|
[1] S. Iijima, "Helical microtubules of graphitic carbon," nature, vol. 354, p. 56, 1991. [2] L.-J. Li, A. Khlobystov, J. Wiltshire, G. Briggs, and R. Nicholas, "Diameter-selective encapsulation of metallocenes in single-walled carbon nanotubes," Nature materials, vol. 4, pp. 481-485, 2005. [3] H. Zhu, C. Xu, D. Wu, B. Wei, R. Vajtai, and P. Ajayan, "Direct synthesis of long single-walled carbon nanotube strands," Science, vol. 296, pp. 884-886, 2002. [4] B. Zheng, C. Lu, G. Gu, A. Makarovski, G. Finkelstein, and J. Liu, "Efficient CVD growth of single-walled carbon nanotubes on surfaces using carbon monoxide precursor," Nano Letters, vol. 2, pp. 895-898, 2002. [5] C. Furtado, U. Kim, H. Gutierrez, L. Pan, E. Dickey, and P. C. Eklund, "Debundling and dissolution of single-walled carbon nanotubes in amide solvents," Journal of the American Chemical Society, vol. 126, pp. 6095-6105, 2004. [6] M. J. O'connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, et al., "Band gap fluorescence from individual single-walled carbon nanotubes," Science, vol. 297, pp. 593-596, 2002. [7] M. Monthioux, B. Smith, B. Burteaux, A. Claye, J. Fischer, and D. Luzzi, "Sensitivity of single-wall carbon nanotubes to chemical processing: an electron microscopy investigation," Carbon, vol. 39, pp. 1251-1272, 2001. [8] J. Kong, A. M. Cassell, and H. Dai, "Chemical vapor deposition of methane for single-walled carbon nanotubes," Chemical Physics Letters, vol. 292, pp. 567-574, 1998. [9] Y. Murakami, Y. Miyauchi, S. Chiashi, and S. Maruyama, "Characterization of single-walled carbon nanotubes catalytically synthesized from alcohol," Chemical Physics Letters, vol. 374, pp. 53-58, 2003. [10] Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang, and H. Dai, "Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes," The Journal of Physical Chemistry B, vol. 105, pp. 11424-11431, 2001. [11] J. Kong, C. Zhou, A. Morpurgo, H. Soh, C. Quate, C. Marcus, et al., "Synthesis, integration, and electrical properties of individual single-walled carbon nanotubes," Applied Physics A: Materials Science & Processing, vol. 69, pp. 305-308, 1999. [12] M. S. Dresselhaus and P. Avouris, "Introduction to carbon materials research," in Carbon nanotubes, ed: Springer, 2001, pp. 1-9. [13] P. Avouris, "Molecular electronics with carbon nanotubes," Accounts of chemical research, vol. 35, pp. 1026-1034, 2002. [14] A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, et al., "High-field quasiballistic transport in short carbon nanotubes," Physical Review Letters, vol. 92, p. 106804, 2004. [15] A. Javey, J. Guo, D. B. Farmer, Q. Wang, E. Yenilmez, R. G. Gordon, et al., "Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays," Nano letters, vol. 4, pp. 1319-1322, 2004. [16] S. Heinze, J. Tersoff, and P. Avouris, "Electrostatic engineering of nanotube transistors for improved performance," Applied Physics Letters, vol. 83, pp. 5038-5040, 2003. [17] P. G. Collins, K. Bradley, M. Ishigami, and d. A. Zettl, "Extreme oxygen sensitivity of electronic properties of carbon nanotubes," science, vol. 287, pp. 1801-1804, 2000. [18] M. Bockrath, W. Liang, D. Bozovic, J. H. Hafner, C. M. Lieber, M. Tinkham, et al., "Resonant electron scattering by defects in single-walled carbon nanotubes," Science, vol. 291, pp. 283-285, 2001. [19] M. C. Hersam, "Progress towards monodisperse single-walled carbon nanotubes," Nature Nanotechnology, vol. 3, pp. 387-394, 2008. [20] M. J. Green, "Analysis and measurement of carbon nanotube dispersions: nanodispersion versus macrodispersion," Polymer International, vol. 59, pp. 1319-1322, 2010. [21] S. W. Kim, T. Kim, Y. S. Kim, H. S. Choi, H. J. Lim, S. J. Yang, et al., "Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers," Carbon, vol. 50, pp. 3-33, 2012. [22] M. J. O'Connell, P. Boul, L. M. Ericson, C. Huffman, Y. Wang, E. Haroz, et al., "Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping," Chemical physics letters, vol. 342, pp. 265-271, 2001. [23] E. Nativ-Roth, Y. Levi-Kalisman, O. Regev, and R. Yerushalmi-Rozen, "On the route to compatibilization of carbon nanotubes," Journal of polymer engineering, vol. 22, pp. 353-368, 2002. [24] S. Marchesan, K. Kostarelos, A. Bianco, and M. Prato, "The winding road for carbon nanotubes in nanomedicine," Materials today, vol. 18, pp. 12-19, 2015. [25] T. Choi, S. H. Kim, C. W. Lee, H. Kim, S.-K. Choi, S.-H. Kim, et al., "Synthesis of carbon nanotube–nickel nanocomposites using atomic layer deposition for high-performance non-enzymatic glucose sensing," Biosensors and Bioelectronics, vol. 63, pp. 325-330, 2015. [26] E. P. Favvas, S. F. Nitodas, A. A. Stefopoulos, S. K. Papageorgiou, K. L. Stefanopoulos, and A. C. Mitropoulos, "High purity multi-walled carbon nanotubes: Preparation, characterization and performance as filler materials in co-polyimide hollow fiber membranes," Separation and Purification Technology, vol. 122, pp. 262-269, 2014. [27] N. Mubarak, J. Wong, K. Tan, J. Sahu, E. Abdullah, N. Jayakumar, et al., "Immobilization of cellulase enzyme on functionalized multiwall carbon nanotubes," Journal of Molecular Catalysis B: Enzymatic, vol. 107, pp. 124-131, 2014. [28] T. Bortolamiol, P. Lukanov, A.-M. Galibert, B. Soula, P. Lonchambon, L. Datas, et al., "Double-walled carbon nanotubes: quantitative purification assessment, balance between purification and degradation and solution filling as an evidence of opening," Carbon, vol. 78, pp. 79-90, 2014. [29] N. G. Sahoo, H. Bao, Y. Pan, M. Pal, M. Kakran, H. K. F. Cheng, et al., "Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug: a comparative study," Chemical communications, vol. 47, pp. 5235-5237, 2011. [30] T. Mugadza and T. Nyokong, "Covalent linking of ethylene amine functionalized single-walled carbon nanotubes to cobalt (II) tetracarboxyl-phthalocyanines for use in electrocatalysis," Synthetic Metals, vol. 160, pp. 2089-2098, 2010. [31] T. Coccini, E. Roda, D. Sarigiannis, P. Mustarelli, E. Quartarone, A. Profumo, et al., "Effects of water-soluble functionalized multi-walled carbon nanotubes examined by different cytotoxicity methods in human astrocyte D384 and lung A549 cells," Toxicology, vol. 269, pp. 41-53, 2010. [32] S. Tangestaninejad, M. Moghadam, V. Mirkhani, I. Mohammadpoor-Baltork, and M. S. Saeedi, "Efficient epoxidation of alkenes with sodium periodate catalyzed by reusable manganese (III) salophen supported on multi-wall carbon nanotubes," Applied Catalysis A: General, vol. 381, pp. 233-241, 2010. [33] C. Yu, A. Murali, K. Choi, and Y. Ryu, "Air-stable fabric thermoelectric modules made of N-and P-type carbon nanotubes," Energy & Environmental Science, vol. 5, pp. 9481-9486, 2012. [34] M. Shim, A. Javey, N. W. Shi Kam, and H. Dai, "Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors," Journal of the American Chemical Society, vol. 123, pp. 11512-11513, 2001. [35] H. Dai, A. Javey, E. Pop, D. Mann, W. Kim, and Y. Lu, "Electrical transport properties and field effect transistors of carbon nanotubes," Nano, vol. 1, pp. 1-13, 2006. [36] H. Wang, P. Wei, Y. Li, J. Han, H. R. Lee, B. D. Naab, et al., "Tuning the threshold voltage of carbon nanotube transistors by n-type molecular doping for robust and flexible complementary circuits," Proceedings of the National Academy of Sciences, vol. 111, pp. 4776-4781, 2014. [37] A. D. Franklin, S. O. Koswatta, D. B. Farmer, J. T. Smith, L. Gignac, C. M. Breslin, et al., "Carbon nanotube complementary wrap-gate transistors," Nano letters, vol. 13, pp. 2490-2495, 2013. [38] L. Suriyasena Liyanage, X. Xu, G. Pitner, Z. Bao, and H.-S. P. Wong, "VLSI-compatible carbon nanotube doping technique with low work-function metal oxides," Nano letters, vol. 14, pp. 1884-1890, 2014. [39] T.-J. Ha, K. Chen, S. Chuang, K. M. Yu, D. Kiriya, and A. Javey, "Highly uniform and stable n-type carbon nanotube transistors by using positively charged silicon nitride thin films," Nano letters, vol. 15, pp. 392-397, 2014. [40] K. Chen, D. Kiriya, M. Hettick, M. Tosun, T.-J. Ha, S. R. Madhvapathy, et al., "Air stable n-doping of WSe2 by silicon nitride thin films with tunable fixed charge density," APL Materials, vol. 2, p. 092504, 2014. [41] J. Zhang, C. Wang, Y. Fu, Y. Che, and C. Zhou, "Air-stable conversion of separated carbon nanotube thin-film transistors from p-type to n-type using atomic layer deposition of high-κ oxide and its application in CMOS logic circuits," Acs Nano, vol. 5, pp. 3284-3292, 2011. [42] Y. Jang, S. Kim, S. W. Jun, B. H. Kim, S. Hwang, I. K. Song, et al., "Simple one-pot synthesis of Rh–Fe 3 O 4 heterodimer nanocrystals and their applications to a magnetically recyclable catalyst for efficient and selective reduction of nitroarenes and alkenes," Chemical Communications, vol. 47, pp. 3601-3603, 2011. [43] T. Mitsudome, Y. Mikami, M. Matoba, T. Mizugaki, K. Jitsukawa, and K. Kaneda, "Design of a silver–cerium dioxide core–shell nanocomposite catalyst for chemoselective reduction reactions," Angewandte Chemie International Edition, vol. 51, pp. 136-139, 2012. [44] H. U. Blaser, H. Steiner, and M. Studer, "Selective catalytic hydrogenation of functionalized nitroarenes: an update," ChemCatChem, vol. 1, pp. 210-221, 2009. [45] A. Rahman and S. Jonnalagadda, "Swift and selective reduction of nitroaromatics to aromatic amines with Ni–boride–silica catalysts system at low temperature," Catalysis letters, vol. 123, pp. 264-268, 2008. [46] R. V. Jagadeesh, G. Wienhöfer, F. A. Westerhaus, A.-E. Surkus, M.-M. Pohl, H. Junge, et al., "Efficient and highly selective iron-catalyzed reduction of nitroarenes," Chemical Communications, vol. 47, pp. 10972-10974, 2011. [47] Y. Gao, D. Ma, C. Wang, J. Guan, and X. Bao, "Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature," Chemical Communications, vol. 47, pp. 2432-2434, 2011. [48] G. Wienhöfer, I. n. Sorribes, A. Boddien, F. Westerhaus, K. Junge, H. Junge, et al., "General and selective iron-catalyzed transfer hydrogenation of nitroarenes without base," Journal of the American Chemical Society, vol. 133, pp. 12875-12879, 2011. [49] X. B. Lou, L. He, Y. Qian, Y. M. Liu, Y. Cao, and K. N. Fan, "Highly Chemo‐and Regioselective Transfer Reduction of Aromatic Nitro Compounds using Ammonium Formate Catalyzed by Supported Gold Nanoparticles," Advanced Synthesis & Catalysis, vol. 353, pp. 281-286, 2011. [50] A. Saha and B. Ranu, "Highly chemoselective reduction of aromatic nitro compounds by copper nanoparticles/ammonium formate," The Journal of organic chemistry, vol. 73, pp. 6867-6870, 2008. [51] K. Junge, B. Wendt, N. Shaikh, and M. Beller, "Iron-catalyzed selective reduction of nitroarenes to anilines using organosilanes," Chemical communications, vol. 46, pp. 1769-1771, 2010. [52] O. Dipeolu, E. Green, and G. Stephens, "Effects of water-miscible ionic liquids on cell growth and nitro reduction using Clostridium sporogenes," Green Chemistry, vol. 11, pp. 397-401, 2009. [53] D. A. Ferreira, R. C. Da Silva, J. C. da Costa Assunção, M. C. de Mattos, T. L. G. de Lemos, and F. J. Q. Monte, "Lens culinaris: A new biocatalyst for reducing carbonyl and nitro groups," Biotechnology and bioprocess engineering, vol. 17, pp. 407-412, 2012. [54] B. Li and Z. Xu, "A nonmetal catalyst for molecular hydrogen activation with comparable catalytic hydrogenation capability to noble metal catalyst," Journal of the American Chemical Society, vol. 131, pp. 16380-16382, 2009. [55] H. K. Kadam and S. G. Tilve, "Copper (II) bromide as a procatalyst for in situ preparation of active Cu nanoparticles for reduction of nitroarenes," RSC Advances, vol. 2, pp. 6057-6060, 2012. [56] M. Kumar, U. Sharma, S. Sharma, V. Kumar, B. Singh, and N. Kumar, "Catalyst-free water mediated reduction of nitroarenes using glucose as a hydrogen source," Rsc Advances, vol. 3, pp. 4894-4898, 2013. [57] D. R. Ulrich, "Multifunctional macromolecular ultrastructures: Introductory Comments Speciality Polymers' 86," Polymer, vol. 28, pp. 533-542, 1987. [58] M. Holzinger, O. Vostrowsky, A. Hirsch, F. Hennrich, M. Kappes, R. Weiss, et al., "Sidewall functionalization of carbon nanotubes," Angewandte Chemie International Edition, vol. 40, pp. 4002-4005, 2001. [59] M. J. Moghaddam, S. Taylor, M. Gao, S. Huang, L. Dai, and M. J. McCall, "Highly efficient binding of DNA on the sidewalls and tips of carbon nanotubes using photochemistry," nano letters, vol. 4, pp. 89-93, 2004. [60] J.-K. Wu, C.-S. Yang, Y.-S. Wu, P.-C. Wang, and F.-G. Tseng, "Continuous affinity-gradient nano-stationary phase served as a column for reversed-phase electrochromatography and matrix carrier in time-of-flight mass spectrometry for protein analysis," Analytica chimica acta, vol. 889, pp. 166-171, 2015. [61] M. Khalid and F. Mohammad, "Preparation, electrical properties and thermal stability of conductive polyaniline: nylon-6, 6 composite films," Express Polymer Letters, vol. 1, pp. 711-716, 2007. [62] L. Ding, Q. Li, D. Zhou, H. Cui, R. Tang, and J. Zhai, "Copolymerization of aniline with m-nitroaniline and removal of m-nitroaniline from aqueous solutions using a polyaniline-modified electrode: A comparative study," Electrochimica Acta, vol. 77, pp. 302-308, 2012. [63] K. E. Wise, C. Park, E. J. Siochi, and J. S. Harrison, "Stable dispersion of single wall carbon nanotubes in polyimide: the role of noncovalent interactions," Chemical physics letters, vol. 391, pp. 207-211, 2004.
|