAP to observe the thickness of the scar and the intensity of the fluorescence around the wound. We observed that after filling in the microgel, the thickness of glial scar would be from 200μm to almost disappeared. Iba-1 was used to stain microglia cells to observe the immune response near the wound. Using NeuN as a label of nerve cells to observe the drug protection for nerve cells, and finally staining the newborn cells with BrdU, observed whether there were new born cells around the wound, and finally analyze the fluorescence intensity, the combination of the microgel ball and nano gold and drugs. It has a good therapeutic potential for the treatment of brain trauma.
中文摘要 III
Abstract V
Chapter 1 Literature review and theory 1
1.1 Introduction of traumatic brain injury 1
1.2 Introduction of astrocyte and microglia 5
1.3 Introduction of injectable materials 8
1.4 Nowadays tactic of nanoparticle 11
1.4.1 Composition 11
1.4.2 Surface Modification 14
1.4.3 Size 14
1.4.4 Surface charge 14
1.5 Functions of probucol 15
Chapter 2. Experiment section 17
2.1 Materials 17
2.2 Apparatus 18
2.3 Methods 19
2.3.1 Composite of porous gold nanoparticles (GNB) 19
2.3.2 Modification of GNB 19
2.3.3 Synthesis of GelMA 19
2.3.4 Microfluidic chip manufacturing 20
2.3.5 Using microfluidic chip to fabricate microgels 21
2.3.6 Loading probucol in GNB and combine gelma microporous hydrogel with GNB 21
2.3.7 Cell culture 21
2.3.8 Cell viability assay 22
2.3.9 Cellular uptake of GNB, GNB-probucol, GNB-HFMF and GNB-probucol-HFMF 23
2.3.10 In vivo experiments 23
Chapter 3. Results and Discussions 25
3.1 Composite and characterization of GNB 25
3.2 The characterization of microgel and probucol 26
3.3 Cell uptake and cytotoxicity 30
3.4 Cells cultured on microgel 35
3.5 In vivo therapy and analysis 36
Chapter 4. Conclusion 47

1. Bharadwaj, V. N.; Nguyen, D. T.; Kodibagkar, V. D.; Stabenfeldt, S. E., Nanoparticle‐Based Therapeutics for Brain Injury. Advanced healthcare materials 2018, 7 (1), 1700668.
2. Dash, P. K.; Zhao, J.; Hergenroeder, G.; Moore, A. N., Biomarkers for the diagnosis, prognosis, and evaluation of treatment efficacy for traumatic brain injury. Neurotherapeutics 2010, 7 (1), 100-114.
3. Lezak, M. D.; Howieson, D. B.; Loring, D. W.; Fischer, J. S., Neuropsychological assessment. Oxford University Press, USA: 2004; p 66.
4. Hachinski, V.; Iadecola, C.; Petersen, R. C.; Breteler, M. M.; Nyenhuis, D. L.; Black, S. E.; Powers, W. J.; DeCarli, C.; Merino, J. G.; Kalaria, R. N., National Institute of Neurological Disorders and Stroke–Canadian stroke network vascular cognitive impairment harmonization standards. Stroke 2006, 37 (9), 2220-2241.
5. Ponsford, J.; Draper, K.; Schönberger, M., Functional outcome 10 years after traumatic brain injury: its relationship with demographic, injury severity, and cognitive and emotional status. Journal of the International Neuropsychological Society 2008, 14 (2), 233-242.
6. Ghajar, J., Traumatic brain injury. The Lancet 2000, 356 (9233), 923-929.
7. Milders, M.; Fuchs, S.; Crawford, J. R., Neuropsychological impairments and changes in emotional and social behaviour following severe traumatic brain injury. Journal of clinical and experimental neuropsychology 2003, 25 (2), 157-172.
8. Ownsworth, T.; Fleming, J., The relative importance of metacognitive skills, emotional status, and executive function in psychosocial adjustment following acquired brain injury. The Journal of head trauma rehabilitation 2005, 20 (4), 315-332.
9. Feliciano, D., Abdominal Vascular Injury. Moore EE. Feliciano DV, Mattox KL. Trauma. McGraw-Hill, New York: 2004.
10. Sauaia, A.; Moore, F. A.; Moore, E. E.; Moser, K. S.; Brennan, R.; Read, R. A.; Pons, P. T., Epidemiology of trauma deaths: a reassessment. Journal of Trauma and Acute Care Surgery 1995, 38 (2), 185-193.
11. Porth, C., Essentials of pathophysiology: concepts of altered health states. Lippincott Williams & Wilkins: 2011.
12. Valadka, A.; Andrews, B., Neurotrauma: Evidence Based Answers to Common Questions. Annals of the Royal College of Surgeons of England 2005, 87 (4), 301.
13. Granacher Jr, R. P., Traumatic brain injury: Methods for clinical and forensic neuropsychiatric assessment. CRC Press: 2007.
14. Park, E.; Bell, J. D.; Baker, A. J., Traumatic brain injury: can the consequences be stopped? Canadian Medical Association Journal 2008, 178 (9), 1163-1170.
15. Macdonald, R. L.; STOODLEY, M., Pathophysiology of cerebral ischemia. Neurologia medico-chirurgica 1998, 38 (1), 1-11.
16. Bramlett, H. M.; Dietrich, W. D., Pathophysiology of cerebral ischemia and brain trauma: similarities and differences. Journal of Cerebral Blood Flow & Metabolism 2004, 24 (2), 133-150.
17. Hao, P.; Duan, H.; Hao, F.; Chen, L.; Sun, M.; Fan, K. S.; Sun, Y. E.; Williams, D.; Yang, Z.; Li, X., Neural repair by NT3-chitosan via enhancement of endogenous neurogenesis after adult focal aspiration brain injury. Biomaterials 2017, 140, 88-102.
18. Alves, J. L., Blood–brain barrier and traumatic brain injury. Journal of neuroscience research 2014, 92 (2), 141-147.
19. Muradashvili, N.; Lominadze, D., Role of fibrinogen in cerebrovascular dysfunction after traumatic brain injury. Brain injury 2013, 27 (13-14), 1508-1515.
20. Ramlackhansingh, A. F.; Brooks, D. J.; Greenwood, R. J.; Bose, S. K.; Turkheimer, F. E.; Kinnunen, K. M.; Gentleman, S.; Heckemann, R. A.; Gunanayagam, K.; Gelosa, G., Inflammation after trauma: microglial activation and traumatic brain injury. Annals of neurology 2011, 70 (3), 374-383.
21. Hinzman, J. M.; Wilson, J. A.; Mazzeo, A. T.; Bullock, M. R.; Hartings, J. A., Excitotoxicity and metabolic crisis are associated with spreading depolarizations in severe traumatic brain injury patients. Journal of neurotrauma 2016, 33 (19), 1775-1783.
22. Elsayed, M.; Agoston, D. V., Serum-based protein biomarkers in blast-induced traumatic brain injury spectrum disorder. Frontiers in neurology 2012, 3, 107.
23. Saha, B.; Peron, S.; Murray, K.; Jaber, M.; Gaillard, A., Cortical lesion stimulates adult subventricular zone neural progenitor cell proliferation and migration to the site of injury. Stem cell research 2013, 11 (3), 965-977.
24. Anderson, M. A.; Burda, J. E.; Ren, Y.; Ao, Y.; O’Shea, T. M.; Kawaguchi, R.; Coppola, G.; Khakh, B. S.; Deming, T. J.; Sofroniew, M. V., Astrocyte scar formation aids central nervous system axon regeneration. Nature 2016, 532 (7598), 195.
25. Chen, Y.; Swanson, R. A. J. J. o. C. B. F.; Metabolism, Astrocytes and brain injury. 2003, 23 (2), 137-149.
26. Sosunov, A. A.; Wu, X.; Tsankova, N. M.; Guilfoyle, E.; McKhann, G. M.; Goldman, J. E. J. J. o. N., Phenotypic heterogeneity and plasticity of isocortical and hippocampal astrocytes in the human brain. 2014, 34 (6), 2285-2298.
27. Sofroniew, M. V.; Vinters, H. V. J. A. n., Astrocytes: biology and pathology. 2010, 119 (1), 7-35.
28. Silver, J.; Miller, J. H. J. N. r. n., Regeneration beyond the glial scar. 2004, 5 (2), 146.
29. Ribotta, M.; Menet, V.; Privat, A., Glial scar and axonal regeneration in the CNS: lessons from GFAP and vimentin transgenic mice. In Mechanisms of Secondary Brain Damage from Trauma and Ischemia, Springer: 2004; pp 87-92.
30. Hickey, W. F.; Kimura, H. J. S., Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. 1988, 239 (4837), 290-292.
31. Tambuyzer, B. R.; Ponsaerts, P.; Nouwen, E. J. J. J. o. l. b., Microglia: gatekeepers of central nervous system immunology. 2009, 85 (3), 352-370.
32. Graeber, M. B.; Streit, W. J.; Kiefer, R.; Schoen, S. W.; Kreutzberg, G. W. J. J. o. n., New expression of myelomonocytic antigens by microglia and perivascular cells following lethal motor neuron injury. 1990, 27 (2-3), 121-132.
33. Kigerl, K. A.; Gensel, J. C.; Ankeny, D. P.; Alexander, J. K.; Donnelly, D. J.; Popovich, P. G. J. J. o. N., Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. 2009, 29 (43), 13435-13444.
34. Hernández-Jiménez, M.; Hurtado, O.; Cuartero, M. I.; Ballesteros, I.; Moraga, A.; Pradillo, J. M.; McBurney, M. W.; Lizasoain, I.; Moro, M. A. J. S., Silent information regulator 1 protects the brain against cerebral ischemic damage. 2013, 44 (8), 2333-2337.
35. Sharma, U.; Concagh, D.; Core, L.; Kuang, Y.; You, C.; Pham, Q.; Zugates, G.; Busold, R.; Webber, S.; Merlo, J., The development of bioresorbable composite polymeric implants with high mechanical strength. Nature materials 2018, 17 (1), 96.
36. Montgomery, M.; Ahadian, S.; Huyer, L. D.; Rito, M. L.; Civitarese, R. A.; Vanderlaan, R. D.; Wu, J.; Reis, L. A.; Momen, A.; Akbari, S., Flexible shape-memory scaffold for minimally invasive delivery of functional tissues. Nature materials 2017, 16 (10), 1038.
37. Mehrali, M.; Thakur, A.; Pennisi, C. P.; Talebian, S.; Arpanaei, A.; Nikkhah, M.; Dolatshahi‐Pirouz, A., Nanoreinforced Hydrogels for Tissue Engineering: Biomaterials that are Compatible with Load‐Bearing and Electroactive Tissues. Advanced Materials 2017, 29 (8), 1603612.
38. Rosales, A. M.; Anseth, K. S., The design of reversible hydrogels to capture extracellular matrix dynamics. Nature Reviews Materials 2016, 1 (2), 15012.
39. Kim, Y.-M.; Park, H. H.; Hwang, D. H.; Cui, Y.; Lee, E. M.; Yahn, S.; Lee, J. K.; Song, S.-C.; Kim, B. G., An injectable hydrogel enhances tissue repair after spinal cord injury by promoting extracellular matrix remodeling. Nature communications 2017, 8 (1), 533.
40. Caliari, S. R.; Burdick, J. A., A practical guide to hydrogels for cell culture. Nature methods 2016, 13 (5), 405.
41. Annabi, N.; Tamayol, A.; Uquillas, J. A.; Akbari, M.; Bertassoni, L. E.; Cha, C.; Camci‐Unal, G.; Dokmeci, M. R.; Peppas, N. A.; Khademhosseini, A., 25th anniversary article: Rational design and applications of hydrogels in regenerative medicine. Advanced materials 2014, 26 (1), 85-124.
42. Kumar, P.; Pandit, A.; Zeugolis, D. I., Progress in Corneal Stromal Repair: From Tissue Grafts and Biomaterials to Modular Supramolecular Tissue‐Like Assemblies. Advanced Materials 2016, 28 (27), 5381-5399.
43. Kang, H.-W.; Lee, S. J.; Ko, I. K.; Kengla, C.; Yoo, J. J.; Atala, A., A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nature biotechnology 2016, 34 (3), 312.
44. Zhao, Z.; Fang, R.; Rong, Q.; Liu, M., Bioinspired nanocomposite hydrogels with highly ordered structures. Advanced Materials 2017, 29 (45), 1703045.
45. Ragelle, H.; Tibbitt, M. W.; Wu, S.-Y.; Castillo, M. A.; Cheng, G. Z.; Gangadharan, S. P.; Anderson, D. G.; Cima, M. J.; Langer, R., Surface tension-assisted additive manufacturing. Nature communications 2018, 9 (1), 1184.
46. Alijotas-Reig, J.; Fernández-Figueras, M. T.; Puig, L., Late-onset inflammatory adverse reactions related to soft tissue filler injections. Clinical reviews in allergy & immunology 2013, 45 (1), 97-108.
47. Discher, D. E.; Mooney, D. J.; Zandstra, P. W., Growth factors, matrices, and forces combine and control stem cells. Science 2009, 324 (5935), 1673-1677.
48. Yang, B.; Yao, F.; Hao, T.; Fang, W.; Ye, L.; Zhang, Y.; Wang, Y.; Li, J.; Wang, C., Development of Electrically Conductive Double‐Network Hydrogels via One‐Step Facile Strategy for Cardiac Tissue Engineering. Advanced healthcare materials 2016, 5 (4), 474-488.
49. Mondschein, R. J.; Kanitkar, A.; Williams, C. B.; Verbridge, S. S.; Long, T. E., Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds. Biomaterials 2017, 140, 170-188.
50. Wu, J.; Li, P.; Dong, C.; Jiang, H.; Xue, B.; Gao, X.; Qin, M.; Wang, W.; Cao, Y., Rationally designed synthetic protein hydrogels with predictable mechanical properties. Nature communications 2018, 9 (1), 620.
51. Vega, S. L.; Kwon, M. Y.; Song, K. H.; Wang, C.; Mauck, R. L.; Han, L.; Burdick, J. A., Combinatorial hydrogels with biochemical gradients for screening 3D cellular microenvironments. Nature communications 2018, 9 (1), 614.
52. Dodla, M. C.; Bellamkonda, R. V., Differences between the effect of anisotropic and isotropic laminin and nerve growth factor presenting scaffolds on nerve regeneration across long peripheral nerve gaps. Biomaterials 2008, 29 (1), 33-46.
53. Mohagheghian, E.; Luo, J.; Chen, J.; Chaudhary, G.; Chen, J.; Sun, J.; Ewoldt, R. H.; Wang, N., Quantifying compressive forces between living cell layers and within tissues using elastic round microgels. Nature communications 2018, 9 (1), 1878.
54. Sant, S.; Hancock, M. J.; Donnelly, J. P.; Iyer, D.; Khademhosseini, A., Biomimetic gradient hydrogels for tissue engineering. The Canadian journal of chemical engineering 2010, 88 (6), 899-911.
55. Griffin, D. R.; Weaver, W. M.; Scumpia, P. O.; Di Carlo, D.; Segura, T., Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nature materials 2015, 14 (7), 737.
56. Huebsch, N.; Lippens, E.; Lee, K.; Mehta, M.; Koshy, S. T.; Darnell, M. C.; Desai, R. M.; Madl, C. M.; Xu, M.; Zhao, X., Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation. Nature materials 2015, 14 (12), 1269.
57. Nih, L. R.; Sideris, E.; Carmichael, S. T.; Segura, T., Injection of microporous annealing particle (MAP) hydrogels in the stroke cavity reduces gliosis and inflammation and promotes NPC migration to the lesion. Advanced Materials 2017, 29 (32), 1606471.
58. Appel, E. A.; Tibbitt, M. W.; Webber, M. J.; Mattix, B. A.; Veiseh, O.; Langer, R., Self-assembled hydrogels utilizing polymer–nanoparticle interactions. Nature communications 2015, 6, 6295.
59. Sun, T. L.; Kurokawa, T.; Kuroda, S.; Ihsan, A. B.; Akasaki, T.; Sato, K.; Haque, M. A.; Nakajima, T.; Gong, J. P., Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nature materials 2013, 12 (10), 932.
60. Yu, Z.; Liu, J.; Tan, C. S. Y.; Scherman, O. A.; Abell, C., Supramolecular Nested Microbeads as Building Blocks for Macroscopic Self‐Healing Scaffolds. Angewandte Chemie International Edition 2018, 57 (12), 3079-3083.
61. Hager, M. D.; Greil, P.; Leyens, C.; van der Zwaag, S.; Schubert, U. S., Self‐healing materials. Advanced Materials 2010, 22 (47), 5424-5430.
62. Diba, M.; Wang, H.; Kodger, T. E.; Parsa, S.; Leeuwenburgh, S. C., Highly Elastic and Self‐Healing Composite Colloidal Gels. Advanced Materials 2017, 29 (11), 1604672.
63. Mealy, J. E.; Chung, J. J.; Jeong, H. H.; Issadore, D.; Lee, D.; Atluri, P.; Burdick, J. A., Injectable Granular Hydrogels with Multifunctional Properties for Biomedical Applications. Advanced Materials 2018, 30 (20), 1705912.
64. Wang, H.; Zou, Q.; Boerman, O. C.; Nijhuis, A. W.; Jansen, J. A.; Li, Y.; Leeuwenburgh, S. C., Combined delivery of BMP-2 and bFGF from nanostructured colloidal gelatin gels and its effect on bone regeneration in vivo. Journal of Controlled Release 2013, 166 (2), 172-181.
65. Diba, M.; Camargo, W. A.; Brindisi, M.; Farbod, K.; Klymov, A.; Schmidt, S.; Harrington, M. J.; Draghi, L.; Boccaccini, A. R.; Jansen, J. A., Composite Colloidal Gels Made of Bisphosphonate‐Functionalized Gelatin and Bioactive Glass Particles for Regeneration of Osteoporotic Bone Defects. Advanced Functional Materials 2017, 27 (45), 1703438.
66. Kanwar, J. R.; Sun, X.; Punj, V.; Sriramoju, B.; Mohan, R. R.; Zhou, S.-F.; Chauhan, A.; Kanwar, R. K., Nanoparticles in the treatment and diagnosis of neurological disorders: untamed dragon with fire power to heal. Nanomedicine: Nanotechnology, Biology and Medicine 2012, 8 (4), 399-414.
67. Singh, R.; Lillard Jr, J. W., Nanoparticle-based targeted drug delivery. Experimental and molecular pathology 2009, 86 (3), 215-223.
68. Hans, M.; Lowman, A., Biodegradable nanoparticles for drug delivery and targeting. Current Opinion in Solid State and Materials Science 2002, 6 (4), 319-327.
69. Petros, R. A.; DeSimone, J. M., Strategies in the design of nanoparticles for therapeutic applications. Nature reviews Drug discovery 2010, 9 (8), 615.
70. Shi, J.; Votruba, A. R.; Farokhzad, O. C.; Langer, R., Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano letters 2010, 10 (9), 3223-3230.
71. Mohanraj, V.; Chen, Y., Nanoparticles-a review. Tropical journal of pharmaceutical research 2006, 5 (1), 561-573.
72. Sahoo, S. K.; Misra, R.; Parveen, S., Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. In Nanomedicine in Cancer, Pan Stanford: 2017; pp 73-124.
73. Masserini, M., Nanoparticles for brain drug delivery. ISRN biochemistry 2013, 2013.
74. Müller, R. H.; MaÈder, K.; Gohla, S., Solid lipid nanoparticles (SLN) for controlled drug delivery–a review of the state of the art. European journal of pharmaceutics and biopharmaceutics 2000, 50 (1), 161-177.
75. Lu, Y.-m.; Huang, J.-y.; Wang, H.; Lou, X.-f.; Liao, M.-h.; Hong, L.-j.; Tao, R.-r.; Ahmed, M. M.; Shan, C.-l.; Wang, X.-l., Targeted therapy of brain ischaemia using Fas ligand antibody conjugated PEG-lipid nanoparticles. Biomaterials 2014, 35 (1), 530-537.
76. Gadhvi, V.; Brijesh, K.; Gupta, A.; Roopchandani, K.; Patel, N., Nanoparticles for Brain Targeting. Research Journal of Pharmacy and Technology 2013, 6 (5), 1.
77. Sokolova, V.; Epple, M., Bioceramic nanoparticles for tissue engineering and drug delivery. In Tissue Engineering Using Ceramics and Polymers (Second Edition), Elsevier: 2014; pp 633-647.
78. Karchemski, F.; Zucker, D.; Barenholz, Y.; Regev, O., Carbon nanotubes-liposomes conjugate as a platform for drug delivery into cells. Journal of controlled release 2012, 160 (2), 339-345.
79. Zhang, Y.; Wang, B.; Meng, X.; Sun, G.; Gao, C., Influences of acid-treated multiwalled carbon nanotubes on fibroblasts: proliferation, adhesion, migration, and wound healing. Annals of biomedical engineering 2011, 39 (1), 414-426.
80. Liang, F.; Chen, B., A review on biomedical applications of single-walled carbon nanotubes. Current medicinal chemistry 2010, 17 (1), 10-24.
81. Lu, W.-L.; Qi, X.-R.; Zhang, Q.; Li, R.-Y.; Wang, G.-L.; Zhang, R.-J.; Wei, S.-L., A pegylated liposomal platform: pharmacokinetics, pharmacodynamics, and toxicity in mice using doxorubicin as a model drug. Journal of pharmacological sciences 2004, 95 (3), 381-389.
82. Sadzuka, Y.; Hirotsu, S.; Hirota, S., Effect of liposomalization on the antitumor activity, side-effects and tissue distribution of CPT-11. Cancer letters 1998, 127 (1-2), 99-106.
83. Scott, M. D.; Murad, K. L., Cellular camouflage: fooling the immune system with polymers. Current pharmaceutical design 1998, 4 (6), 423-438.
84. Ernsting, M. J.; Murakami, M.; Roy, A.; Li, S.-D., Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. Journal of Controlled Release 2013, 172 (3), 782-794.
85. Choi, H. S.; Liu, W.; Misra, P.; Tanaka, E.; Zimmer, J. P.; Ipe, B. I.; Bawendi, M. G.; Frangioni, J. V., Renal clearance of quantum dots. Nature biotechnology 2007, 25 (10), 1165.
86. Merbach, A. S., The chemistry of contrast agents in medical magnetic resonance imaging. John Wiley & Sons: 2013.
87. Jo, D. H.; Kim, J. H.; Lee, T. G.; Kim, J. H., Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine: Nanotechnology, Biology and Medicine 2015, 11 (7), 1603-1611.
88. Saraiva, C.; Praça, C.; Ferreira, R.; Santos, T.; Ferreira, L.; Bernardino, L., Nanoparticle-mediated brain drug delivery: overcoming blood–brain barrier to treat neurodegenerative diseases. Journal of Controlled Release 2016, 235, 34-47.
89. Hillaireau, H.; Couvreur, P., Nanocarriers’ entry into the cell: relevance to drug delivery. Cellular and molecular life sciences 2009, 66 (17), 2873-2896.
90. Schipper, M. L.; Iyer, G.; Koh, A. L.; Cheng, Z.; Ebenstein, Y.; Aharoni, A.; Keren, S.; Bentolila, L. A.; Li, J.; Rao, J., Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small 2009, 5 (1), 126-134.
91. Li, S.-D.; Huang, L., Pharmacokinetics and biodistribution of nanoparticles. Molecular pharmaceutics 2008, 5 (4), 496-504.
92. Lockman, P. R.; Koziara, J. M.; Mumper, R. J.; Allen, D. D., Nanoparticle surface charges alter blood–brain barrier integrity and permeability. Journal of drug targeting 2004, 12 (9-10), 635-641.
93. Yamamoto, A. J. J. o. a.; thrombosis, A uniqe antilipidemic drug—probucol. 2008, 15 (6), 304-305.
94. Sia, Y. T.; Parker, T. G.; Liu, P.; Tsoporis, J. N.; Adam, A.; Rouleau, J. L. J. J. o. t. A. C. o. C., Improved post-myocardial infarction survival with probucol in rats: effects on left ventricular function, morphology, cardiac oxidative stress and cytokine expression. 2002, 39 (1), 148-156.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 具光熱應答性乳鐵蛋白修飾奈米豌豆應用於雷射刺激藥物釋放、腫瘤標靶與光熱/化學協同治療
2. 磁性奈米殼核膠囊特性改質應用於疏水性藥物控制釋放與增強腫瘤治療
3. 磷脂質修飾多孔碳矽複合奈米片經磁刺激 用於加強類神經細胞分化和腫瘤治療
4. 具標靶功能紅血球膜包覆介孔性二氧化矽奈米粒子應用於藥物輸送與光熱治療
5. 具藥物再填充之可注射型磁性多孔隙複合奈米載體應於腫瘤治療
6. 仿紅血球多孔磁性奈米粒子用於增強阿黴素- 高分子粒子釋放應用於轉移肺腫瘤治療
7. 多孔碳球/氧化石墨烯複合材料應用於高靈敏性偵測循環腫瘤細胞
8. 具自發性多重階段標靶與穿透的磁製藥物傳輸系統應用於腫瘤深處的協同治療
9. 3D列印應用於具階段性藥物控制釋放磁性微針製備於雄性禿治療
10. 具磁電操控表面電性之金奈米腦攜帶可穿透次級藥物載體應用於腦瘤深度治療
11. 可躲避免疫系統偵測之外泌體修飾奈米氧化鐵應用於黑色素瘤轉移型之肺癌治療
12. 可注射式新月形水膠微球與具磁電操控表面電性之金奈米腦應用於腦創傷的修復
13. 外泌體修飾磁性奈米粒子透過對流增強遞送系統應用於腦瘤治療
14. 具光熱免疫療法之巨噬細胞外泌體裝飾金/銀殼核三角奈米板結合檢查點阻斷劑應用於抑制轉移性腫瘤
15. 石墨烯奈米複合材料之穿透藥物傳遞應用於深度腦部腫瘤治療
 
* *