帳號:guest(3.147.81.128)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):廖柏翔
作者(外文):Liao, Po-Hsinag
論文名稱(中文):發展桌上型電子顯微鏡場發射式電子槍
論文名稱(外文):Development of Field Emission Electron Gun for Desktop Electron Microscope
指導教授(中文):陳福榮
指導教授(外文):Chen, Fu-Rong
口試委員(中文):曾繁根
吳文偉
口試委員(外文):Tseng, Fan-Gang
Wu, Wen-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:105011574
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:89
中文關鍵詞:場發射鎢絲電化學氧化鋯蕭基式
外文關鍵詞:Field emissionTungstenElectrochemistryZirconium oxideSchottky type
相關次數:
  • 推薦推薦:0
  • 點閱點閱:369
  • 評分評分:*****
  • 下載下載:15
  • 收藏收藏:0
隨著科技的進步,電子顯微鏡已經成為在物理、化學、生物、材料等各個不同領域中,不可或缺的觀測研究工具。在電子顯微鏡光源中,可分為熱游離式及場發射式二種,主要差別在於產生電子方式的不同。場發射式電子槍的針尖一般其半徑曲率為熱游離式的十分之一到百分之一倍,因此可得到更小的光源,再經過透鏡聚焦後形成極小的光斑,因此其輝度遠大於熱游離式光源。另外場發射光源和熱游離式相比頻率幾近單頻光,能量散佈較小,故在相干性的部分較佳,能夠得到較高的解析度。雖然場發射式電子槍有以上優點,但由於場發射式電子槍針尖很容易與空氣中的雜質產生反應,使得產生針尖的鈍化,影響場發射的效率,所以場發射式電子槍須要在極高的真空環境下進行運作。
本研究目的,在於自行製作場發射式電子槍,取代原有的熱游離式電子槍,裝載在本實驗室設計的桌上型電子顯微鏡,提高電子顯微鏡的解析度。在本論文中我們利用電解加工的方式成功製作出場發射式電子槍針尖,其電子槍針尖曲率半徑約在100nm左右,並且其重製率也很高。最後也進行沉積氧化鋯在場發射式電子槍針尖上,完成蕭基式場發射電子槍;在經由原桌上型電子顯微鏡機台的調整、更動,完成冷、熱場發射式的電子顯微鏡的開發。
With the development of technology, electron microscope has become an important observational tool in different major such as physics, chemistry, biology, and materials engineering. The source of electron microscope, it usually divide into two types, thermionic type and field emission type. Field emission type electron source usually have smaller tip radius than thermal type, so it can produce smaller electron source. Then, electron beam pass by condenser lens, a small spot size source is formed. Therefore, the brightness of the electron gun is much brighter than thermal type source. In addition, field emission source spectral energy distribution is close to monochromatic, and has smaller energy spread. So field emission source has better coherence that lead it obtain higher resolution. Although field-emission type electron gun have above advantages, but it need to maintain in high vacuum condition. Because the tip of the field emission electron gun can easily react with impurities in the air, and lead the needle tip blunt. When the needle tip is blunt, it will cause the field emission gun poor efficiency. So the field emission type electron gun needs lots of high vacuum equipment to maintain it stay in high vacuum condition and high efficiency.
The purpose of this research is using cheaper and more convenient ways to produce a field emission electron gun tip. And then set it up on our lab’s group made Desktop Electron Microscope to improve the resolution. In this paper, we successfully fabricated a field electron gun tip using electrolytic machining. The radius of curvature of the electron gun tip is about 100 nm or less, and its reproduction rate is also high. Finally, we also tried to deposit ZrO on the tip to make thermionic (Schottky) type field electron gun. After that, we also design some components installed on our Desktop Electron Microscope to finish field emission microscope.
摘要 I
Abstract II
致謝 IV
第一章 緒論 1
1.1. 前言 1
1.2. 掃描式電子顯微鏡成像原理 2
1.3. 電子顯微鏡電子槍光源 3
1.4. 桌上型掃描式電子顯微鏡 4
1.5. 研究動機 5
第二章 文獻回顧 6
2.1. 場發射電子槍 6
2.2. 電解加工金屬針尖製作 8
2.3. 氧化鋯薄膜沉積 13
第三章 理論基礎 15
3.1. 針尖電解加工化學反應 15
3.2. 電化學Nernst 方程式 17
3.3. 電化學之電極極化 18
3.4. 電解加工參數對表面粗糙的影響 19
3.5. 溶膠-凝膠法之氧化鋯薄膜沉積 22
第四章 機構設計及製作方法 23
4.1. 電子槍機構設計、調整 23
4.2. 電解加工針尖蝕刻系統 30
4.2.1. 電解加工設備 30
4.2.2. 電解加工電源控制系統 33
4.2.3. 針尖量測分析系統 35
4.2.4. 電解加工實驗材料 36
4.2.5. 電解液的濃度、電極選用 37
4.2.6. 電解加工實驗參數設定 38
4.2.7. 電解加工實驗步驟 39
4.3. 鎢絲針尖焊接 41
4.4. 氧化鋯薄膜沉積 42
4.4.1. 氧化鋯薄膜沉積實驗材料 42
4.4.2. 氧化鋯薄膜沉積實驗步驟 43
4.5. 冷場發射式電子槍測試 44
第五章 實驗結果與討論 46
5.1. 電子光學模擬分析 46
5.1.1. 針尖與陽極的距離影響 47
5.1.2. 針尖與陽極光圈孔徑大小的影響 47
5.1.3. 本實驗設計熱場發射電子槍光學模擬結果 48
5.2. 電解液濃度、電壓對鎢絲針尖形狀的影響 51
5.2.1. I-V,I-T曲線分析 51
5.2.2. 針尖曲率半徑 57
5.3. 焊接結果 75
5.4. Schottky type電子槍針尖氧化鋯沉積 79
5.5. 冷場發射式電子槍針尖出光初步測試 82
第六章 結論 85
文獻參考 87

1. Schumacher, E. F., Microscopy for Materials Characterization: Illuminating Structures With Light and Electrons. AMERICAN LABORATORY 2014, 46 (7), 24-26.
2. Crewe, A.; Eggenberger, D.; Wall, J.; Welter, L., Electron gun using a field emission source. Review of Scientific Instruments 1968, 39 (4), 576-583.
3. Orloff, J., Handbook of Charged Particle Optics. CRC Press: 1997.
4. Buijsse, B., Particle-optical apparatus with a permanent-magnetic lens and an electrostatic lens. Google Patents: 2006.
5. Lucier, A.-S. Preparation and characterization of tungsten tips suitable for molecular electronics studies. McGill University, 2004.
6. Electron emission in intense electric fields. Proceedings of the Royal Society of London. Series A 1928, 119 (781), 173-181.
7. J.W. Butler, i. P. t. I. C. o. E. M., Kyoto, 1966, p. 191.
8. Goldstein, J.; Newbury, D. E.; Joy, D. C.; Lyman, C. E.; Echlin, P.; Lifshin, E.; Sawyer, L.; Michael, J. R., Scanning Electron Microscopy and X-Ray Microanalysis: Third Edition. Springer US: 2012.
9. Terui, Y.; Tsunoda, K.; Ide, M., Thermal field emission cathode. Google Patents: 1995.
10. Wang, Z.; Zhu, B.; Cao, G. In Fabricating microelectrode by electrochemical micromachining, ICMIT 2005: Information Systems and Signal Processing, International Society for Optics and Photonics: 2006; p 60411P.
11. 楊明棋. 電化學微電極製程之最佳化參數分析. 國立中央大學, 桃園縣, 2007.
12. Kar, A.; Gangopadhyay, S.; Mathur, B., A reverse electrochemical floating-layer technique of SPM tip preparation. Measurement Science and Technology 2000, 11 (10), 1426.
13. Kang, M.-H.; Park, C.-S.; young Choi, B.; Lee, D.-W. In Fabrication of a stepped shape tip using a self-descending phenomena of meniscus, Nano/Micro Engineered and Molecular Systems, 2009. NEMS 2009. 4th IEEE International Conference on, IEEE: 2009; pp 1069-1072.
14. Ibe, J.; Bey Jr, P.; Brandow, S.; Brizzolara, R.; Burnham, N.; DiLella, D.; Lee, K.; Marrian, C.; Colton, R., On the electrochemical etching of tips for scanning tunneling microscopy. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 1990, 8 (4), 3570-3575.
15. Lim, Y.-M.; Kim, S. H., An electrochemical fabrication method for extremely thin cylindrical micropin. International Journal of Machine Tools and Manufacture 2001, 41 (15), 2287-2296.
16. Zhang, R.; Ivey, D., Preparation of sharp polycrystalline tungsten tips for scanning tunneling microscopy imaging. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 1996, 14 (1), 1-10.
17. Hobara, R.; Yoshimoto, S.; Hasegawa, S.; Sakamoto, K., Dynamic electrochemical-etching technique for tungsten tips suitable for multi-tip scanning tunneling microscopes. e-Journal of Surface Science and Nanotechnology 2007, 5, 94-98.
18. 戴蕙娟. 以溶膠凝膠法製備含二氧化鋯薄膜電容之特性研究. 國立交通大學, 2011.
19. Yeh, C.-c., Effects of electrolytic machining conditions on the geometry and size of tungsten needle. 2007.
20. Sakai, I.; Mizuno, T., Thermal field emission electron gun. Google Patents: 1999.
21. Fang, Z.; Dixon, D. A., Hydrolysis of ZrCl4 and HfCl4: The Initial Steps in the High-Temperature Oxidation of Metal Chlorides to Produce ZrO2 and HfO2. The Journal of Physical Chemistry C 2013, 117 (15), 7459-7474.
22. 曾英碩. 六硼化鑭桌上型掃描式電子顯微鏡之設計與研發. 中華大學, 新竹市, 2014.
23. Salah, S.; Noureddine, S.; Selma, Y.; Fouzia, D., INVSETIGATION OF THE EFFECTS OF THE SOLUTE AND ITS CONCENTRATION ON HYDROGEN PRODUCTION USING PHOTOVOLTAIC SYSTEM.
24. E.Munro’s ElectronBeamSoftwareLtd. http://mebs.co.uk/, i.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *