帳號:guest(3.15.192.137)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳博志
作者(外文):Chen, Bo-Jr
論文名稱(中文):平頭式電漿吸收探針之研製
論文名稱(外文):Development of Flat Head Plasma Absorption Probe for Plasma Density Measurement
指導教授(中文):柳克強
指導教授(外文):Leou, Keh-Chyang
口試委員(中文):林滄浪
張家豪
口試委員(外文):Lin, Tsang-Lang
Chang, Chia-Hao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:105011550
出版年(民國):107
畢業學年度:107
語文別:中文
論文頁數:119
中文關鍵詞:電漿密度電漿監測探針
外文關鍵詞:plasma densityplasma diagnosticprobe
相關次數:
  • 推薦推薦:0
  • 點閱點閱:246
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
低溫非平衡電漿在奈微米製造和生醫處理的應用受到極大關注。電漿密度是決定電漿特性及製程結果的一項重要參數,因此即時監測電漿密度是ㄧ個重要的技術。電漿吸收探針(Plasma absorption probe, PAP)是ㄧ種微波式電漿密度監測工具。原理是藉由餽入微波量測反射頻譜並找出共振頻率,根據共振頻率與電漿密度的關係計算對應的電漿密度。然而,傳統PAP在低密度電漿靈敏度較低可能發生共振頻率不易判斷的狀況,目前被提出的改善方法是增加天線長度,但是探針體積也會同時增加。因此本研究提出平頭式電漿吸收探針(Flat head plasma absorption probe, FHPAP),在不增加玻璃管長度的條件下,將傳統PAP的單極天線改為圓盤型平頂天線以提升靈敏度。模擬結果顯示可量測的最小電漿密度約為1×〖10〗^9 cm-3。此外,針對不同需求,本研究在模擬計算中探討了另外兩種探針,分別為圓角化平頭電漿吸收探針(Rounded FHPAP)及混合型電漿吸收探針(Hybrid PAP)。
本研究包含模擬計算和實驗量測兩部分,模擬計算使用三維電磁模擬軟體HFSS建立模型,電漿在此視為一種介電質,其介電常數由電子密度、電磁波頻率、碰撞頻率所決定;實驗使用單埠向量網路分析儀量測氬氣電漿之電漿密度。研究結果顯示FHPAP的圓盤天線結構可使探針與電漿之間的耦合從耦合不足往臨界耦合移動,增加探針在低密度電漿之靈敏度。
Low temperature non-equilibrium plasma discharges are of great interests for applications ranging from micro/nano fabrication to bio/medical treatments. Plasma density is a key parameter that control the property of plasmas and the processing results, so plasma density diagnostics is a significant technology. Plasma absorption probe (PAP) is a kind of microwave based plasma diagnostics. The principle is that detecting resonant frequency from reflection spectrum and calculating the plasma density by the relation between resonant frequency and plasma density. However, PAP has low sensitivity in low density (< 1010 cm-3) plasma. One of the solutions is to lengthen the antenna, but it make the probe larger. In this study, a novel probe with a disk loaded antenna structure was developed to improve sensitivity without increasing the volume. Simulation result shows that minimum of measurable density is roughly 1×〖10〗^9 cm-3. Besides, Rounded FHPAP and Hybrid PAP were also studied.
The study includes simulations and experiments. A 3D electromagnetic simulation software (HFSS) is used to build the model. Plasma is treated as a dielectric with dielectric functions determined by plasma density, microwave frequency and collision frequency of electrons. Experiment was carried out by argon inductively coupled plasma and a one port network analyzer to sense plasma density. Research result shows show that sensitivity of PAP is governed by the coupling between the probe and plasma. The disk antenna structure makes coupling shift from undercoupling toward critical coupling. It improves sensitivity of the probe in low density plasma.
