帳號:guest(18.224.69.44)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):洛耿納
作者(外文):V.K.Ranganayakulu
論文名稱(中文):以不同程度的元素摻雜和空缺控制使 GeTe 具備最佳的熱電性質
論文名稱(外文):State-of-the-art thermoelectric properties in GeTe system with varying degrees of element doping and vacancy control
指導教授(中文):陳洋元
李志浩
指導教授(外文):Chen, Yang-Yuan
Lee, Chih-Hao
口試委員(中文):陳貴賢
謝文斌
吳欣潔
口試委員(外文):Chen, Kuei-Hsien
Hsieh, Wen-Pin
Wu, Hsin-Jay
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:105011862
出版年(民國):111
畢業學年度:111
語文別:英文
論文頁數:109
中文關鍵詞:以不同程度的元素摻雜和空缺控制使 GeTe 具備最佳的熱電性質高ZT及其起源於Sb摻雜GeTe單晶改善原始GeTe中的熱電特性
外文關鍵詞:ThermoelectricThermoelectricSemiconducting material
相關次數:
  • 推薦推薦:0
  • 點閱點閱:415
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
熱電(TE)材料研究在過去的二十年是相當流行,特別是GeTe塊材,而GeTe是IV-VI的硫族化物,具有廣泛且吸引人的基本特性,並且對於熱電能源轉換裝置佔有重要技術性,由於熱電材料參數之間的強力耦合,這是具有挑戰性的工作。此博士學位論文由以下三個研究主題組成:

1.改善原始GeTe中的熱電特性:
在這項研究中,我們使用淬火與火花離子燒結(SPS),有效地降低了Ge空位量。在多晶和單晶標本上,研究了過量摻雜的結果。相較於純GeTe,Ge1.03Te多晶樣品中的P型載子濃度低得多,為2.43 x 1020 cm-3,而純GeTe是8.9 x1020 cm-3。並且火花離子燒結產生多晶樣品,其導熱率較差。這是由於降低載子濃度以及增加聲子散射(例如沉澱物和納米結構缺陷)。此外,我們集中在GeTe的單晶上,並將其與多晶樣品進行比較。令我們驚訝的是,多晶樣品的性能卓越。總之, Ge1.03Te在30 MPa壓力下,以773 K 溫度燒結的多晶樣品,在700 K的溫度下表現出良好的熱電性能,其ZT值為1.8。根據這項研究的發現,只要對SPS參數進行了適當調整,就可以通過添加Ge來有效地提高GeTe的ZT值。這項研究的結果已經闡明了一種新型方法,該方法提供了改善熱電材料性能的有效策略。



2.高ZT及其起源於Sb摻雜GeTe單晶:
GeTe是一種P型半導體的熱電材料,多晶材料經過廣泛研究,已經有許多高ZT的成果。本研究合成單晶GeTe以測試其熱電特性,利用Sb取代Ge研究其熱電及中子特性,當載子濃度下降到 ~4 × 1020 cm-3時,GeTe晶體中Sb摻雜的最佳濃度為(8%),會提高電導率同時將功率因子增加到~56 Wcm-1K-2,Sb摻雜產生的微結構缺陷可降低熱傳導率,藉由非彈性中子散射測試顯示,在相鄰的布里淵區,Γ點上有一個大約5-6 meV的聲子帶。密度函數理論驗證了聲子激發,並預測了W點的12-13 meV聲子激發,這在非彈性中子散射上有完成。 Sb摻雜的GeTe中的聲子頻率顯著降低。這些變化增加了聲子衰減通道的數量,使摻雜Sb的GeTe的主要散射機製成為三聲Umklapp工藝,而不是純 GeTe的四聲音過程。根據我們的研究,聲子工程改善了熱電性能。

3. GeTe單晶摻雜Sb-Bi擁有超高ZT:
基於GeTe的系統其高ZT而引起了許多研究的關注,並且通過微量元素摻雜使其大大降低熱導率。在這裡,我們研究發現了700 K時的高ZT = 2.7,在Sb及Bi共同摻雜(Ge0.86Sb0.08Bi0.06Te)的單晶。除了結構性晶格異常外,例如Umklapp過程,點和平面缺陷,晶格差排和人字形結構出現在晶體中。從高分辨率的電子顯微鏡HRTEM圖像和質量密度計算中,我們發現Sb和Bi摻雜會在GeTe系統中引起更多的結構缺陷。結果確實增加了晶格結構異常,並進一步降低了樣品的熱導率,這一重大發現並闡明了GeTe摻雜晶體中,晶格及聲子導熱率之間的影響,並提供了一種啟發性策略,以進一步改善熱電材料中的熱電性能.
Thermoelectric (TE) study has exploded in popularity over the past two decades. Bulk GeTe, an IV-VI chalcogenide, exhibits a wide range of intriguing fundamental properties of technological importance to commercially implementing TE energy conversion devices. This is challenging work due to the strong coupling between TE material properties. This doctoral thesis is composed of three following research subjects:
1. Boosting thermoelectric properties in pristine GeTe:
In this investigation, we were able to effectively lower the amount of Ge vacancy by using a process called melt quenching in conjunction with spark plasma sintering (SPS). On both the polycrystalline and the single-crystal specimens, the consequences of an excessive amount of Ge doping were investigated. When compared to the pure GeTe, the p-type carrier concentration in the Ge1.03Te polycrystalline specimen was much lower 2.43 x 1020 cm-3 compared to 8.9 x1020 cm-3 in GeTe . Spark plasma sintering produces polycrystalline samples that, in contrast, have a poorer thermal conductivity. This is due to a drop in carrier concentration as well as phonon scattering centres, such as Ge precipitates and nanostructured defects. In addition, we concentrated on single crystals of GeTe and compared them to polycrystalline samples; to our astonishment, the polycrystalline samples had superior performance. In conclusion, a polycrystalline specimen containing 3% Ge doping in GeTe that was sintered at 773 K under 30 MPa pressure demonstrated good thermoelectric performance at a temperature of 700 K by having a zT value of 1.8. According to the findings of this research, the zT value of GeTe may be effectively raised by the addition of Ge provided that the SPS parameters are appropriately adjusted. The results of this research have thrown light on a novel approach that provides an insightful strategy for improving the performance of thermoelectric materials.
2. High ZT and its origin in Sb doped GeTe single crystal:
GeTe is a thermoelectrically degenerate p-type semiconductor. Polycrystalline materials are extensively researched for high figures of merit. This work synthesizes a single-crystal GeTe sample to test its thermoelectric properties. Sb replaces Ge to study TE and neutron properties. The optimal concentration (8%) of Sb dopant in GeTe crystal boosts electrical conductivity when the hole carrier concentration declines to ~4 × 1020 cm-3 while increasing the power factor to ~56 Wcm-1K-2. Microstructural flaws caused by Sb doping to reduce thermal conductivity. Inelastic neutron scattering tests showed an additional phonon band about ~5-6 meV at Γ point in the adjacent Brillouin zone. Density functional theory validated the phonon excitation and predicted a 12-13 meV phonon excitation at W point, which also accomplished on inelastic neutron scattering. Phonon frequencies were significantly reduced in Sb-doped GeTe. These alterations increase the number of phonon decay channels, making Sb-doped GeTe's dominant scattering mechanism a three-phonon Umklapp process instead of pure GeTe's four-phonon process. Phonon engineering improves thermoelectric performance, according to our study.
3. Ultra-high ZT in Sb-Bi doped GeTe single crystal:
GeTe based system has attracted intensive attention due to its ZT can be largely enhanced by reducing the thermal conductivity with element doping. Here we report a record high ZT =2.7 at 700 K was found on a Sb and Bi co-doped (Ge0.86Sb0.08Bi0.06)Te crystal. In addition to the structural lattice anomaly such as Umklapp processes, point/planar defects, lattice dislocations, and herringbone domains appear in the crystal. From high-resolution transmission electron microscope HRTEM images and mass density calculation, we found that the Sb and Bi doping causes more structural defects in GeTe system. The consequence did increase the structural lattice anomaly and further reduce thermal conductivity in Sb/Bi doped crystal. In conclusion, this significant finding sheds light on the origin of the ultralow lattice phonon thermal conductivity in the doping GeTe crystal and provides an enlightening strategy to further improve the thermoelectric performance in thermoelectric materials.
摘要.....................................................III
ABSTRACT.................................................V
LIST OF FIGURES..........................................XII
LIST OF TABLES...........................................XIX
PREFACE..................................................XX
ACKNOWLEDGMENTS..........................................XXII
Chapter 1: Introduction of Thermoelectricity............1
1.1 Thermoelectric Fundamentals..........................1
1.2 Basic Concepts of Thermoelectric.....................2
1.2.1 Seebeck Effect.....................................2
1.2.2 Peltier Effect.....................................3
1.2.3 Thomson Effect.....................................4
1.2.4 Figure of Merit (zT)...............................5
1.2.5 Thermoelectric Applications........................6
1.2.6 Thermoelectric Efficiency..........................10
1.3 Factors involved in Thermoelectric...................11
1.3.1 Electrical Conductivity............................13
1.3.2 Seebeck Coefficient................................13
1.3.3 Thermal Conductivity...............................14
1.3.4 Carrier Concentration..............................15
1.4 Thermoelectric ideas behind the layout-Strategies to improve ZT.......................................................16
1.4.1 Band engineering Approach..........................16
1.4.1.1 Band Convergence.................................16
1.4.1.2 Energy Filtering Effect..........................19
1.4.1.3 Resonant Levels..................................20
1.4.2 Reduction of Lattice Thermal conductivity..........23
1.5 Summary..............................................27
Chapter 2: Review on current Thermoelectric Materials...28
2.1 State-of-the-art of Complex Thermoelectric Materials................................................28
2.1.1 Bi2Te3 based Materials.............................29
2.1.2 PbTe based Materials...............................32
2.1.3 SnSe based Materials...............................35
2.1.4 GeTe based Materials...............................37
2.2 Summary..............................................40
Chapter 3: Materials Synthesis and Characterization.........................................41
3.1.1 Material Synthesis.................................41
3.1.2 Bridgman Technique.................................41
3.1.3 Spark Plasma Sintering.............................44
3.2 Experimental Equipment...............................45
3.2.1 X-ray Diffraction..................................45
3.2.2 Scanning Electron Microscope.......................47
3.2.3 Transmission Electron Microscope...................48
3.3 Thermoelectric Properties of Samples.................49
3.3.1 Thermal Diffusivity Measurement....................49
3.3.2 Differential Scanning Calorimetry..................50
3.3.3 Seebeck and Electrical Resistivity.................51
3.3.4 Density Measurement................................53
3.3.5 Hall Effect Measurement(PPMS)........................................53
Chapter 4: Boosting TE properties in pristine GeTe via vacancy control and engineering sintering parameters.....................55
4.1 Material and Methods.................................55
4.2 Results and Discussion...............................57
4.2.1 Phase Analysis.....................................57
4.2.2 Thermoelectric Transport Properties................58
4.2.3 Microstructural Properties.........................65
4.2.4 Figure of Merit(ZT)................................66
4.3 Summary..............................................67
Chapter 5: High ZT and its origin in Sb doped GeTe single Crystal..................................................68
5.1 Material and Methods.................................68
5.2 Results and Discussion...............................69
5.2.1 Phase Analysis.....................................69
5.2.2 Structural and Microstructural Analysis.................................................71
5.2.3 Thermoelectric Transport Properties...............................................73
5.2.4 Neutron Study of Sb doped GeTe.....................78
5.2.5 Investigation of Electronic Band structure.........80
5.2.6 Anharmonicity in Sb-doped GeTe.....................82
5.2.7 Figure of Merit....................................86
5.3 Summary..............................................87
Chapter 6: Ultra high ZT in Sb-Bi doped GeTe single crystal..................................................88
6.1 Material and Methods.................................89
6.2 Results and Discussion...............................88
6.2.1 Phase Analysis.....................................89
6.2.2 Structural and Microstructural Analysis.................................................92
6.2.3 Thermoelectric Transport Properties...............................................95
6.2.4 Figure of Merit....................................99
6.3 Summary..............................................100
Chapter 7: Conclusion and Prospect Work..................101
References...............................................104
1 G. J. Snyder and E. S. Toberer, Nat Mater, 2008, 7, 105–114.
2 Z.-H. Ge, Y. Qiu, Y.-X. Chen, X. Chong, J. Feng, Z.-K. Liu and J. He, Adv Funct Mater, 2019, 29, 1902893.
3 Y. Ding, Y. Qiu, K. Cai, Q. Yao, S. Chen, L. Chen and J. He, Nat Commun, 2019, 10, 841.
4 H. Jouhara, N. Khordehgah, S. Almahmoud, B. Delpech, A. Chauhan and S. A. Tassou, Therm. Sci. Eng. Prog, 2018, 6, 268–289.
5 D. Shin, B. Saparov and D. B. Mitzi, Adv Energy Mater, 2017, 7, 1602366.
6 C. Wood, Rep.Prog.Phys, 1988, 51, 459–539.
7 Y. Wang, L. Yang, X.-L. Shi, X. Shi, L. Chen, M. S. Dargusch, J. Zou and Z.-G. Chen, Adv. Mater, 2019, 31, 1807916.
8 S. Xu, M. Hong, X.-L. Shi, Y. Wang, L. Ge, Y. Bai, L. Wang, M. Dargusch, J. Zou and Z.-G. Chen, Chem. Mater, 2019, 31, 5238–5244.
9 H. Xie, H. Wang, Y. Pei, C. Fu, X. Liu, G. J. Snyder, X. Zhao and T. Zhu, Adv Funct Mater, 2013, 23, 5123–5130.
10 Z.-G. Chen, G. Han, L. Yang, L. Cheng and J. Zou, Prog. Nat. Sci,2012, 22, 535–549.
11 G. Han, Z.-G. Chen, J. Drennan and J. Zou, Small, 2014, 10, 2747–2765.
12 J. Yang and T. Caillat, MRS Bull, 2006, 31, 224–229.
13 P. A. Finn, C. Asker, K. Wan, E. Bilotti, O. Fenwick and C. B. Nielsen, Frontiers in Electronic Materials.
18 J. R. Sootsman, D. Y. Chung and M. G. Kanatzidis, Angew. Chem. Int. Ed, 2009, 48, 8616–8639.
19 L. Yang, Z.-G. Chen, M. S. Dargusch and J. Zou, Adv Energy Mater, 2018, 8, 1701797.
20 A. Kumar, S. Bano, B. Govind, A. Bhardwaj, K. Bhatt and D. K. Misra, J Electron Mater, 2021, 50, 6037–6059.
21 J. He and T. M. Tritt, Science (1979), 2017, 357, eaak9997.
22 L. E. Bell, Science (1979), 2008, 321, 1457–1461.
23 X.-L. Shi, J. Zou and Z.-G. Chen, Chem Rev, 2020, 120, 7399–7515.
24 S. Twaha, J. Zhu, Y. Yan and B. Li, Renew. Sust. Energ. Rev, 2016, 65, 698–726.
25 J.-F. Li, W.-S. Liu, L.-D. Zhao and M. Zhou, NPG Asia Mater, 2010, 2, 152–158.
26 R. Moshwan, L. Yang, J. Zou and Z.-G. Chen, Adv Funct Mater, 2017, 27, 1703278.
27 D. M. Rowe and G. Min, AIP Conf Proc, 1994, 316, 339–342.
28 P. Puneet, R. Podila, M. Karakaya, S. Zhu, J. He, T. M. Tritt, M. S. Dresselhaus and A. M. Rao, Sci Rep, 2013, 3, 3212.
29 J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka and G. J. Snyder, Science (1979), 2008, 321, 554–557.
30 Y. Zhu, D. Wang, T. Hong, L. Hu, T. Ina, S. Zhan, B. Qin, H. Shi, L. Su, X. Gao and L.-D. Zhao, Nat Commun, 2022, 13, 4179.
31 S. il Kim, K. H. Lee, H. A. Mun, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. S. Li, Y. H. Lee, G. J. Snyder and S. W. Kim, Science (1979), 2015, 348, 109–114.
32 B. K. Singh, V. J. Menon and K. C. Sood, Phys Rev B, 2006, 74, 184302.
33 S. Shimano, Y. Tokura and Y. Taguchi, APL Mater, 2017, 5, 056103.
34 L. Yue, T. Fang, S. Zheng, W. Cui, Y. Wu, S. Chang, L. Wang, P. Bai and H. Zhao, ACS Appl Energy Mater, 2019, 2, 2596–2603.
35 Z. Guo, Q. Zhang, H. Wang, X. Tan, F. Shi, C. Xiong, N. Man, H. Hu, G. Liu and J. Jiang, J Mater Chem A Mater, 2020, 8, 21642–21648.
36 L. D. Hicks and M. S. Dresselhaus, Phys Rev B, 1993, 47, 12727–12731.
37 S. Perumal, M. Samanta, T. Ghosh, U. S. Shenoy, A. K. Bohra, S. Bhattacharya, A. Singh, U. v Waghmare and K. Biswas, Joule, 2019, 3, 2565–2580.
38 S. v Faleev and F. Léonard, Phys Rev B, 2008, 77, 214304.
39 H. Ohta, S. W. Kim, S. Kaneki, A. Yamamoto and T. Hashizume, Adv.Sci, 2018, 5, 1700696.
40 J. Zhang, D. Wu, D. He, D. Feng, M. Yin, X. Qin and J. He, Adv.Mater, 2017, 29, 1703148.
41 X. Su, P. Wei, H. Li, W. Liu, Y. Yan, P. Li, C. Su, C. Xie, W. Zhao, P. Zhai, Q. Zhang, X. Tang and C. Uher, Adv.Mater, 2017, 29, 1602013.
42 Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen and G. J. Snyder, Nature, 2011, 473, 66–69.
43 M. Christensen, A. B. Abrahamsen, N. B. Christensen, F. Juranyi, N. H. Andersen, K. Lefmann, J. Andreasson, C. R. H. Bahl and B. B. Iversen, Nat Mater, 2008, 7, 811–815.
44 X. Ni, G. Liang, J.-S. Wang and B. Li, Appl Phys Lett, 2009, 95, 192114.
45 P.-C. Wei, C.-C. Yang, J.-L. Chen, R. Sankar, C.-L. Chen, C.-H. Hsu, C.-C. Chang, C.-L. Chen, C.-L. Dong, F.-C. Chou, K.-H. Chen, M.-K. Wu and Y.-Y. Chen, Appl Phys Lett, 2015, 107, 123902.
46 H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day and G. J. Snyder, Nat Mater, 2012, 11, 422–425.
47 J. P. Heremans, B. Wiendlocha and A. M. Chamoire, Energy Environ Sci, 2012, 5, 5510–5530.
48 M. Cutler and N. F. Mott, Phys. Rev, 1969, 181, 1336–1340.
49 M. Hong, Y. Wang, W. Liu, S. Matsumura, H. Wang, J. Zou and Z.-G. Chen, Adv Energy Mater, 2018, 8, 1801837.
50 Z. Soleimani, S. Zoras, B. Ceranic, S. Shahzad and Y. Cui, Sustain. Energy Technol. Assess, 2020, 37, 100604.
51 M. Hong, J. Zou and Z.-G. Chen, Adv. Mater, 2019, 31, 1807071.
52 G. Xin and O. Jianyong, CCS Chemistry, 2021, 3, 2415–2427.
53 L. Wu, X. Li, S. Wang, T. Zhang, J. Yang, W. Zhang, L. Chen and J. Yang, NPG Asia Mater, 2017, 9, e343–e343.
54 M. Hong, Z.-G. Chen, L. Yang, T. C. Chasapis, S. D. Kang, Y. Zou, G. J. Auchterlonie, M. G. Kanatzidis, G. J. Snyder and J. Zou, J Mater Chem A Mater, 2017, 5, 10713–10721.
55 E. S. Toberer, A. Zevalkink and G. J. Snyder, J Mater Chem, 2011, 21, 15843–15852.
56 C. Chang, G. Tan, J. He, M. G. Kanatzidis and L.-D. Zhao, Chem. Mater, 2018, 30, 7355–7367.
57 E. F. Steigmeier and B. Abeles, Phys. Rev, 1964, 136, A1149–A1155.
58 Y. Yin, K. Baskaran and A. Tiwari, Phys. Status Solidi (a), 2019, 216, 1800904.
59 A. Mehdizadeh Dehkordi, M. Zebarjadi, J. He and T. M. Tritt, Mater. Sci. Eng. R Rep, 2015, 97, 1–22.
60 Z. Soleimani, S. Zoras, B. Ceranic, S. Shahzad and Y. Cui, Sustain. Energy Technol. Assess, 2020, 37, 100604.
61 L. D. Zhao, H. J. Wu, S. Q. Hao, C. I. Wu, X. Y. Zhou, K. Biswas, J. Q. He, T. P. Hogan, C. Uher, C. Wolverton, V. P. Dravid and M. G. Kanatzidis, Energy Environ Sci, 2013, 6, 3346–3355.
62 B. Zhu, X. Liu, Q. Wang, Y. Qiu, Z. Shu, Z. Guo, Y. Tong, J. Cui, M. Gu and J. He, Energy Environ Sci, 2020, 13, 2106–2114.
63 T. Fang, X. Li, C. Hu, Q. Zhang, J. Yang, W. Zhang, X. Zhao, D. J. Singh and T. Zhu, Adv Funct Mater, 2019, 29, 1900677.
64 W. Liu, X. Yan, G. Chen and Z. Ren, Nano Energy, 2012, 1, 42–56.
65 I. T. Witting, T. C. Chasapis, F. Ricci, M. Peters, N. A. Heinz, G. Hautier and G. J. Snyder, Adv.Electron.Mater, 2019, 5, 1800904.
66 X. Zhang, Y. Guo, Z. Zhou, Y. Li, Y. Chen and J. Wang, Energy Environ Sci, 2021, 14, 4059–4066.
67 H. Mamur, M. R. A. Bhuiyan, F. Korkmaz and M. Nil, Renew. Sust. Energ. Rev, 2018, 82, 4159–4169.
68 Md. N. Hasan, H. Wahid, N. Nayan and M. S. Mohamed Ali, Int J Energy Res, 2020, 44, 6170–6222.
69 Y. Xiao and L.-D. Zhao, NPJ Quantum Mater, 2018, 3, 55.
70 D. Bao, J. Chen, Y. Yu, W. Liu, L. Huang, G. Han, J. Tang, D. Zhou, L. Yang and Z.-G. Chen, Chemical Engineering Journal, 2020, 388, 124295.
71 H. Okamoto, Journal of Phase Equilibria, 2000, 21, 496.
72 P.-Y. Deng, K.-K. Wang, J.-Y. Du and H.-J. Wu, Adv Funct Mater, 2020, 30, 2005479.
73 Y. Wu, P. Nan, Z. Chen, Z. Zeng, R. Liu, H. Dong, L. Xie, Y. Xiao, Z. Chen, H. Gu, W. Li, Y. Chen, B. Ge and Y. Pei, Adv.Sci, 2020, 7, 1902628.
74 G. Tan, X. Zhang, S. Hao, H. Chi, T. P. Bailey, X. Su, C. Uher, V. P. Dravid, C. Wolverton and M. G. Kanatzidis, ACS Appl.Mater.Interfaces, 2019, 11, 9197–9204.
75 L. Xie, D. He and J. He, Mater Horiz, 2021, 8, 1847–1865.
76 S. Yang, Y. Liu, M. Wu, L.-D. Zhao, Z. Lin, H. Cheng, Y. Wang, C. Jiang, S.-H. Wei, L. Huang, Y. Huang and X. Duan, Nano Res, 2018, 11, 554–564.
77 J. Wei, L. Yang, Z. Ma, P. Song, M. Zhang, J. Ma, F. Yang and X. Wang, J Mater Sci, 2020, 55, 12642–12704.
78 C. Zhou, Y. K. Lee, Y. Yu, S. Byun, Z.-Z. Luo, H. Lee, B. Ge, Y.-L. Lee, X. Chen, J. Y. Lee, O. Cojocaru-Mirédin, H. Chang, J. Im, S.-P. Cho, M. Wuttig, V. P. Dravid, M. G. Kanatzidis and I. Chung, Nat Mater, 2021, 20, 1378–1384.
79 C. Li, D. Guo, K. Li, B. Shao, D. Chen, Y. Ma and J. Sun, Physica B Condens Matter, 2018, 530, 264–269.
80 R. F. Brebrick and A. J. Strauss, Physical Review, 1963, 131, 104–110.
81 J. Davidow and Y. Gelbstein, J Electron Mater, 2013, 42, 1542–1549.
82 S. Perumal, S. Roychowdhury, D. S. Negi, R. Datta and K. Biswas, Chem.Mater, 2015, 27, 7171–7178.
83 S. Perumal, S. Roychowdhury and K. Biswas, Inorg Chem Front, 2016, 3, 125–132.
84 R. Tsu, W. E. Howard and L. Esaki, Phys.Rev, 1968, 172, 779–788.
85 D. Guo, C. Li, K. Qiu, Q. Yang, K. Li, B. Shao, D. Chen, Y. Ma, J. Sun, X. Cao, W. Zeng, Z. Wang and R. Xie, J Alloys Compd, 2019, 810, 151838.
86 M. Hong, Z.-G. Chen, L. Yang, Y.-C. Zou, M. S. Dargusch, H. Wang and J. Zou, Adv.Mater, 2018, 30, 1705942.
87 M. Hong, Y. Wang, T. Feng, Q. Sun, S. Xu, S. Matsumura, S. T. Pantelides, J. Zou and Z.-G. Chen, J Am Chem Soc, 2019, 141, 1742–1748.
88 E. Nshimyimana, S. Hao, X. Su, C. Zhang, W. Liu, Y. Yan, C. Uher, C. Wolverton, M. G. Kanatzidis and X. Tang, J Mater Chem A Mater, 2020, 8, 1193–1204.
89 R. K. Vankayala, T.-W. Lan, P. Parajuli, F. Liu, R. Rao, S. H. Yu, T.-L. Hung, C.-H. Lee, S. Yano, C.-R. Hsing, D.-L. Nguyen, C.-L. Chen, S. Bhattacharya, K.-H. Chen, M.-N. Ou, O. Rancu, A. M. Rao and Y.-Y. Chen, Adv.Sci, 2020, 7, 2002494.
86 Đ. Dangić, O. Hellman, S. Fahy and I. Savić, NPJ Comput Mater, 2021, 7, 57.
87 J. Li, X. Zhang, S. Lin, Z. Chen and Y. Pei, Chem. Mater, 2017, 29, 605–611.
90 J. Davidow and Y. Gelbstein, J Electron Mater, 2013, 42, 1542–1549.
91 Z. Bu, X. Zhang, B. Shan, J. Tang, H. Liu, Z. Chen, S. Lin, W. Li and Y. Pei, Sci Adv, 2022, 7, eabf2738.
92 W. Gao, Z. Liu, W. Zhang, N. Sato, Q. Guo and T. Mori, Appl Phys Lett, 2021, 118, 033901.
93 Z. Guo, K. Song, R. Wang, X. Tan, L. Chen, G. Wu, Q. Zhang, P. Sun, G.-Q. Liu and J. Jiang, J Mater Chem A Mater, 2022, 10, 7677–7683.
94 S. Duan, W. Xue, H. Yao, X. Wang, C. Wang, S. Li, Z. Zhang, L. Yin, X. Bao, L. Huang, X. Wang, C. Chen, J. Sui, Y. Chen, J. Mao, F. Cao, Y. Wang and Q. Zhang, Adv Energy Mater, 2022, 12, 2103385.
95 P.-C. Wei, C.-X. Cai, C.-R. Hsing, C.-M. Wei, S.-H. Yu, H.-J. Wu, C.-L. Chen, D.-H. Wei, D.-L. Nguyen, M. M. C. Chou and Y.-Y. Chen, Sci Rep, 2019, 9, 8616.
96 T. Zhang, S. Deng, X. Zhao, X. Ruan, N. Qi, Z. Chen, X. Su and X. Tang, J Mater Chem A Mater, 2022, 10, 3698–3709.
97 Y. Z. Zhang, S. L. Li, Z. Li, S. Y. Lou and S. M. Zhou, Mater Lett, 2022, 324, 132683.
98 K. S. Bayikadi, C. T. Wu, L.-C. Chen, K.-H. Chen, F.-C. Chou and R. Sankar, J Mater Chem A Mater, 2020, 8, 5332–5341.
99 X. Qiu, Q. Zheng, X. Lu, S. Fan, X. Zhou, L. Wang and W. Jiang, Mater Sci Semicond Process, 2020, 109, 104955.
100 J. Li, Z. Chen, X. Zhang, H. Yu, Z. Wu, H. Xie, Y. Chen and Y. Pei, Adv.Sci, 2017, 4, 1700341.
101 Y.Feng, J. Li, Y. Li, T. Ding, C. Zhang, L. Hu, F. Liu, W. Ao and C. Zhang, J Mater Chem A Mater,2020,8,11370-11380.
102 M. Samanta and K. Biswas, J Am Chem Soc, 2017, 139, 9382–9391.
103 S. Imam, K. S. Bayikadi, M. Ubaid, V. K. Ranganayakulu, S. Devi, B. S. Pujari, Y.-Y. Chen, L.-C. Chen, K.-H. Chen, F.-L. Lin and R. Sankar, Mater. Today Phys, 2022, 22, 100571.
104 C. Zhu, F. Luo, J. Wang, S. Zhang, J. Wang, H. Liu and Z. Sun, J Mater Chem C Mater, 2022, 10, 9052–9061.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *