|
[1] G.A. Smolenskii, V.M. Yudin, E.S. Sher, and Y.E. Stolypin, Antiferromagnetic properties of some Perovskites, Sov. Phys. JETP 16 (1963) 622-624. [2] P. Fischer, M. Polomska, I. Sosnowska, and M. Szymanski, Temperature dependence of the crystal and magnetic structures of BiFeO3, J. Phys. C 13 (1980) 1931-1940. [3] J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures, Science 299 (2003) 1719. [4] C. Michel, J.M. Moresu, G.D. Achenbechi, R. Gerson, and W.J. James, The atomic structure of BiFeO3, Solid State Commun. 7 (1969) 701–704. [5] F. Kubel, H. Schmid, Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3, Acta Crystallogr. Sect. B-Struct. Commun. 46 (1990) 698-702. [6] Y.H. Chu, Q. Zhan, L.W. Martin, M.P. Cruz, P.L. Yang, G.W. Pabst, F. Zavaliche, S.Y. Yang, J.X. Zhang, L.Q. Chen, D.G. Schlom, I.N. Lin, T.B. Wu, R. Ramesh, Nanoscale domain control in multiferroic BiFeO3 thin films, Adv. Mater. 18 (2006) 2307-2311. [7] L.V. Azároff, M.J. Buerger, The powder method in X-ray crystallography, New York, McGraw-Hill, (1958). [8] H.W. Jang, D. Ortiz, S.H. Baek, C.M. Folkman, R.R. Das, P. Shafer, Y. Chen, C.T. Nelson, X. Pan, R. Ramesh, C.B. Eom, Domain engineering for enhanced ferroelectric properties of epitaxial (001) BiFeO3 thin films, Adv. Mater., 21 (2009) 817-823. [9] F. Yan, T.J. Zhu, M.O. Lai and L. Lu, Enhanced multiferroic properties and domain structure of La-doped BiFeO3 thin films, Scripta Mater. 63 (2010) 780–783. [10] F. Yan, T.J. Zhu, M.O. Lai, and L. Lu, Effect of bottom electrodes on nanoscale switching characteristics and piezoelectric response in polycrystalline BiFeO3 thin films, J. Appl. Phys. 110 (2011) 084102. [11] D. Pravarthana, M. Trassin, J.H. Chu, M. Lacotte, A. David, R. Ramesh, P.A. Salvador, and W. Prellier, BiFeO3/La0.7Sr0.3MnO3 heterostructures deposited on spark plasma sintered LaAlO3 substrates. Appl. Phys. Lett. 104 (2014) 082914. [12] V.M. Goldschmidt, Die gesetze der krystallochemie, Naturwissenschaften, 14 (1926), 477. [13] G. Catalan, and J.F. Scott, Physics and Applications of Bismuth Ferrite, Adv. Mater. 21 (2009) 2463-2485. [14] R.D. Shannon, Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Cryst. A, 32 (1976) 751-767. [15] R.E. Newnham, Structure-Property Relations, Springer-Verlag, New York, (1975). [16] J.F. Nye, Physical Properties of Crystals, Clarendon Press, Oxford, (1990). [17] R.E. Cohen, Origin of ferroelectricity in Perovskite oxides, Nature 358 (1992), 136-138. [18] J.M. Moreau, C. Michel, R. Gerson, and W.J. James, Ferroelectric BiFeO3 X-ray and neutron diffraction study, J. Phys. Chem. Solids 32 (1971) 1315-1320. [19] G. Catalan, and J.F. Scott, Physics and Applications of Bismuth Ferrite, Adv. Mater. 21 (2009) 2463-2485. [20] JCPDS file 71-2494. [21] B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, Prentice Hall, inc., (2001). [22] C. Ederer, N.A. Spaldin, Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite, Phys. Rev. B 71 (2005) 060401(R). [23] R. Palai, R.S. Katiyar, H. Schmid, P. Tissot, S.J. Clark, J. Robertson, S. A. T. Redfern, G. Catalan, J. F. Scott, β phase and γ-βmetal-insulator transition in multiferroic BiFeO3, Phys. Rev. B 77 (2008) 014110. [24] P. Fischer, and M. Polomska, Temperature dependence of the crystal and magnetic structures of BiFeO3, J. Phys. C: Solid State, 13 (1980) 1931-1940. [25] J.R. Teague, R. Gerson, and W.J. James, Dielectric hysteresis in single crystal BiFeO3, Solid State Commun., 8 (1970) 1073-1074. [26] S.C. Abrahams, S.K. Kurtz, and P.B. Jamieson, Atomic Displacement Relationship to Curie Temperature and Spontaneous Polarization in Displacive Ferroelectrics, Phys. Rev., 172 (1968) 551. [27] T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M.P. Cruz, Y.H. Chu, C. Ederer, N.A. Spaldin, R.R. Das, D.M. Kim, S.H. Baek, C.B. Eom, R. Ramesh, Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature, Nat. Mater. 5 (2006) 823-829. [28] S.H. Baek, H.W. Jang, C.M. Folkman, Y.L. Li, B. Winchester, J.X. Zhang, Q. He, Y.H. Chu, C.T. Nelson, M.S. Rzchowski, X.Q. Pan, R. Ramesh, L.Q. Chen, C.B. Eom, Ferroelastic switching for nanoscale non-volatile magnetoelectric devices, Nat. Mater. 9 (2010) 309-314. [29] S.K. Streiffer, C.B. Parker, A.E. Romanov, M.J. Lefevre, L. Zhao, J.S. Speck, W. Pompe, C.M. Foster, and G.R. Bai, Domain patterns in epitaxial rhombohedral ferroelectric films. I. Geometry and experiments, J. Appl. Phys. 83 (1998) 2742-2753. [30] A.E. Romanov, M.J. Lefevre, J.S. Speck, W. Pompe, S.K. Streiffer, and C.M. Foster, Domain pattern formation in epitaxial rhombohedral ferroelectric films. II. Interfacial defects and energetics, J. Appl. Phys. 83 (1998) 2754-2765. [31] Y. Wang, C. Nelson, A. Melville, B. Winchester, S.L. Shang, Z.K. Liu, D.G. Schlom, X.Q. Pan, L.Q. Chen, BiFeO3 domain wall energies and structures: a combined experimental and density functional theory + U study, Phys. Rev. Lett. 110 (2013) 267601. [32] F. Zavaliche, R.R. Das, D.M. Kim, C.B. Eom, S.Y. Yang, P. Shafer, and R. Ramesh, Ferroelectric domain structure in epitaxial BiFeO3 films, Appl. Phys. Lett., 87 (2005) 182912. [33] F. Zavaliche, P. Shafer, R. Ramesh, M.P. Cruz, R.R. Das, D.M. Kim, and C.B. Eom, Polarization switching in epitaxial BiFeO3 films, Appl. Phys. Lett., 87 (2005) 252902. [34] R.R. Das, D.M. Kim, S.H. Baek, C.B. Eom, F. Zavaliche, S.Y. Yang, R. Ramesh, Y.B. Chen, X.Q. Pan, X. Ke, M.S. Rzchowski, S.K. Streiffer, Synthesis and ferroelectric properties of epitaxial BiFeO3 thin films grown by sputtering, Appl. Phys. Lett. 88 (2006) 242904. [35] Y.H. Chu, M.P. Cruz, C.H. Yang, L.W. Martin, P.L. Yang, J.X. Zhang, K. Lee, P. Yu, L.Q. Chen, R. Ramesh, Domain control in multiferroic BiFeO3 through substrate vicinality, Adv. Mater., 19 (2007) 2662-2666. [36] T.L. Burnett, P.M. Weaver, J.F. Blackburn, M. Stewart, and M.G. Cain, Correlation of electron backscatter diffraction and piezoresponse force microscopy for the nanoscale characterization of ferroelectric domains in polycrystalline lead zirconate titanate, J. Appl. Phys. 108 (2010) 042001. [37] D. Goran, A. Gholinia, A. Lahmar, S. Habouti, C.H. Solterbeck and M. Es-Souni, Texture and Microstructure of Iron Oxide Thin Films Analyzed by EBSD, Materials Science & Technology Conference, MS&T'08, Pittsburgh, Pennsylvania, USA, Volume 1 of 4, 2008. [38] J. Kolte, D. Gulwade, A. Daryapurkar, P. Gopalan, Microstructural characterization of ferroelectric bismuth ferrite (BiFeO3) ceramic by electron back-scattered diffraction, Mater. Sci. Forum, 702-703 (2012) 1011-1014. [39] A.M. Schultz, Y. Zhang, P.A. Salvador, and G.S. Rohrer, Effect of Crystal and Domain Orientation on the Visible-Light Photochemical Reduction of Ag on BiFeO3, ACS Appl. Mater. Inter., 3 (2011) 1562–1567. [40] Y.T. Liu, S.Y. Chen, H.Y. Lee, Characteristics of highly orientated BiFeO3 thin films on a LaNiO3-coated Si substrate by RF sputtering, Thin Solid Films, 518 (2010) 7412−7415. [41] Y. Zhang, A.M. Schultz, L. Li, H. Chien, P.A. Salvador, G.S. Rohrer, Combinatorial substrate epitaxy: A high-throughput method for determining phase and orientation relationships and its application to BiFeO3/TiO2 heterostructures, Acta Mater., 60 (2012) 6486−6493. [42] Y.H. Lee, C.S. Liang, and J.M. Wu, Crystal Growth and Characterizations of Highly Oriented BiFeO3 Thin Films, Electrochem. Solid-State Lett. Electrochem. 8(11) (2005) F55-F57. [43] J. Wu, J. Wang, BiFeO3 thin films of (111)-orientation deposited on SrRuO3 buffered Pt/TiO2/SiO2/Si (100) substrates, Acta Mater. 58 (2010) 1688–1697. [44] D.L. Smith, Thin-Film Deposition: Principles and Practice, McGraw Hill, San Francisco, 1995. [45] T.L. Burnett, T.P. Comyn, E. Merson, A.J. Bell, K. Mingard, T. Hegarty, and M. Cain, Electron Backscatter Diffraction as a Domain Analysis Technique in BiFeO3-PbTiO3 Single Crystals, IEEE T. Ultrason. Ferroelectr., 55 (2008) 957-962. [46] B. Yang, N.J. Park, B.I. Seo, Y.H. Oh, S.J. Kim, S.K. Hong, S.S. Lee, and Y.J. Park, Nanoscale imaging of grain orientations and ferroelectric domains in (Bi1−xLax)4Ti3O12 films for ferroelectric memories, Appl. Phys. Lett. 87 (2005) 062902. [47] P. Gupta, H. Jain, D.B. Williams, S.V. Kalinin, J. Shin, S. Jesse, and A.P. Baddorf, Observation of ferroelectricity in a confined crystallite using electron-backscattered diffraction and piezoresponse force microscopy, Appl. Phys. Lett. 87 (2005) 172903. [48] D.A. Porter, K.E. Easterling, M. Sherif, Phase Transformations in Metals and Alloys, CRC Press, New York, 2009. [49] M. Lowe, T. Hegarty, K. Mingard, J. Li, and M. Cain, Crystallographic mapping of ferroelectric thin films using piezoresponse force microscopy and electron backscatter diffraction, J. Phys.: Conf. Ser. 126 (2008) 012011. [50] Y.H. Lee, J.M. Wu, Y.L. Chueh, and L.J. Chou, Low-temperature growth and interface characterization of BiFeO3 thin films with reduced leakage current, Appl. Phys. Lett. 87 (2005) 172901. [51] J.H. Kim, H. Funakubo, Y. Sugiyama, and H. Ishiwara, Characteristics of Undoped and Mn-Doped BiFeO3 Films Formed on Pt and SrRuO3/Pt Electrodes by Radio-Frequency Sputtering, Jpn. J. Appl. Phys. 48 (2009) 09KB02. [52] D.A. Shirley, High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold, Phys. Rev., B 5 (1972) 4709 [53] C.S. Barrett, T.B. Massalski, Structure of Metals, Pergamon Press, Oxford, (1980). [54] P. Mills and J.L. Sullivan, study of the core level electrons in iron and its three oxides by means of X-ray photoelectron spectroscopy, J. Phys. D: Appl. Phys., 16 (1983) 723-732. [55] K. Uchida, A. Ayame, Dynamic XPS measurements on bismuth molybdate surfaces, Surf. Sci., 357-358 (1996) 170-175 [56] A.P. Grosvenor, B.A. Kobe, M.C. Biesinger and N. S. McIntyre, Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds, Surf. Interface Anal., 36 (2004) 1564–1574. [57] C.D. Pham, J. Chang, M.A. Zurbuchen, and J.P. Chang, Synthesis and Characterization of BiFeO3 Thin Films for Multiferroic Applications by Radical Enhanced Atomic Layer Deposition, Chem. Mater., 27 (2015) 7282−7288.
|