摘要 i
Abstract ii
目錄 iii
圖目錄 v
第一章 簡介 1
1.1 研究背景 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 微波干涉儀 4
2.2 傳輸線式微波干涉儀 7
2.3 微帶線式微波干涉儀 8
2.4 夾型共振器 14
2.5 電漿吸收探針 24
第三章 研究原理 34
3.1 電漿鞘層的基本原理 34
3.1.1 德拜長度 34
3.1.2 電漿鞘層與電漿前鞘層 35
3.2 電漿吸收探針基本原理 39
3.3 電漿參數 42
第四章 模擬方法與實驗設備 45
4.1 電磁模擬 45
4.2 電漿源及電漿量測實驗機台 49
4.3 電漿密度量測使用的設備 51
4.4 量測探針 54
第五章 結果與討論 57
5.1 平頭式電漿吸收探針模擬 57
5.1.1 平頭式電漿吸收探針於電漿環境之模擬結果 57
5.1.2 圓盤型天線之優點 69
5.1.3 圓角化平頭電漿吸收探針 71
5.1.4 混合型電漿吸收探針於電漿環境之模擬 76
5.2 FHPAP的設計與製作 82
5.3 CMT R54 及 Agilent E5071B量測結果比較 85
5.4 FHPAP實驗量測 87
5.4.1 電漿加熱所造成之FHPAP量測問題 87
5.4.2 FHPAP量測結果 90
第六章 結論 95
附錄A PAP模擬 96
附錄B Mesh設定 106
附錄C 介電質負載電漿吸收探針 107
C.1 介電質負載的影響 107
C.2 介電質環高度的影響 110
附錄D 氣體壓力對模擬計算結果的影響 112
參考文獻 117
[1] C. H. Chang, C. H. Hsieh, H. T. Wang, J. Y. Jeng, K. C. Leou, and C. Lin, "A transmission-line microwave interferometer for plasma electron density measurement," Plasma Sources Science and Technology, vol. 16, p. 67, 2007.
[2] C. H. Hsieh, Y. W. Liang, J. Y. Jeng, J. S. Chiou, K. C. Leou, and C. Lin, "Development of a ridged microstrip microwave interferometer for plasma electron density measurements," Plasma Sources Science and Technology, vol. 24, p. 035019, 2015.
[3] H. Kokura, K. Nakamura, I. P. Ghanashev, and H. Sugai, "Plasma absorption probe for measuring electron density in an environment soiled with processing plasmas," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 38, pp. 5262-5266, Sep 1999.
[4] K. Nakamura, M. Ohata, and H. Sugai, "Highly sensitive plasma absorption probe for measuring low-density high-pressure plasmas," Journal of Vacuum Science & Technology A, vol. 21, pp. 325-331, Jan-Feb 2003.
[5] C. Scharwitz, M. Boeke, S. H. Hong, and J. Winter, "Experimental characterisation of the plasma absorbtion probe," Plasma Processes and Polymers, vol. 4, pp. 605-611, Aug 2007.
[6] B. Li, H. Li, Z. P. Chen, J. L. Xie, G. Y. Feng, and W. D. Liu, "Experimental and Simulational Studies on the Theoretical Model of the Plasma Absorption Probe," Plasma Science & Technology, vol. 12, pp. 513-518, Oct 2010.
[7] H. Sugai and K. Nakamura, "Novel Plasma Monitoring by Surface Wave Probe."
[8] C. Scharwitz, M. Boke, and J. Winter, "Optimised Plasma Absorption Probe for the Electron Density Determination in Reactive Plasmas," Plasma Processes and Polymers, vol. 6, pp. 76-85, Jan 2009.
[9] B. Li, H. Li, Z. P. Chen, J. L. Xie, and W. D. Liu, "Dual-role plasma absorption probe to study the effects of sheath thickness on the measurement of electron density," Journal of Physics D-Applied Physics, vol. 43, Aug 2010.
[10] R. L. Stenzel, "MICROWAVE RESONATOR PROBE FOR LOCALIZED DENSITY-MEASUREMENTS IN WEAKLY MAGNETIZED PLASMAS," Review of Scientific Instruments, vol. 47, pp. 603-607, 1976.
[11] R. B. Piejak, V. A. Godyak, R. Garner, B. M. Alexandrovich, and N. Sternberg, "The hairpin resonator: A plasma density measuring technique revisited," Journal of Applied Physics, vol. 95, pp. 3785-3791, Apr 2004.
[12] R. B. Piejak, J. Al-Kuzee, and N. S. Braithwaite, "Hairpin resonator probe measurements in RF plasmas," Plasma Sources Science & Technology, vol. 14, pp. 734-743, Nov 2005.
[13] G. S. Gogna, C. Gaman, S. K. Karkari, and M. M. Turner, "Dielectric covered hairpin probe for its application in reactive plasmas," Applied Physics Letters, vol. 101, Jul 2012.
[14] G. S. Gogna, S. K. Karkari, and M. M. Turner, "Interpreting the behavior of a quarter-wave transmission line resonator in a magnetized plasma," Physics of Plasmas, vol. 21, Dec 2014.
[15] 邱晉陞, "高靈敏度微波共振探針研製及其射頻電漿鞘層影響分析," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2015.
[16] X. Jinzhou, N. Keji, Z. Qi, and S. Hideo, "Simulation of resistive microwave resonator probe for high-pressure plasma diagnostics," Plasma Sources Science and Technology, vol. 18, p. 045009, 2009.
[17] J.-Z. Xu, J.-J. Shi, J. Zhang, Q. Zhang, K. Nakamura, and H. Sugai, "Advanced high-pressure plasma diagnostics with hairpin resonator probe surrounded by film and sheath," Chinese Physics B, vol. 19, p. 075206, 2010.
[18] 王景弘, "M型微帶線微波干涉儀之研製及應用於電漿密度量測分析探討," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2010.
[19] 王瀚廷, "研製應用於監測電漿製程系統中電漿密度之平面式微波感測器," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2005.
[20] 張家豪, "電感耦合式氬氣體電漿源不穩定現象之動態特性量測分析研究," 博士, 工程與系統科學系, 國立清華大學, 新竹市, 2007.
[21] 梁耀文, "研製應用於監測電漿密度之微帶線式微波干涉儀," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2007.
[22] 黃竑旻, "電漿電子密度與射頻峰值電壓回授控制電漿蝕刻製程之研究," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2008.
[23] 鄭景元, "應用於監測電漿製程系統中電漿密度之傳輸線式微波干涉儀之研製," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2006.
[24] 謝政宏, "研製應用於監測電漿製程系統中電漿密度之傳輸線式微波感測器," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2004.
[25] 顏才華, "空橋式微帶線微波干涉儀之研製," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2008.
[26] D. J. Peterson, P. Kraus, T. C. Chua, L. Larson, and S. C. Shannon, "Electron neutral collision frequency measurement with the hairpin resonator probe," Plasma Sources Science & Technology, vol. 26, p. 8, Sep 2017.
[27] M. Lapke, T. Mussenbrock, R. P. Brinkmann, C. Scharwitz, M. Boke, and J. Winter, "Modeling and simulation of the plasma absorption probe," Applied Physics Letters, vol. 90, Mar 2007.
[28] C. Scharwitz, "The Plasma Absorption Probe: Optimisation by model-based design variations," Ruhr-Universität Bochum, 2007.
[29] F. F. Chen, Introduction to Plasma Physics and Controlled Fusion, 1983.
[30] 陳穩智, "電漿吸收探針模擬與實驗分析," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2012.
[31] W. You, H. Li, M. S. Tan, and W. D. Liu, "Characteristic analysis of surface waves in a sensitive plasma absorption probe," Physics of Plasmas, vol. 25, p. 5, Jan 2018.
[32] M. Fiebrandt, M. Oberberg, and P. Awakowicz, "Comparison of Langmuir probe and multipole resonance probe measurements in argon, hydrogen, nitrogen, and oxygen mixtures in a double ICP discharge," Journal of Applied Physics, vol. 122, p. 15, Jul 2017.
[33] A. Arshadi, R. P. Brinkmann, M. Hotta, and K. Nakamura, "A simple and straightforward expression for curling probe electron density diagnosis in reactive plasmas," Plasma Sources Science & Technology, vol. 26, p. 5, Apr 2017.
[34] M. A. Lieberman and A. J. Lichtenberg, "Principles of Plasma Dischargesand Materials Processing,2nd Edition," in Principles of Plasma Dischargesand Materials Processing,2nd Edition, ed, 2005.
[35] A. Meige, O. Sutherland, H. B. Smith, and R. W. Boswell, "Ion heating in the presheath," Physics of Plasmas, vol. 14, Mar 2007.
[36] A. V. Phelps, "CROSS-SECTIONS AND SWARM COEFFICIENTS FOR NITROGEN-IONS AND NEUTRALS IN N2 AND ARGON IONS AND NEUTRALS IN AR FOR ENERGIES FROM 0.1 EV TO 10 KEV," Journal of Physical and Chemical Reference Data, vol. 20, pp. 557-573, 1991.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *