帳號:guest(3.145.176.231)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張文青
作者(外文):Chang, Wen-Ching
論文名稱(中文):利用異常X光散射研究熱退火對TbxDy1-xFe2-y薄膜氧化物成分的影響
論文名稱(外文):Anomalous X-ray scattering study on oxidized TbxDy1-xFe2-y thin films: influence of thermal annealing on the oxide composition
指導教授(中文):李志浩
指導教授(外文):Lee, Chih-Hao
口試委員(中文):林滄浪
李信義
口試委員(外文):Lin, Tsang-Lang
Lee, Hsin-Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:105011575
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:93
中文關鍵詞:同步輻射X光繞射異常X光繞射X光吸收光譜磁性薄膜鋱鏑鐵合金退火稀土氧化物
外文關鍵詞:Synchrotron RadiationX-ray DiffractionAnomalous X-ray DiffractionX-ray Absorption Spectroscopymagnetic thin filmTerfenol-Dannealingrare-earth oxides
相關次數:
  • 推薦推薦:0
  • 點閱點閱:263
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
Tb0.3Dy0.7Fe2又稱為Terfenol-D,Terfenol-D在室溫下只需要小於5 kOe的外加磁場就可以產生約2000 ppm的巨大磁致伸縮量,此特性可以應用在微機電裝置,例如微致動器、微感測器等,也可以結合壓電材料應用在磁電隨機存取記憶體(MeRAM)的寫入單元上,以達到記憶體低耗能的目的。許多文獻[1] [2] [3]已探討了各種製程條件對於Terfenol-D磁致伸縮量的影響,而由於Terfenol-D中稀土元素Tb、Dy易氧化的特性,在製程中容易產生Tb、Dy的氧化物,但對於Terfenol-D薄膜在製程中的氧化情形鮮少有文獻作深入的探討,本實驗利用磁控濺鍍製備TbxDy1-xFe2-y薄膜,並利用不同的沉積溫度、熱退火溫度和熱退火時間等條件當作實驗的變因,利用國家同步輻射研究中心的07A、13A、17B光束線來分析薄膜中氧化物的結晶性與晶體結構;利用16A光束線來分析薄膜的電子組態,然而Tb與Dy的氧化物:Tb2O3與Dy2O3,兩者晶體結構與晶格常數相似,在繞射峰幾乎重疊的情況下,用一般X光繞射難以分析,在此情況下異常X光繞射是其中一種可行的分析方法,異常X光繞射是藉由Tb與Dy能量吸收邊的不同,觀察X光的能量在不同能量吸收邊時,Tb2O3(2 2 2)/Dy2O3(2 2 2)繞射峰的繞射積分強度的變化,藉此分析Tb與Dy各別在不同製程條件下的氧化程度,另外也針對XRD圖譜上的非整比化合物(non-stoichiometric compound)的繞射峰進行元素分析,並成功觀察到Fe(0 1 1)在700 0C退火時,Fe有被其他元素取代的現象。
另外利用電子微探儀(EPMA)對薄膜的元素進行定量與半定量元素分布分析,搭配掃描式電子顯微鏡(SEM)與原子力顯微鏡(AFM)的表面形貌測定,觀察到Tb、Dy均勻分布在薄膜中,Fe則是在550 oC與850 oC退火時有晶粒團簇並在表面結晶的現象。
The cubic Laves phase RFe2 compounds (R=Tb and Dy) with cubic MgCu2-type structure have giant room temperature magnetostriction constants in excess of 2,000 ppm. Among RFe2 materials, TbFe2 exhibits the largest magnetostriction at room temperature but also has a largest magneto-crystalline anisotropy. To reduce the magneto-crystalline anisotropy, about 70% Dy was substituted for Tb without compromising the magnetostriction significantly. In this work, TbxDy1-xFe2-y thin films were prepared by magnetron sputtering which was deposited on Si (100) substrates and annealed in the range of temperature between 550 and 850 ℃ under 10-6 Torr. The structure of TbxDy1-xFe2-y thin films were characterized by X-ray diffraction and it showed all TbxDy1-xFe2-y thin films at different annealing temperatures are polycrystalline. Nevertheless, strong diffraction peaks of rare-earth(RE) oxides, Tb2O3 or Dy2O3 and other non-stoichiometric peaks were found. However, since the formation energy and lattice structure of Tb2O3 are very similar to that of Dy2O3, and therefore, diffraction peaks of rare earth (RE) oxides such as Tb2O3 and Dy2O3 can not be separately identified. By using synchrotron radiation anomalous X-ray scattering, one can understand how much Tb and/or Dy was oxidized at different annealing temperatures. Additionally, some of diffraction peaks are not reported in the ICSD file due to the nature of non-stoichiometric composition. Using the anomalous X-ray diffraction, we are able to identify the composition of those additional diffraction peaks.
