帳號:guest(3.15.189.174)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳佳凌
作者(外文):Wu, Jia-Ling.
論文名稱(中文):開發原位桌上型掃描/穿透式電子顯微鏡應用於奈米化學沉積與溶菌蛋白酶晶體觀測之流體載台
論文名稱(外文):Development of Fluidic Holder for Desktop S/TEM for In-Situ Observation of Chemical Deposition and Lysozyme Crystal
指導教授(中文):陳福榮
指導教授(外文):Chen, Fu-Rong
口試委員(中文):曾繁根
吳文偉
口試委員(外文):Tseng, Fan-Gang
Wu, Wen-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:105011578
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:90
中文關鍵詞:掃描式電子顯微鏡掃描穿透式電子顯微鏡臨場觀測化學沉積溶菌蛋白酶晶體
外文關鍵詞:Scanning Electron MicroscopeScanning Transmission Electron MicroscopeIn-situChemical depositionLysozyme Crystal
相關次數:
  • 推薦推薦:0
  • 點閱點閱:153
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
臨場觀測先進技術與電子顯微鏡的搭配開啟科學界新穎且獨特的領域,此再研究以本實驗室研發之桌上型掃描/穿透式電子顯微鏡為基礎,以自製流體載台並搭配微機電製程技術,在微小腔體中建造了all in one的奈米級獨立實驗室,實現了液態的臨場觀測。本實驗研發兩種流體載具:
(1) SEM流體載台:
此載台有三個特點:使用單一具有可透射電子束之50nm氮化矽薄膜晶片,利用微機電製成具有低應力分佈之圓形觀測視窗;機械精度加工使流道至觀測視窗至液體厚度僅0.01~0.1mm;可自由切換封閉或流體兩個系統且簡易操作,成功通入硝酸銀溶液驗證此系統之可行性,以及觀察到電子束激發銻化銦奈米線產生電子電動對間接的使硝酸銀離子溶液中的銀還原之化學沉積現象。除此之外,應用於溶菌蛋白酶之結晶,雖然原子序低的組成使影像對比度較低,但可觀察到一點晶體邊緣。
(2) STEM流體載台:
因為穿透電子訊號比背向散射的成像有較好的對比度,因此在桌上型電子顯微鏡中發展STEM流體系統載台可為低原子序的生物樣品提供一液態環境。此載台結合MEMS製成與機械設計,其中一晶片上鍍有200nm鉻層限制液體厚度,且已在電鏡下觀察過流體通入並證實載台之可行性,未來預計可在濕式、低原子序的科學分析上有所貢獻。
The combination of advanced in-situ techniques and environmental electron microscope opens up a new era for us to explore the identifiable scientific issue. Based on the desktop scanning/transmission electron microscope developed by our group and further equipped with designed holder for fluid, we make the in-situ observation of fluid possible. In this study, two kinds of holder for fluid are invented:
(1) SEM fluid holder:
The holder mainly contains three characteristics: A circle observation window with lower stress distribution made by a bulk-micromachining process; the channel control by precise process and only 0.01~0.1 mm of the fluid thickness is allowed; this holder is able to transfer between close or flow system and easy to use. We prove the feasibility of this holder by successfully injecting the AgNO3 solution, and further observe that secondary electrons generated in InSb nanowire by the primary electron beam lead to electron mediated Ag deposition from AgNO3 solution. Moreover, we are trying to observe the Lysozyme crystal with smaller atomic number and we have successfully observed the periphery of it.
(2) STEM fluid holder:
Due to the image formation by signal of transmission electron has better contrast than signal of backscattered electron, the development of STEM liquid holder in desktop EM can provide a wet environment for observing the low atomic number bio-sample. Its combine with MEMS process, mechanism-design. The liquid thickness is limited by a chip with 200nm Cr spacer. Availability of its flow system is proven by observing the flowing process in desktop EM. Further, it will contribute for wet sample which has low atomic.
ABSTRACT I
摘要 II
致謝 III
章節目錄 V
圖目錄 IX
表目錄 XVI
第一章 緒論 1
1.1顯微鏡發展 1
1.1.1光學顯微鏡的發展 1
1.1.2電子顯微鏡的發展 2
1.1.3掃描式電子顯微鏡 5
1.1.4穿透式電子顯微鏡 6
2.1 臨場觀測掃描式電子顯微鏡之流體載台 8
2.2 研究動機及目標 9
第二章 文獻回顧 10
2.1初期環境式電子顯微鏡系統 10
2.1.1孔隙侷限型 10
2.1.2薄膜侷限型 12
2.2 環境式電子顯微鏡的發展與應用 14
2.2.1 微型環境式封閉腔體元件 14
2.2.2 微型環境式流體交換系統 24
2.3 溶菌蛋白酶結晶於倒立式電子顯微鏡中之液態觀測 31
第三章 實驗方法與原理 33
3.1儀器介紹 33
3.1.1分析儀器 33
3.1.2晶片製成儀器 36
3.2 桌上型掃描電子顯微鏡(SEM)流體系統 37
3.2.1 SEM流體系統晶片設計 37
3.2.2 SEM流體系統光罩 38
3.2.2 SEM流體系統晶片製程 39
.3.2.3 SEM流體系統載台設計 43
3.2桌上型掃描/穿透電子顯微鏡(STEM)流體系統 49
3.2.1 STEM流體系統晶片設計 49
3.2.2 STEM流體系統晶片製成步驟 51
3.2.3 STEM流體系統載台設計 55
3.3 觀測之樣品製備 58
3.3.1 銻化銦奈米線與硝酸銀溶液製備 58
3.3.2溶菌蛋白酶溶液製備 59
第四章 結果與討論 60
4.1 SEM流體系統載台 60
4.1.1 SEM流體晶片 60
4.1.2 SEM流體系統載台組裝 61
4.1.3 SEM流體系統載台真空測試 63
4.2 桌上型掃描/穿透式電子顯微鏡之特性檢測 66
4.2.1 桌上型掃描/穿透式電子顯微鏡之電子劑量 66
4.3 SEM流體系臨場觀測 71
4.3.1電子束誘發硝酸銀溶液之銀離子還原 71
4.3.2銻化銦奈米線浸潤於硝酸銀溶液 75
4.3.3溶菌蛋白酶晶體之液態臨場觀測 80
4.4 STEM流體系統載台 83
4.4.1 STEM 流體晶片 83
4.4.2 STEM 流體系統載台與真空測試 84
第五章 結論 88
第六章 參考文獻 89

1. 王文軒, 發明與創新( 學生版). 2007.
2. Wei, Z. S., “光學顯微技術的新進展”. Spacetime 2013, vol. 6, 76-81.
3. Hawkes, P. W., Ernst Ruska. Physics Today. 1990, 43(7), p. 84.
4. Wells, O. C., Scanning Electron Microscopy. Journal of Vacuum Science & Technology 1965, 2(5): p. 285-.
5. 汪建民, 材料分析. 2001, p. 121-150.
6. Geisler-Lee, J.; Wang, Q.; Yao, Y.; Zhang, W.; Geisler, M.; Li, K.; Huang, Y.; Chen, Y.; Kolmakov, A.; Ma, X., Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology 2012, 7 (3), 323-337.
7. Kolmakova, N.; Kolmakov, A., Scanning Electron Microscopy for in Situ Monitoring of Semiconductor−Liquid Interfacial Processes: Electron Assisted Reduction of Ag Ions from Aqueous Solution on the Surface of TiO2 Rutile Nanowire. The Journal of Physical Chemistry C 2010, 114 (40), 17233-17237.
8. Al-Asadi, A. S.; Zhang, J.; Li, J.; Potyrailo, R. A.; Kolmakov, A., Design and Application of Variable Temperature Setup for Scanning Electron Microscopy in Gases and Liquids at Ambient Conditions. Microscopy and Microanalysis 2015, 21 (3), 765-770.
9. Ito, T.; Hiziya, K., A Specimen Reaction Device for the Electron Microscope and its Applications. Journal of Electron Microscopy 1958, 6 (1), 4-8.
10. Baker, R. T. K.; Harris, P. S., Controlled atmosphere electron microscopy. Journal of Physics E: Scientific Instruments 1972, 5 (8), 793.
11. Parsons, D. F., Structure of Wet Specimens in Electron Microscopy. Science 1974, 186 (4162), 407-414.
12. Yoshinori Fujiyoshi, M. N., “Specimen-holding device for electron microscope”. U.S. Patent 5406087, 1995.
13. Kaznacheyev, K.; Osanna, A.; Winn, B., Sealed cell for in-water measurements. AIP Conference Proceedings 2000, 507 (1), 395-400.
14. Liu, K.-L.; Wu, C.-C.; Huang, Y.-J.; Peng, H.-L.; Chang, H.-Y.; Chang, P.; Hsu, L.; Yew, T.-R., Novel microchip for in situTEM imaging of living organisms and bio-reactions in aqueous conditions. Lab on a Chip 2008, 8 (11), 1915-1921.
15. Huang, T.-W.; Liu, S.-Y.; Chuang, Y.-J.; Hsieh, H.-Y.; Tsai, C.-Y.; Huang, Y.-T.; Mirsaidov, U.; Matsudaira, P.; Tseng, F.-G.; Chang, C.-S.; Chen, F.-R., Self-aligned wet-cell for hydrated microbiology observation in TEM. Lab on a Chip 2012, 12 (2), 340-347.
16. Yuk, J. M.; Park, J.; Ercius, P.; Kim, K.; Hellebusch, D. J.; Crommie, M. F.; Lee, J. Y.; Zettl, A.; Alivisatos, A. P., High-Resolution EM of Colloidal Nanocrystal Growth Using Graphene Liquid Cells. Science 2012, 336 (6077), 61-64.
17. Zhu, G.; Jiang, Y.; Huang, W.; Zhang, H.; Lin, F.; Jin, C., Atomic resolution liquid-cell transmission electron microscopy investigations of the dynamics of nanoparticles in ultrathin liquids. Chemical Communications 2013, 49 (93), 10944-10946.
18. Karni, V. B. A. N. Y. K. O. G. D. S. O. Z. Y., “Methods for SEM inspection of fluid containing samples”. U.S. patent 7230242 B2 2007.
19. Jonge, N. d.; Peckys, D. B.; Kremers, G. J.; Piston, D. W., Electron microscopy of whole cells in liquid with nanometer resolution. Proceedings of the National Academy of Sciences 2009, 106 (7), 2159-2164.
20. Ring, E. A.; de Jonge, N., Microfluidic System for Transmission Electron Microscopy. Microscopy and Microanalysis 2010, 16 (5), 622-629.
21. Hsieh, T.-H.; Chen, J.-Y.; Huang, C.-W.; Wu, W.-W., Observing Growth of Nanostructured ZnO in Liquid. Chemistry of Materials 2016, 28 (12), 4507-4511.
22. Liu, S.-Y.; Kundu, P.; Huang, T.-W.; Chuang, Y.-J.; Tseng, F.-G.; Lu, Y.; Sui, M.-L.; Chen, F.-R., Quasi-2D liquid cell for high density hydrogen storage. Nano Energy 2017, 31, 218-224.
23. Maruyama, Y.; Ebihara, T.; Nishiyama, H.; Konyuba, Y.; Senda, M.; Numaga-Tomita, T.; Senda, T.; Suga, M.; Sato, C., Direct Observation of Protein Microcrystals in Crystallization Buffer by Atmospheric Scanning Electron Microscopy. International Journal of Molecular Sciences 2012, 13 (8), 10553-10567.
24. Lee, W. S.; Lee, S. S., Piezoelectric microphone built on circular diaphragm. Sensors and Actuators A: Physical 2008, 144 (2), 367-373.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *