帳號:guest(18.118.253.124)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李明翰
作者(外文):Lee, Ming-Han
論文名稱(中文):利用射頻磁控濺鍍系統製備鐵酸鉍多晶薄膜之晶態與疇域結構研究
論文名稱(外文):Crystalline State and Domain Structure of Polycrystalline BiFeO3 Films Deposited by Radio-Frequency Magnetron Sputtering
指導教授(中文):喻冀平
黃嘉宏
指導教授(外文):Yu, Ge-Ping
Huang, Jia-Hong
口試委員(中文):李信義
邱上睿
口試委員(外文):Lee, Hsin-Yi
Chiu, Shang-Jui
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:105011580
出版年(民國):107
畢業學年度:107
語文別:英文
論文頁數:82
中文關鍵詞:鐵酸鉍薄膜織構射頻磁控濺鍍
外文關鍵詞:BiFeO3thin filmtextureRF-sputtering
相關次數:
  • 推薦推薦:0
  • 點閱點閱:699
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
研究目的為探討鍍膜溫度對於多晶鐵酸鉍結構與性質之影響。本實驗是利用射頻磁控濺鍍系統製備鐵酸鉍多晶薄膜成長在白金鍍覆之(100)矽晶板上,研究於攝氏300度至攝氏700度鍍膜溫度下製備之薄膜性質。研究結果指出鉍和氧之化學組成隨著鍍膜溫度升高而降低,乃因高溫氧化鉍之逸散與雜項之生成所致。於攝氏700度高溫製備之鐵酸鉍薄膜其鉍、鐵成份比低至0.53。結晶之鐵酸鉍薄膜製備於鍍膜溫度高於攝氏500度。藉由X光繞射量測分析與背向電子散射繞射結果下其(111)方向晶粒之織構係數比例皆隨鍍膜溫度由攝氏500度上升至攝氏700度而增加。藉由掃描式電子顯微鏡觀察薄膜剖面圖觀察,在攝氏500度製備之鐵酸鉍薄膜成長為柱狀晶結構,而在攝氏600度及700度製備之鐵酸鉍薄膜成長為堆疊之等軸晶結構。薄膜表面之粗糙度隨著鍍膜溫度之增加而提升。不同溫度下製備之鐵酸鉍薄膜其微結構與化學組成對於其鐵電性質與壓電性質有很大影響。其殘餘極化量與最大極化量皆在於攝氏700度製備之鐵酸鉍薄膜達最大值。量測之漏電流密度在攝氏500度製備之鐵酸鉍薄膜突然升高,而最大的漏電流密度在攝氏600度及700度製備之鐵酸鉍薄膜量測得。由於雜質的存在而導致大的漏電流,因此未能獲得完全飽和之鐵電極化遲滯曲線。在攝氏500度製備之鐵酸鉍薄膜由於其結晶性不佳,因而形成低振幅、無自極化效應之較小鐵電域。在攝氏600度及700度製備之鐵酸鉍薄膜之壓電訊號皆表現出自極化效應,且在垂直於表面皆具有強烈之振幅。在平行於表面之壓電訊號容易受到表面形貌、晶粒方向差、探針掃描方向之影響。在所有樣品中皆量測到小的水平壓電振幅訊號。由於攝氏700度製備之鐵酸鉍薄膜具有最大(111)織構係數,因此量測得最大之壓電係數。
The purpose of this study was to investigate the influence of deposition temperature on the preferred orientation and properties of BiFeO3/Pt/Ti/Si by radio frequency magnetron sputtering system. The deposition temperature were ranged from 300 to 700℃. The XPS results showed that both Bi and O fractions decreased with temperature since the volatilization of Bi2O3 and formation of impurities identified as Fe2O3 and Bi2Fe4O9 by EBSD, and the Bi/Fe ratio of specimen deposited at 700℃ was down to 0.53. Crystallized BFO thin films were obtained as the temperature higher than 500℃. Both XRD and EBSD results showed enhancement of (111)-oriented grains as deposition temperature increased from 500℃ to 700℃. The cross-sectional SEM images indicated the formation of columnar structure of grains at 500℃, and large grains with facets were observed for specimens deposited at 600 and 700℃. The higher deposition temperature, the larger surface roughness was detected. The microstructure and chemical composition of the specimens deposited at different deposition temperature strongly affected ferroelectric and piezoelectric properties. Both the largest remnant polarization (Pr) and maximum polarization (Pmax) were presented in the specimen deposited at 700℃. The leakage current suddenly increased as deposition temperature increased to 500℃ and reached the maximum in specimens deposited at 600 and 700℃. The specimen deposited at 500℃ showed low crystallinity leading to the small domains, low amplitude, and without self-poling effect. Both specimens deposited at 600℃ and 700℃ exhibit self-poling effect and strong amplitude normal to the surface. The in-plane PFM phase results were easily affected by surface morphology, misorientation, and scanning direction. Small in-plane piezoelectric amplitude were measured in all specimens. The largest piezoelectric coefficient was measured at specimen deposited at 700℃ due to the largest (111) texture coefficient.