目錄
摘要 i
Abstract ii
致謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2文獻回顧與探討 2
1.2.1沉積溫度對Terfenol-D的影響 2
1.2.2沉積氣壓對Terfenol-D的影響 3
1.2.3摻雜元素對Terfenol-D的影響 4
1.2.4退火溫度對Terfenol-D的影響 5
1.3研究動機 6
第二章 基礎理論 8
2.1材料特性 8
2.1.1磁性的起源 8
2.1.2固態的磁性 9
2.1.3磁性物質的磁矩排列與溫度的關係 9
2.1.4磁異向性(magnetic anisotropy)與磁致伸縮(magnetostriction) 12
2.1.5 Tb0.3Dy0.7Fe2的特性 13
第三章 儀器與原理 16
3.1磁控濺鍍(Magnetron Sputtering) 16
3.1.1 直流濺鍍系統 16
3.1.2 射頻濺鍍系統 17
3.2同步輻射光源(Synchrotron Radiation Light Source) 19
3.3 X光反射率量測法(X-ray-Reflectometry) 21
3.2.1材料密度 21
3.2.2材料厚度 23
3.4 X光吸收光譜(X-ray Absorption Spectroscopy)理論及實驗方法 25
3.3.1 X光近能量吸收邊結構(XANES) 26
3.3.2延伸X光吸收精細結構(EXAFS) 27
3.3.3穿透法 29
3.3.4螢光法 30
3.3.5電子產率法 30
3.5 X光繞射(X-ray Diffraction) 31
3.6異常X光繞射(Anomalous X-ray Diffraction) 32
3.7電子微探儀(Electron Probe Microanalyzer, EPMA) 33
3.8薄膜的製備 35
3.8.1基板清洗流程 35
3.8.2薄膜濺鍍流程 36
第四章 結果與討論 37
4.1電子微探儀分析 37
4.1.1不同沉積溫度的TbxDy1-xFe2-y薄膜成分定量分析 37
4.1.2不同退火溫度和不同退火時間的TbxDy1-xFe2-y薄膜成分定量分析 38
4.1.3不同退火溫度的TbxDy1-xFe2-y薄膜半定量面掃描成分分析 40
4.2薄膜晶體結構分析 42
4.2.1不同沉積溫度下TbxDy1-xFe2-y薄膜的 XRD分析 42
4.2.2不同退火溫度和退火時間的TbxDy1-xFe2-y薄膜的XRD分析 46
4.3 X光吸收光譜分析 50
4.3.1 Dy的L3-edge分析 50
4.3.2 Tb的L3-edge分析 54
4.3.3 Fe的K-edge分析 56
4.3.4 Fe的L3-edge分析 59
4.4異常X光繞射分析 61
4.4.1繞射峰化學成分鑑定 61
4.4.2 Tb2O3/Dy2O3比例分析 68
4.5薄膜表面形貌與厚度分析 76
4.5.1 X光反射率分析 76
4.5.2原子力顯微鏡分析 77
4.5.3掃描式電子顯微鏡分析 79
4.6磁性分析 81
第五章 總結 83
未來展望 84
文獻參考 85
附錄 90

[1] K. P. Mohanchandra, S. V. Prikhodko, K. P. Wetzlar, W. Y. Sun, P. Nordeen, and G. P. Carman, "Sputter deposited Terfenol-D thin films for multiferroic applications," AIP Advances, vol. 5, no. 9, p. 097119, 2015.
[2] K. Ried, "Crystallization Behaviour and Magnetic Properties of Magnetostrictive TbDyFe Films," physica status solidi (a), vol. 167, p. 195, 1998.
[3] L. Rebouta et al., "Room Temperature Magnetic Response of Sputter Deposited TbDyFe Films as a Function of the Deposition Parameters," Journal of Nano Research, vol. 18-19, pp. 235-239, 2012.
[4] K. Roy, "Separating read and write units in multiferroic devices," Sci Rep, vol. 5, p. 10822, Jun 18 2015.
[5] K. L. Wang, J. G. Alzate, and P. Khalili Amiri, "Low-power non-volatile spintronic memory: STT-RAM and beyond," Journal of Physics D: Applied Physics, vol. 46, no. 7, p. 074003, 2013.
[6] 李明道, "Development and Challenges of the New Non-volatile Memory," NANO COMMUNICATION, vol. 21卷 No.3, 2014.
[7] X. Li, "Voltage-Controlled Magnetic Anisotropy in Heavy Metal|Ferromagnet|Insulator-Based Structures " M.S., Electrical Engineering UCLA, 2016.
[8] P. I. Williams, D. G. Lord, and P. J. Grundy, "Magnetostriction in polycrystalline sputter‐deposited TbDyFe films," Journal of Applied Physics, vol. 75, no. 10, pp. 5257-5261, 1994.
[9] J. Ma, M. F. Becker, J. W. Keto, and D. Kovar, "Compositional and microstructural evolution during annealing of Terfenol-D nanoparticulate films," Journal of Materials Research, vol. 26, no. 20, pp. 2672-2681, 2011.
[10] A. Speliotis and D. Niarchos, "Magnetostrictive properties of amorphous and crystalline TbDyFe thin films," Sensors and Actuators A: Physical, vol. 106, no. 1-3, pp. 298-301, 2003.
[11] M. Liu et al., "Electrically induced enormous magnetic anisotropy in Terfenol-D/lead zinc niobate-lead titanate multiferroic heterostructures," Journal of Applied Physics, vol. 112, no. 6, p. 063917, 2012.
[12] B. W. Wang, S. L. Tang, X. M. Jin, L. Z. Cheng, and K. Y. He, "Microstructure and magnetostriction of (Dy0.7Tb0.3)1−xPrxFe1.85 and (Dy0.7Tb0.3)0.7Pr0.3Fey alloys," Applied Physics Letters, vol. 69, no. 22, pp. 3429-3431, 1996.
[13] J. J. Liu, Z. B. Pan, X. Y. Liu, Z. R. Zhang, X. H. Song, and W. J. Ren, "Large magnetostriction and direct experimental evidence for anisotropy compensation in Tb0.4−xNdxDy0.6(Fe0.8Co0.2)1.93 Laves compounds," Materials Letters, vol. 137, pp. 274-276, 2014.
[14] M. Wun-Fogle, J. B. Restorff, A. E. Clark, and J. F. Lindberg, "Magnetization and magnetostriction of dendritic [112] TbxDyyHozFe1.95 (x+y+z=1) rods under compressive stress," Journal of Applied Physics, vol. 83, no. 11, pp. 7279-7281, 1998.
[15] J. Du, J. H. Wang, C. C. Tang, Y. X. Li, G. H. Wu, and W. S. Zhan, "Magnetostriction in twin-free single crystals TbyDy1−yFe2 with the addition of aluminum or manganese," Applied Physics Letters, vol. 72, no. 4, pp. 489-491, 1998.
[16] Z. J. Guo, "Structure and Magnetic and Magnetostrictive Properties of (Tb0.7 Dy 0.3)0.7Pr0.3(Fe1-xCox)1.85(0< x < 0.6)," IEEE TRANSACTIONS ON MAGNETICS, vol. 37, 2001.
[17] L. Xu, C. Jiang, and H. Xu, "Magnetostriction and electrical resistivity of Si doped Tb0.3Dy0.7Fe1.95 oriented crystals," Applied Physics Letters, vol. 89, no. 19, p. 192507, 2006.
[18] L. Xu, C. Jiang, C. Zhou, and H. Xu, "Magnetostriction and corrosion resistance of Tb0.3Dy0.7(Fe1−xSix)1.95 alloys," Journal of Alloys and Compounds, vol. 455, no. 1-2, pp. 203-206, 2008.
[19] J. C. Shih, "The effect of beryllium addition on magnetostriction of the Tb0.3Dy0.7Fe2 alloy," 1999.
[20] M. Loveless, "CRYSTALLIZATION BEHAVIOR OF AMORPHOUS TERFENOL-D THIN FILMS," IEEE TRANSACTIONS ON MAGNETICS, vol. VOL. 33, NO. 5, 1997.
[21] Z. Du, L. Wang, and D. Zhao, "Effects of substrate temperature and annealing treatment on the micro-structure and magnetic characteristics of TbDyFe films," Rare Metals, vol. 26, no. 5, pp. 408-413, 2007.
[22] Young-dong Kwon, Oh-yeoulm Kwon, Min-chul Kim, Dang-moon Wee, "Reaction of Terfenol-D melts with SiO2 crucibles," Materials Science and Engineering: B, vol. 129, no. 1-3, pp. 18-21, 2006.
[23] D. H. Kim, O. Y. Kwon, J. C. Kim, and Z. H. Lee, "Effect of Oxygen Impurity on Magnetostriction of Directionally Solidified Tb0.3Dy0.7Fe1.8," IEEE Transactions on Magnetics, vol. 40, no. 4, pp. 2781-2783, 2004.
[24] Jamel Alexander, Oliver J. Myers, "Microstructure Properties and Strengthening Mechanisms of the AS4-3501-6 Polymeric Resin With Embedded Terfenol-D Particles," 2014.
[25] M. Loveless and S. Guruswamy, "Texture in magnetic annealed Terfenol-D films," Journal of Applied Physics, vol. 79, no. 8, p. 6222, 1996.
[26] N. Galloway, R. D. Greenough, A. G. I. Jenner, and M. P. Schulze, "Pressure dependencies of magnetostrictive strain anddcoefficient in Terfenol‐D after thermal or magnetic annealing," Journal of Applied Physics, vol. 76, no. 10, pp. 7163-7165, 1994.
[27] T. Ma, C. Zhang, P. Zhang, and M. Yan, "Effect of magnetic annealing on magnetostrictive performance of a 〈110〉 oriented crystal Tb0.3Dy0.7Fe1.95," Journal of Magnetism and Magnetic Materials, vol. 322, no. 14, pp. 1889-1893, 2010.
[28] J.-H. Kim, V. Ravindranath, and S.-C. Shin, "Effect of an electric field-induced stress on the magnetic properties of amorphous Terfenol-D films deposited on PMN-PT single crystal substrates," physica status solidi (a), vol. 204, no. 12, pp. 4202-4205, 2007.
[29] T. H. Okabe, "Thermodynamic properties of oxygen in RE–O (RE=Gd, Tb, Dy, Er)solid solutions," Journal of Alloys and Compounds, vol. 297, 1998.
[30] T. Moeller, The Chemistry of the Lanthanides. 1973, p. 5.
[31] B. Wu, M. Zinkevich, F. Aldinger, D. Wen, and L. Chen, "Ab initio study on structure and phase transition of A- and B-type rare-earth sesquioxides Ln2O3 (Ln=La–Lu, Y, and Sc) based on density function theory," Journal of Solid State Chemistry, vol. 180, no. 11, pp. 3280-3287, 2007.
[32] G. Engdahl, Handbook of Giant Magnetostrictive Materials. 2000.
[33] Magnetic Phenomena and Their Interpretation—Classical Approach (Magnetic Properties of Materials). Available: http://what-when-how.com/electronic-properties-of-materials/magnetic-phenomena-and-their-interpretationclassical-approach-magnetic-properties-of-materials-part-1/
[34] E. Clark and Henry S. Belson, "Magnetostriction of Terbium-Iron and Erbium-Iron Alloys " IEEE TRANSACTIONS ON MAGNETICS, vol. SEPTEMBER 1972, 1972.
[35] W. Cao, "Multifunctional Materials: The Basis for Adaptronics," 2007, 2007.
[36] 科教資源/ 同步加速器光源簡介. Available: https://www.nsrrc.org.tw/chinese/lightsource.aspx
[37] 林宮玄, "淺談同步輻射光源應用," 全華物理專刊, vol. 第9期, 2016.
[38] Available: http://cars9.uchicago.edu/dafs/diffkk/
[39] F. Farges, "Ti K-edge XANES studies of Ti coordination and disorder in oxide compounds: Comparison between theory and experiment," PHYSICAL REVIEW B, vol. 56, 1997.
[40] 詹丁山, "數據分析步驟簡介「X光吸收光譜暑期訓練營講義」," 2017.
[41] 李志甫, "優質數據的先決要件「X光吸收光譜暑期訓練營講義」," 2017.
[42] 陳燦耀, "同步加速器X光吸收光譜分析應用Applications of Synchrotron X-ray Absorption Spectroscopy " 2016.
[43] D. Zhao, Y. Zhang, and E. J. Essene, "Electron probe microanalysis and microscopy: Principles and applications in characterization of mineral inclusions in chromite from diamond deposit," Ore Geology Reviews, vol. 65, pp. 733-748, 2015.
[44] 杜正恭、王凱正、蔡淑月, "電子微探儀," 科儀新知, vol. 第三十卷第六期 98.6, 2009.6.
[45] M. Zinkevich, "Thermodynamics of rare earth sesquioxides," Progress in Materials Science, vol. 52, no. 4, pp. 597-647, 2007.
[46] N. W. Gray, M. C. Prestgard, and A. Tiwari, "Tb2O3 thin films: An alternative candidate for high-k dielectric applications," Applied Physics Letters, vol. 105, no. 22, p. 222903, 2014.
[47] N. G. GHEORGHE, "REACTIVITY, MAGNETISM AND LOCAL ATOMIC STRUCTURE IN FERROMAGNETIC FE LAYERS DEPOSITED ON SI(001) " Digest Journal of Nanomaterials and Biostructures vol. 7, pp. 373-384, 2012.
[48] F. Esaka et al., "Spectroscopic characterization of β-FeSi2 single crystals and homoepitaxial β-FeSi2 films by XPS and XAS," Applied Surface Science, vol. 257, no. 7, pp. 2950-2954, 2011.
[49] K. Ried, "Crystallization Behaviour and Magnetic Properties of Magnetostrictive TbDyFe Films," phys. stat. sol., vol. 167, 195, 1998.
[50] Vitalij K. Pecharsky, P. Y. Zavalij, " Fundamentals of Powder Diffraction and Structural Characterization of Materials," Springer, Binghamton, NY, 2005.
[51] D. T. Cromer and D. Liberman, "Relativistic Calculation of Anomalous Scattering Factors for X Rays," The Journal of Chemical Physics, vol. 53, no. 5, pp. 1891-1898, 1970.
[52] TU Graz Atomic form factors calculator. Available: http://lampx.tugraz.at/~hadley/ss1/crystaldiffraction/atomicformfactors/formfactors.php
[53] K. P. Mohanchandra, "Strain-Induced-Exchange-Spring-Magnetic-Behavior-in-Amorphous-TbDyFe2-Thin-Films," JOURNAL OF APPLIED PHYSICS, vol. 121, 043911, 2017.
[54] K. Lawniczak-Jablonska et al., "Surface morphology of DyxOy films grown on Si," Applied Surface Science, vol. 253, no. 2, pp. 639-645, 2006.
[55] C.-W. Nan, M. I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan, "Multiferroic magnetoelectric composites: Historical perspective, status, and future directions," Journal of Applied Physics, vol. 103, no. 3, p. 031101, 2008.
[56] J. v. Suchtelen, "Product Properties: A New Application Of Composite Materials," Philips Res. Repts, vol. 27,28-37, 1972.
[57] J. Boomgard, D. R. Terrell, R. A. J. Born, and H. F. J. I. Giller, "An in situ grown eutectic magnetoelectric composite material " J. Mater. Sci., vol. 9, 1705 1974.
[58] J. Boomgaard, A. M. J. G. Run, and J. Suchtelen, "Magnetoelectricity in piezoelectric-magnetostrictive composites," Ferroelectrics, vol. 10, 295, 1976.
[59] S. Lopatin, I. Lopatina, and I. Lisnevskaya, "Magnetoelectric PZT/ferrite composite material," Ferroelectrics, vol. 162, no. 1, pp. 63-68, 1994.
[60] M. I. Bichurin, I. A. Kornev, V. M. Petrov, and I. V. Lisnevskaya, "Investigation of magnetoelectric interaction in composite," Ferroelectrics, vol. 204, no. 1, pp. 289-297, 1997.
[61] C.-W. Nan, "Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases," Physical Review B, vol. 50, no. 9, pp. 6082-6088, 1994.
[62] C.-W. Nan, "Effective Properties of Ferroelectric and/or Ferromagnetic Composites: A Unified Approach and Its Application," J. Am. Ceram. Soc., vol. 80 [6] 1333–40, 1997.
[63] G. Srinivasan, E. T. Rasmussen, J. Gallegos, R. Srinivasan, Y. I. Bokhan, and V. M. Laletin, "Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides," Physical Review B, vol. 64, no. 21, 2001.
[64] Y. Wang et al., "An extremely low equivalent magnetic noise magnetoelectric sensor," Adv Mater, vol. 23, no. 35, pp. 4111-4, Sep 15 2011.
[65] C. Cibert, J. Zhu, G. Poullain, R. Bouregba, J. More-Chevalier, and A. Pautrat, "Magnetoelectric coupling in Tb0.3Dy0.7Fe2/Pt/PbZr0.56Ti0.44O3 thin films deposited on Pt/TiO2/SiO2/Si substrate," Applied Physics Letters, vol. 102, no. 2, p. 022906, 2013.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *