|
1. Bharadwaj, V. N.; Nguyen, D. T.; Kodibagkar, V. D.; Stabenfeldt, S. E., Nanoparticle‐Based Therapeutics for Brain Injury. Advanced healthcare materials 2018, 7 (1), 1700668. 2. Dash, P. K.; Zhao, J.; Hergenroeder, G.; Moore, A. N., Biomarkers for the diagnosis, prognosis, and evaluation of treatment efficacy for traumatic brain injury. Neurotherapeutics 2010, 7 (1), 100-114. 3. Lezak, M. D.; Howieson, D. B.; Loring, D. W.; Fischer, J. S., Neuropsychological assessment. Oxford University Press, USA: 2004; p 66. 4. Hachinski, V.; Iadecola, C.; Petersen, R. C.; Breteler, M. M.; Nyenhuis, D. L.; Black, S. E.; Powers, W. J.; DeCarli, C.; Merino, J. G.; Kalaria, R. N., National Institute of Neurological Disorders and Stroke–Canadian stroke network vascular cognitive impairment harmonization standards. Stroke 2006, 37 (9), 2220-2241. 5. Ponsford, J.; Draper, K.; Schönberger, M., Functional outcome 10 years after traumatic brain injury: its relationship with demographic, injury severity, and cognitive and emotional status. Journal of the International Neuropsychological Society 2008, 14 (2), 233-242. 6. Ghajar, J., Traumatic brain injury. The Lancet 2000, 356 (9233), 923-929. 7. Milders, M.; Fuchs, S.; Crawford, J. R., Neuropsychological impairments and changes in emotional and social behaviour following severe traumatic brain injury. Journal of clinical and experimental neuropsychology 2003, 25 (2), 157-172. 8. Ownsworth, T.; Fleming, J., The relative importance of metacognitive skills, emotional status, and executive function in psychosocial adjustment following acquired brain injury. The Journal of head trauma rehabilitation 2005, 20 (4), 315-332. 9. Feliciano, D., Abdominal Vascular Injury. Moore EE. Feliciano DV, Mattox KL. Trauma. McGraw-Hill, New York: 2004. 10. Sauaia, A.; Moore, F. A.; Moore, E. E.; Moser, K. S.; Brennan, R.; Read, R. A.; Pons, P. T., Epidemiology of trauma deaths: a reassessment. Journal of Trauma and Acute Care Surgery 1995, 38 (2), 185-193. 11. Porth, C., Essentials of pathophysiology: concepts of altered health states. Lippincott Williams & Wilkins: 2011. 12. Valadka, A.; Andrews, B., Neurotrauma: Evidence Based Answers to Common Questions. Annals of the Royal College of Surgeons of England 2005, 87 (4), 301. 13. Granacher Jr, R. P., Traumatic brain injury: Methods for clinical and forensic neuropsychiatric assessment. CRC Press: 2007. 14. Park, E.; Bell, J. D.; Baker, A. J., Traumatic brain injury: can the consequences be stopped? Canadian Medical Association Journal 2008, 178 (9), 1163-1170. 15. Macdonald, R. L.; STOODLEY, M., Pathophysiology of cerebral ischemia. Neurologia medico-chirurgica 1998, 38 (1), 1-11. 16. Bramlett, H. M.; Dietrich, W. D., Pathophysiology of cerebral ischemia and brain trauma: similarities and differences. Journal of Cerebral Blood Flow & Metabolism 2004, 24 (2), 133-150. 17. Hao, P.; Duan, H.; Hao, F.; Chen, L.; Sun, M.; Fan, K. S.; Sun, Y. E.; Williams, D.; Yang, Z.; Li, X., Neural repair by NT3-chitosan via enhancement of endogenous neurogenesis after adult focal aspiration brain injury. Biomaterials 2017, 140, 88-102. 18. Alves, J. L., Blood–brain barrier and traumatic brain injury. Journal of neuroscience research 2014, 92 (2), 141-147. 19. Muradashvili, N.; Lominadze, D., Role of fibrinogen in cerebrovascular dysfunction after traumatic brain injury. Brain injury 2013, 27 (13-14), 1508-1515. 20. Ramlackhansingh, A. F.; Brooks, D. J.; Greenwood, R. J.; Bose, S. K.; Turkheimer, F. E.; Kinnunen, K. M.; Gentleman, S.; Heckemann, R. A.; Gunanayagam, K.; Gelosa, G., Inflammation after trauma: microglial activation and traumatic brain injury. Annals of neurology 2011, 70 (3), 374-383. 21. Hinzman, J. M.; Wilson, J. A.; Mazzeo, A. T.; Bullock, M. R.; Hartings, J. A., Excitotoxicity and metabolic crisis are associated with spreading depolarizations in severe traumatic brain injury patients. Journal of neurotrauma 2016, 33 (19), 1775-1783. 22. Elsayed, M.; Agoston, D. V., Serum-based protein biomarkers in blast-induced traumatic brain injury spectrum disorder. Frontiers in neurology 2012, 3, 107. 23. Saha, B.; Peron, S.; Murray, K.; Jaber, M.; Gaillard, A., Cortical lesion stimulates adult subventricular zone neural progenitor cell proliferation and migration to the site of injury. Stem cell research 2013, 11 (3), 965-977. 24. Anderson, M. A.; Burda, J. E.; Ren, Y.; Ao, Y.; O’Shea, T. M.; Kawaguchi, R.; Coppola, G.; Khakh, B. S.; Deming, T. J.; Sofroniew, M. V., Astrocyte scar formation aids central nervous system axon regeneration. Nature 2016, 532 (7598), 195. 25. Chen, Y.; Swanson, R. A. J. J. o. C. B. F.; Metabolism, Astrocytes and brain injury. 2003, 23 (2), 137-149. 26. Sosunov, A. A.; Wu, X.; Tsankova, N. M.; Guilfoyle, E.; McKhann, G. M.; Goldman, J. E. J. J. o. N., Phenotypic heterogeneity and plasticity of isocortical and hippocampal astrocytes in the human brain. 2014, 34 (6), 2285-2298. 27. Sofroniew, M. V.; Vinters, H. V. J. A. n., Astrocytes: biology and pathology. 2010, 119 (1), 7-35. 28. Silver, J.; Miller, J. H. J. N. r. n., Regeneration beyond the glial scar. 2004, 5 (2), 146. 29. Ribotta, M.; Menet, V.; Privat, A., Glial scar and axonal regeneration in the CNS: lessons from GFAP and vimentin transgenic mice. In Mechanisms of Secondary Brain Damage from Trauma and Ischemia, Springer: 2004; pp 87-92. 30. Hickey, W. F.; Kimura, H. J. S., Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. 1988, 239 (4837), 290-292. 31. Tambuyzer, B. R.; Ponsaerts, P.; Nouwen, E. J. J. J. o. l. b., Microglia: gatekeepers of central nervous system immunology. 2009, 85 (3), 352-370. 32. Graeber, M. B.; Streit, W. J.; Kiefer, R.; Schoen, S. W.; Kreutzberg, G. W. J. J. o. n., New expression of myelomonocytic antigens by microglia and perivascular cells following lethal motor neuron injury. 1990, 27 (2-3), 121-132. 33. Kigerl, K. A.; Gensel, J. C.; Ankeny, D. P.; Alexander, J. K.; Donnelly, D. J.; Popovich, P. G. J. J. o. N., Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. 2009, 29 (43), 13435-13444. 34. Hernández-Jiménez, M.; Hurtado, O.; Cuartero, M. I.; Ballesteros, I.; Moraga, A.; Pradillo, J. M.; McBurney, M. W.; Lizasoain, I.; Moro, M. A. J. S., Silent information regulator 1 protects the brain against cerebral ischemic damage. 2013, 44 (8), 2333-2337. 35. Sharma, U.; Concagh, D.; Core, L.; Kuang, Y.; You, C.; Pham, Q.; Zugates, G.; Busold, R.; Webber, S.; Merlo, J., The development of bioresorbable composite polymeric implants with high mechanical strength. Nature materials 2018, 17 (1), 96. 36. Montgomery, M.; Ahadian, S.; Huyer, L. D.; Rito, M. L.; Civitarese, R. A.; Vanderlaan, R. D.; Wu, J.; Reis, L. A.; Momen, A.; Akbari, S., Flexible shape-memory scaffold for minimally invasive delivery of functional tissues. Nature materials 2017, 16 (10), 1038. 37. Mehrali, M.; Thakur, A.; Pennisi, C. P.; Talebian, S.; Arpanaei, A.; Nikkhah, M.; Dolatshahi‐Pirouz, A., Nanoreinforced Hydrogels for Tissue Engineering: Biomaterials that are Compatible with Load‐Bearing and Electroactive Tissues. Advanced Materials 2017, 29 (8), 1603612. 38. Rosales, A. M.; Anseth, K. S., The design of reversible hydrogels to capture extracellular matrix dynamics. Nature Reviews Materials 2016, 1 (2), 15012. 39. Kim, Y.-M.; Park, H. H.; Hwang, D. H.; Cui, Y.; Lee, E. M.; Yahn, S.; Lee, J. K.; Song, S.-C.; Kim, B. G., An injectable hydrogel enhances tissue repair after spinal cord injury by promoting extracellular matrix remodeling. Nature communications 2017, 8 (1), 533. 40. Caliari, S. R.; Burdick, J. A., A practical guide to hydrogels for cell culture. Nature methods 2016, 13 (5), 405. 41. Annabi, N.; Tamayol, A.; Uquillas, J. A.; Akbari, M.; Bertassoni, L. E.; Cha, C.; Camci‐Unal, G.; Dokmeci, M. R.; Peppas, N. A.; Khademhosseini, A., 25th anniversary article: Rational design and applications of hydrogels in regenerative medicine. Advanced materials 2014, 26 (1), 85-124. 42. Kumar, P.; Pandit, A.; Zeugolis, D. I., Progress in Corneal Stromal Repair: From Tissue Grafts and Biomaterials to Modular Supramolecular Tissue‐Like Assemblies. Advanced Materials 2016, 28 (27), 5381-5399. 43. Kang, H.-W.; Lee, S. J.; Ko, I. K.; Kengla, C.; Yoo, J. J.; Atala, A., A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nature biotechnology 2016, 34 (3), 312. 44. Zhao, Z.; Fang, R.; Rong, Q.; Liu, M., Bioinspired nanocomposite hydrogels with highly ordered structures. Advanced Materials 2017, 29 (45), 1703045. 45. Ragelle, H.; Tibbitt, M. W.; Wu, S.-Y.; Castillo, M. A.; Cheng, G. Z.; Gangadharan, S. P.; Anderson, D. G.; Cima, M. J.; Langer, R., Surface tension-assisted additive manufacturing. Nature communications 2018, 9 (1), 1184. 46. Alijotas-Reig, J.; Fernández-Figueras, M. T.; Puig, L., Late-onset inflammatory adverse reactions related to soft tissue filler injections. Clinical reviews in allergy & immunology 2013, 45 (1), 97-108. 47. Discher, D. E.; Mooney, D. J.; Zandstra, P. W., Growth factors, matrices, and forces combine and control stem cells. Science 2009, 324 (5935), 1673-1677. 48. Yang, B.; Yao, F.; Hao, T.; Fang, W.; Ye, L.; Zhang, Y.; Wang, Y.; Li, J.; Wang, C., Development of Electrically Conductive Double‐Network Hydrogels via One‐Step Facile Strategy for Cardiac Tissue Engineering. Advanced healthcare materials 2016, 5 (4), 474-488. 49. Mondschein, R. J.; Kanitkar, A.; Williams, C. B.; Verbridge, S. S.; Long, T. E., Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds. Biomaterials 2017, 140, 170-188. 50. Wu, J.; Li, P.; Dong, C.; Jiang, H.; Xue, B.; Gao, X.; Qin, M.; Wang, W.; Cao, Y., Rationally designed synthetic protein hydrogels with predictable mechanical properties. Nature communications 2018, 9 (1), 620. 51. Vega, S. L.; Kwon, M. Y.; Song, K. H.; Wang, C.; Mauck, R. L.; Han, L.; Burdick, J. A., Combinatorial hydrogels with biochemical gradients for screening 3D cellular microenvironments. Nature communications 2018, 9 (1), 614. 52. Dodla, M. C.; Bellamkonda, R. V., Differences between the effect of anisotropic and isotropic laminin and nerve growth factor presenting scaffolds on nerve regeneration across long peripheral nerve gaps. Biomaterials 2008, 29 (1), 33-46. 53. Mohagheghian, E.; Luo, J.; Chen, J.; Chaudhary, G.; Chen, J.; Sun, J.; Ewoldt, R. H.; Wang, N., Quantifying compressive forces between living cell layers and within tissues using elastic round microgels. Nature communications 2018, 9 (1), 1878. 54. Sant, S.; Hancock, M. J.; Donnelly, J. P.; Iyer, D.; Khademhosseini, A., Biomimetic gradient hydrogels for tissue engineering. The Canadian journal of chemical engineering 2010, 88 (6), 899-911. 55. Griffin, D. R.; Weaver, W. M.; Scumpia, P. O.; Di Carlo, D.; Segura, T., Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nature materials 2015, 14 (7), 737. 56. Huebsch, N.; Lippens, E.; Lee, K.; Mehta, M.; Koshy, S. T.; Darnell, M. C.; Desai, R. M.; Madl, C. M.; Xu, M.; Zhao, X., Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation. Nature materials 2015, 14 (12), 1269. 57. Nih, L. R.; Sideris, E.; Carmichael, S. T.; Segura, T., Injection of microporous annealing particle (MAP) hydrogels in the stroke cavity reduces gliosis and inflammation and promotes NPC migration to the lesion. Advanced Materials 2017, 29 (32), 1606471. 58. Appel, E. A.; Tibbitt, M. W.; Webber, M. J.; Mattix, B. A.; Veiseh, O.; Langer, R., Self-assembled hydrogels utilizing polymer–nanoparticle interactions. Nature communications 2015, 6, 6295. 59. Sun, T. L.; Kurokawa, T.; Kuroda, S.; Ihsan, A. B.; Akasaki, T.; Sato, K.; Haque, M. A.; Nakajima, T.; Gong, J. P., Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nature materials 2013, 12 (10), 932. 60. Yu, Z.; Liu, J.; Tan, C. S. Y.; Scherman, O. A.; Abell, C., Supramolecular Nested Microbeads as Building Blocks for Macroscopic Self‐Healing Scaffolds. Angewandte Chemie International Edition 2018, 57 (12), 3079-3083. 61. Hager, M. D.; Greil, P.; Leyens, C.; van der Zwaag, S.; Schubert, U. S., Self‐healing materials. Advanced Materials 2010, 22 (47), 5424-5430. 62. Diba, M.; Wang, H.; Kodger, T. E.; Parsa, S.; Leeuwenburgh, S. C., Highly Elastic and Self‐Healing Composite Colloidal Gels. Advanced Materials 2017, 29 (11), 1604672. 63. Mealy, J. E.; Chung, J. J.; Jeong, H. H.; Issadore, D.; Lee, D.; Atluri, P.; Burdick, J. A., Injectable Granular Hydrogels with Multifunctional Properties for Biomedical Applications. Advanced Materials 2018, 30 (20), 1705912. 64. Wang, H.; Zou, Q.; Boerman, O. C.; Nijhuis, A. W.; Jansen, J. A.; Li, Y.; Leeuwenburgh, S. C., Combined delivery of BMP-2 and bFGF from nanostructured colloidal gelatin gels and its effect on bone regeneration in vivo. Journal of Controlled Release 2013, 166 (2), 172-181. 65. Diba, M.; Camargo, W. A.; Brindisi, M.; Farbod, K.; Klymov, A.; Schmidt, S.; Harrington, M. J.; Draghi, L.; Boccaccini, A. R.; Jansen, J. A., Composite Colloidal Gels Made of Bisphosphonate‐Functionalized Gelatin and Bioactive Glass Particles for Regeneration of Osteoporotic Bone Defects. Advanced Functional Materials 2017, 27 (45), 1703438. 66. Kanwar, J. R.; Sun, X.; Punj, V.; Sriramoju, B.; Mohan, R. R.; Zhou, S.-F.; Chauhan, A.; Kanwar, R. K., Nanoparticles in the treatment and diagnosis of neurological disorders: untamed dragon with fire power to heal. Nanomedicine: Nanotechnology, Biology and Medicine 2012, 8 (4), 399-414. 67. Singh, R.; Lillard Jr, J. W., Nanoparticle-based targeted drug delivery. Experimental and molecular pathology 2009, 86 (3), 215-223. 68. Hans, M.; Lowman, A., Biodegradable nanoparticles for drug delivery and targeting. Current Opinion in Solid State and Materials Science 2002, 6 (4), 319-327. 69. Petros, R. A.; DeSimone, J. M., Strategies in the design of nanoparticles for therapeutic applications. Nature reviews Drug discovery 2010, 9 (8), 615. 70. Shi, J.; Votruba, A. R.; Farokhzad, O. C.; Langer, R., Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano letters 2010, 10 (9), 3223-3230. 71. Mohanraj, V.; Chen, Y., Nanoparticles-a review. Tropical journal of pharmaceutical research 2006, 5 (1), 561-573. 72. Sahoo, S. K.; Misra, R.; Parveen, S., Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. In Nanomedicine in Cancer, Pan Stanford: 2017; pp 73-124. 73. Masserini, M., Nanoparticles for brain drug delivery. ISRN biochemistry 2013, 2013. 74. Müller, R. H.; MaÈder, K.; Gohla, S., Solid lipid nanoparticles (SLN) for controlled drug delivery–a review of the state of the art. European journal of pharmaceutics and biopharmaceutics 2000, 50 (1), 161-177. 75. Lu, Y.-m.; Huang, J.-y.; Wang, H.; Lou, X.-f.; Liao, M.-h.; Hong, L.-j.; Tao, R.-r.; Ahmed, M. M.; Shan, C.-l.; Wang, X.-l., Targeted therapy of brain ischaemia using Fas ligand antibody conjugated PEG-lipid nanoparticles. Biomaterials 2014, 35 (1), 530-537. 76. Gadhvi, V.; Brijesh, K.; Gupta, A.; Roopchandani, K.; Patel, N., Nanoparticles for Brain Targeting. Research Journal of Pharmacy and Technology 2013, 6 (5), 1. 77. Sokolova, V.; Epple, M., Bioceramic nanoparticles for tissue engineering and drug delivery. In Tissue Engineering Using Ceramics and Polymers (Second Edition), Elsevier: 2014; pp 633-647. 78. Karchemski, F.; Zucker, D.; Barenholz, Y.; Regev, O., Carbon nanotubes-liposomes conjugate as a platform for drug delivery into cells. Journal of controlled release 2012, 160 (2), 339-345. 79. Zhang, Y.; Wang, B.; Meng, X.; Sun, G.; Gao, C., Influences of acid-treated multiwalled carbon nanotubes on fibroblasts: proliferation, adhesion, migration, and wound healing. Annals of biomedical engineering 2011, 39 (1), 414-426. 80. Liang, F.; Chen, B., A review on biomedical applications of single-walled carbon nanotubes. Current medicinal chemistry 2010, 17 (1), 10-24. 81. Lu, W.-L.; Qi, X.-R.; Zhang, Q.; Li, R.-Y.; Wang, G.-L.; Zhang, R.-J.; Wei, S.-L., A pegylated liposomal platform: pharmacokinetics, pharmacodynamics, and toxicity in mice using doxorubicin as a model drug. Journal of pharmacological sciences 2004, 95 (3), 381-389. 82. Sadzuka, Y.; Hirotsu, S.; Hirota, S., Effect of liposomalization on the antitumor activity, side-effects and tissue distribution of CPT-11. Cancer letters 1998, 127 (1-2), 99-106. 83. Scott, M. D.; Murad, K. L., Cellular camouflage: fooling the immune system with polymers. Current pharmaceutical design 1998, 4 (6), 423-438. 84. Ernsting, M. J.; Murakami, M.; Roy, A.; Li, S.-D., Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. Journal of Controlled Release 2013, 172 (3), 782-794. 85. Choi, H. S.; Liu, W.; Misra, P.; Tanaka, E.; Zimmer, J. P.; Ipe, B. I.; Bawendi, M. G.; Frangioni, J. V., Renal clearance of quantum dots. Nature biotechnology 2007, 25 (10), 1165. 86. Merbach, A. S., The chemistry of contrast agents in medical magnetic resonance imaging. John Wiley & Sons: 2013. 87. Jo, D. H.; Kim, J. H.; Lee, T. G.; Kim, J. H., Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine: Nanotechnology, Biology and Medicine 2015, 11 (7), 1603-1611. 88. Saraiva, C.; Praça, C.; Ferreira, R.; Santos, T.; Ferreira, L.; Bernardino, L., Nanoparticle-mediated brain drug delivery: overcoming blood–brain barrier to treat neurodegenerative diseases. Journal of Controlled Release 2016, 235, 34-47. 89. Hillaireau, H.; Couvreur, P., Nanocarriers’ entry into the cell: relevance to drug delivery. Cellular and molecular life sciences 2009, 66 (17), 2873-2896. 90. Schipper, M. L.; Iyer, G.; Koh, A. L.; Cheng, Z.; Ebenstein, Y.; Aharoni, A.; Keren, S.; Bentolila, L. A.; Li, J.; Rao, J., Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small 2009, 5 (1), 126-134. 91. Li, S.-D.; Huang, L., Pharmacokinetics and biodistribution of nanoparticles. Molecular pharmaceutics 2008, 5 (4), 496-504. 92. Lockman, P. R.; Koziara, J. M.; Mumper, R. J.; Allen, D. D., Nanoparticle surface charges alter blood–brain barrier integrity and permeability. Journal of drug targeting 2004, 12 (9-10), 635-641. 93. Yamamoto, A. J. J. o. a.; thrombosis, A uniqe antilipidemic drug—probucol. 2008, 15 (6), 304-305. 94. Sia, Y. T.; Parker, T. G.; Liu, P.; Tsoporis, J. N.; Adam, A.; Rouleau, J. L. J. J. o. t. A. C. o. C., Improved post-myocardial infarction survival with probucol in rats: effects on left ventricular function, morphology, cardiac oxidative stress and cytokine expression. 2002, 39 (1), 148-156.
|