致謝 i
摘要 ii
Abstract iii
Contents iv
List of Figures vii
List of Tables x
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1 Perovskite Type Materials 3
2.2 Characteristics of BiFeO3 6
2.2.1 Microstructure of BiFeO3 6
2.2.2 Physical Properties of BiFeO3 8
2.3 Domain in BiFeO3 10
2.4 Crystalline State and Orientation Mapping of BiFeO3 14
2.5 Correlation of EBSD and PFM 16
Chapter 3 Experimental Details 18
3.1 Specimen Preparation and Deposition Process 18
3.2 Characterization of Composition and Structure 21
3.2.1 Chemical Composition 21
3.2.2 Crystal Structure and Preferred Orientation 22
3.2.3 Orientation Mapping 24
3.2.4 Microstructure and Morphology 24
3.2.5 Surface Roughness 24
3.3 Characterization of Film Properties 25
3.3.1 Ferroelectric Properties 25
3.3.2 Piezoelectric Properties 25
Chapter 4 Results 27
4.1 Characterization of Composition and Structure 29
4.1.1 Chemical Composition 29
4.1.2 Crystal Structure and Preferred Orientation 31
4.1.3 Orientation Mapping 34
4.1.4 Microstructure and Surface Morphology 38
4.1.5 Surface Roughness 40
4.2 Characterization of Film Properties 42
4.2.1 Ferroelectric Properties 42
4.2.2 Piezoelectric Properties 47
Chapter 5 Discussion 52
5.1 The Structure of BiFeO3 Thin Film 52
5.1.1 BiFeO3 Polycrystalline Thin Film Grown on Pt/Ti/Si Substrate 52
5.1.2 Ferroelectric Domain in BiFeO3/Pt/Ti/Si 56
5.2 The Properties of BiFeO3 Thin Film 60
5.2.1 Ferroelectric Properties in BiFeO3 Thin Film 60
5.2.2 Piezoelectric Properties in BiFeO3 Thin Film 60
Chapter 6 Conclusion 62
Reference 63
Appendix A Deconvoluted Results of XPS Spectra 69
Appendix B XRD Patterns 74
Appendix C SEM Images 77
Appendix D AFM Images 79
Appendix E Electric Hysteresis Loop Images 81
Appendix F Leakage Current Density 82

[1] G.A. Smolenskii, V.M. Yudin, E.S. Sher, and Y.E. Stolypin, Antiferromagnetic properties of some Perovskites, Sov. Phys. JETP 16 (1963) 622-624.
[2] P. Fischer, M. Polomska, I. Sosnowska, and M. Szymanski, Temperature dependence of the crystal and magnetic structures of BiFeO3, J. Phys. C 13 (1980) 1931-1940.
[3] J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures, Science 299 (2003) 1719.
[4] C. Michel, J.M. Moresu, G.D. Achenbechi, R. Gerson, and W.J. James, The atomic structure of BiFeO3, Solid State Commun. 7 (1969) 701–704.
[5] F. Kubel, H. Schmid, Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3, Acta Crystallogr. Sect. B-Struct. Commun. 46 (1990) 698-702.
[6] Y.H. Chu, Q. Zhan, L.W. Martin, M.P. Cruz, P.L. Yang, G.W. Pabst, F. Zavaliche, S.Y. Yang, J.X. Zhang, L.Q. Chen, D.G. Schlom, I.N. Lin, T.B. Wu, R. Ramesh, Nanoscale domain control in multiferroic BiFeO3 thin films, Adv. Mater. 18 (2006) 2307-2311.
[7] L.V. Azároff, M.J. Buerger, The powder method in X-ray crystallography, New York, McGraw-Hill, (1958).
[8] H.W. Jang, D. Ortiz, S.H. Baek, C.M. Folkman, R.R. Das, P. Shafer, Y. Chen, C.T. Nelson, X. Pan, R. Ramesh, C.B. Eom, Domain engineering for enhanced ferroelectric properties of epitaxial (001) BiFeO3 thin films, Adv. Mater., 21 (2009) 817-823.
[9] F. Yan, T.J. Zhu, M.O. Lai and L. Lu, Enhanced multiferroic properties and domain structure of La-doped BiFeO3 thin films, Scripta Mater. 63 (2010) 780–783.
[10] F. Yan, T.J. Zhu, M.O. Lai, and L. Lu, Effect of bottom electrodes on nanoscale switching characteristics and piezoelectric response in polycrystalline BiFeO3 thin films, J. Appl. Phys. 110 (2011) 084102.
[11] D. Pravarthana, M. Trassin, J.H. Chu, M. Lacotte, A. David, R. Ramesh, P.A. Salvador, and W. Prellier, BiFeO3/La0.7Sr0.3MnO3 heterostructures deposited on spark plasma sintered LaAlO3 substrates. Appl. Phys. Lett. 104 (2014) 082914.
[12] V.M. Goldschmidt, Die gesetze der krystallochemie, Naturwissenschaften, 14 (1926), 477.
[13] G. Catalan, and J.F. Scott, Physics and Applications of Bismuth Ferrite, Adv. Mater. 21 (2009) 2463-2485.
[14] R.D. Shannon, Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Cryst. A, 32 (1976) 751-767.
[15] R.E. Newnham, Structure-Property Relations, Springer-Verlag, New York, (1975).
[16] J.F. Nye, Physical Properties of Crystals, Clarendon Press, Oxford, (1990).
[17] R.E. Cohen, Origin of ferroelectricity in Perovskite oxides, Nature 358 (1992), 136-138.
[18] J.M. Moreau, C. Michel, R. Gerson, and W.J. James, Ferroelectric BiFeO3 X-ray and neutron diffraction study, J. Phys. Chem. Solids 32 (1971) 1315-1320.
[19] G. Catalan, and J.F. Scott, Physics and Applications of Bismuth Ferrite, Adv. Mater. 21 (2009) 2463-2485.
[20] JCPDS file 71-2494.
[21] B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, Prentice Hall, inc., (2001).
[22] C. Ederer, N.A. Spaldin, Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite, Phys. Rev. B 71 (2005) 060401(R).
[23] R. Palai, R.S. Katiyar, H. Schmid, P. Tissot, S.J. Clark, J. Robertson, S. A. T. Redfern, G. Catalan, J. F. Scott, β phase and γ-βmetal-insulator transition in multiferroic BiFeO3, Phys. Rev. B 77 (2008) 014110.
[24] P. Fischer, and M. Polomska, Temperature dependence of the crystal and magnetic structures of BiFeO3, J. Phys. C: Solid State, 13 (1980) 1931-1940.
[25] J.R. Teague, R. Gerson, and W.J. James, Dielectric hysteresis in single crystal BiFeO3, Solid State Commun., 8 (1970) 1073-1074.
[26] S.C. Abrahams, S.K. Kurtz, and P.B. Jamieson, Atomic Displacement Relationship to Curie Temperature and Spontaneous Polarization in Displacive Ferroelectrics, Phys. Rev., 172 (1968) 551.
[27] T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M.P. Cruz, Y.H. Chu, C. Ederer, N.A. Spaldin, R.R. Das, D.M. Kim, S.H. Baek, C.B. Eom, R. Ramesh, Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature, Nat. Mater. 5 (2006) 823-829.
[28] S.H. Baek, H.W. Jang, C.M. Folkman, Y.L. Li, B. Winchester, J.X. Zhang, Q. He, Y.H. Chu, C.T. Nelson, M.S. Rzchowski, X.Q. Pan, R. Ramesh, L.Q. Chen, C.B. Eom, Ferroelastic switching for nanoscale non-volatile magnetoelectric devices, Nat. Mater. 9 (2010) 309-314.
[29] S.K. Streiffer, C.B. Parker, A.E. Romanov, M.J. Lefevre, L. Zhao, J.S. Speck, W. Pompe, C.M. Foster, and G.R. Bai, Domain patterns in epitaxial rhombohedral ferroelectric films. I. Geometry and experiments, J. Appl. Phys. 83 (1998) 2742-2753.
[30] A.E. Romanov, M.J. Lefevre, J.S. Speck, W. Pompe, S.K. Streiffer, and C.M. Foster, Domain pattern formation in epitaxial rhombohedral ferroelectric films. II. Interfacial defects and energetics, J. Appl. Phys. 83 (1998) 2754-2765.
[31] Y. Wang, C. Nelson, A. Melville, B. Winchester, S.L. Shang, Z.K. Liu, D.G. Schlom, X.Q. Pan, L.Q. Chen, BiFeO3 domain wall energies and structures: a combined experimental and density functional theory + U study, Phys. Rev. Lett. 110 (2013) 267601.
[32] F. Zavaliche, R.R. Das, D.M. Kim, C.B. Eom, S.Y. Yang, P. Shafer, and R. Ramesh, Ferroelectric domain structure in epitaxial BiFeO3 films, Appl. Phys. Lett., 87 (2005) 182912.
[33] F. Zavaliche, P. Shafer, R. Ramesh, M.P. Cruz, R.R. Das, D.M. Kim, and C.B. Eom, Polarization switching in epitaxial BiFeO3 films, Appl. Phys. Lett., 87 (2005) 252902.
[34] R.R. Das, D.M. Kim, S.H. Baek, C.B. Eom, F. Zavaliche, S.Y. Yang, R. Ramesh, Y.B. Chen, X.Q. Pan, X. Ke, M.S. Rzchowski, S.K. Streiffer, Synthesis and ferroelectric properties of epitaxial BiFeO3 thin films grown by sputtering, Appl. Phys. Lett. 88 (2006) 242904.
[35] Y.H. Chu, M.P. Cruz, C.H. Yang, L.W. Martin, P.L. Yang, J.X. Zhang, K. Lee, P. Yu, L.Q. Chen, R. Ramesh, Domain control in multiferroic BiFeO3 through substrate vicinality, Adv. Mater., 19 (2007) 2662-2666.
[36] T.L. Burnett, P.M. Weaver, J.F. Blackburn, M. Stewart, and M.G. Cain, Correlation of electron backscatter diffraction and piezoresponse force microscopy for the nanoscale characterization of ferroelectric domains in polycrystalline lead zirconate titanate, J. Appl. Phys. 108 (2010) 042001.
[37] D. Goran, A. Gholinia, A. Lahmar, S. Habouti, C.H. Solterbeck and M. Es-Souni, Texture and Microstructure of Iron Oxide Thin Films Analyzed by EBSD, Materials Science & Technology Conference, MS&T'08, Pittsburgh, Pennsylvania, USA, Volume 1 of 4, 2008.
[38] J. Kolte, D. Gulwade, A. Daryapurkar, P. Gopalan, Microstructural characterization of ferroelectric bismuth ferrite (BiFeO3) ceramic by electron back-scattered diffraction, Mater. Sci. Forum, 702-703 (2012) 1011-1014.
[39] A.M. Schultz, Y. Zhang, P.A. Salvador, and G.S. Rohrer, Effect of Crystal and Domain Orientation on the Visible-Light Photochemical Reduction of Ag on BiFeO3, ACS Appl. Mater. Inter., 3 (2011) 1562–1567.
[40] Y.T. Liu, S.Y. Chen, H.Y. Lee, Characteristics of highly orientated BiFeO3 thin films on a LaNiO3-coated Si substrate by RF sputtering, Thin Solid Films, 518 (2010) 7412−7415.
[41] Y. Zhang, A.M. Schultz, L. Li, H. Chien, P.A. Salvador, G.S. Rohrer, Combinatorial substrate epitaxy: A high-throughput method for determining phase and orientation relationships and its application to BiFeO3/TiO2 heterostructures, Acta Mater., 60 (2012) 6486−6493.
[42] Y.H. Lee, C.S. Liang, and J.M. Wu, Crystal Growth and Characterizations of Highly Oriented BiFeO3 Thin Films, Electrochem. Solid-State Lett. Electrochem. 8(11) (2005) F55-F57.
[43] J. Wu, J. Wang, BiFeO3 thin films of (111)-orientation deposited on SrRuO3 buffered Pt/TiO2/SiO2/Si (100) substrates, Acta Mater. 58 (2010) 1688–1697.
[44] D.L. Smith, Thin-Film Deposition: Principles and Practice, McGraw Hill, San Francisco, 1995.
[45] T.L. Burnett, T.P. Comyn, E. Merson, A.J. Bell, K. Mingard, T. Hegarty, and M. Cain, Electron Backscatter Diffraction as a Domain Analysis Technique in BiFeO3-PbTiO3 Single Crystals, IEEE T. Ultrason. Ferroelectr., 55 (2008) 957-962.
[46] B. Yang, N.J. Park, B.I. Seo, Y.H. Oh, S.J. Kim, S.K. Hong, S.S. Lee, and Y.J. Park, Nanoscale imaging of grain orientations and ferroelectric domains in (Bi1−xLax)4Ti3O12 films for ferroelectric memories, Appl. Phys. Lett. 87 (2005) 062902.
[47] P. Gupta, H. Jain, D.B. Williams, S.V. Kalinin, J. Shin, S. Jesse, and A.P. Baddorf, Observation of ferroelectricity in a confined crystallite using electron-backscattered diffraction and piezoresponse force microscopy, Appl. Phys. Lett. 87 (2005) 172903.
[48] D.A. Porter, K.E. Easterling, M. Sherif, Phase Transformations in Metals and Alloys, CRC Press, New York, 2009.
[49] M. Lowe, T. Hegarty, K. Mingard, J. Li, and M. Cain, Crystallographic mapping of ferroelectric thin films using piezoresponse force microscopy and electron backscatter diffraction, J. Phys.: Conf. Ser. 126 (2008) 012011.
[50] Y.H. Lee, J.M. Wu, Y.L. Chueh, and L.J. Chou, Low-temperature growth and interface characterization of BiFeO3 thin films with reduced leakage current, Appl. Phys. Lett. 87 (2005) 172901.
[51] J.H. Kim, H. Funakubo, Y. Sugiyama, and H. Ishiwara, Characteristics of Undoped and Mn-Doped BiFeO3 Films Formed on Pt and SrRuO3/Pt Electrodes by Radio-Frequency Sputtering, Jpn. J. Appl. Phys. 48 (2009) 09KB02.
[52] D.A. Shirley, High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold, Phys. Rev., B 5 (1972) 4709
[53] C.S. Barrett, T.B. Massalski, Structure of Metals, Pergamon Press, Oxford, (1980).
[54] P. Mills and J.L. Sullivan, study of the core level electrons in iron and its three oxides by means of X-ray photoelectron spectroscopy, J. Phys. D: Appl. Phys., 16 (1983) 723-732.
[55] K. Uchida, A. Ayame, Dynamic XPS measurements on bismuth molybdate surfaces, Surf. Sci., 357-358 (1996) 170-175
[56] A.P. Grosvenor, B.A. Kobe, M.C. Biesinger and N. S. McIntyre, Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds, Surf. Interface Anal., 36 (2004) 1564–1574.
[57] C.D. Pham, J. Chang, M.A. Zurbuchen, and J.P. Chang, Synthesis and Characterization of BiFeO3 Thin Films for Multiferroic Applications by Radical Enhanced Atomic Layer Deposition, Chem. Mater., 27 (2015) 7282−7288.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *