帳號:guest(18.226.181.57)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李育霖
作者(外文):Lee, Yu-Lin
論文名稱(中文):分子動力學模擬帶電高分子侷限在奈微管道中的形態變化
論文名稱(外文):Charged Polymer Confined in Micro/Nanochannel Studied by Molecular Dynamics Simulation
指導教授(中文):蕭百沂
指導教授(外文):Hsiao, Pai-Yi
口試委員(中文):謝之真
陳彥龍
口試委員(外文):Hsieh, Chih-Chen
Chen, Yeng-Long
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:105011545
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:54
中文關鍵詞:帶電高分子高分子侷限基因定序摺疊機率單分子測量
外文關鍵詞:polyelectrolytepolymer confinementDNA sequenceprobability of folding eventsingle molecules measurement
相關次數:
  • 推薦推薦:0
  • 點閱點閱:58
  • 評分評分:*****
  • 下載下載:19
  • 收藏收藏:0
根據高分子物理 ,關於高分子 侷限 在奈 微管 道(polymer confinement )中的 伸長量 ,從較粗的管徑 (weak confinement)到較細的管徑 到較細的管徑 (strong confinement)主要 分為五種 區域 :bulk regime、de Gennes regime、extended de Gennes regime、 transition regime以及 Odijk regime,雖然這五種 ,雖然這五種 區域的動態與靜行為已經被 許多前人的模擬所驗證, 然而, 目前為止不管是在理論抑或模擬的結果皆是 建立在中性鏈 (Neutral chain) 模型 上,此完全不考慮任何帶電離子相 關的交互作用。即使他們結果顯示, 中性鏈模型 確實 有助簡化實際高分子系 統的複雜結構,但相較於實際應用系仍差甚鉅特別是關生物高分子在奈微 元件 管道中的探測,例如: DNA 、蛋白質以及肽鏈 …等,這類的高分子 不僅通常離子化,且幾乎 生存在充滿多種離子的緩衝液當中,事實上人體內 的血液 就是標準緩衝。因此,為了瞭解實際的高分子 系統我們利用動力學 (Molecular Dynamics simulation)來模擬此真實高分子侷 來模擬此真實高分子侷 限在圓柱狀管道中 的現象 ,而這套系統為了更加貼近實際情況同時引入含有 單一價 電荷的自 由離子與 由離子所串成的 高分子 (polyelectrolyte),根據 Debye-Huckel theory,這 些自由離子在溶液中會對高分產生 屏蔽效應 ,導致此系統的高分子行為將更 加地複雜且難以預測。而此次研究的目,即是希望藉由管道、 自由離子與高 分子間的交互作用來了解高被侷限在奈微管道中布與型態 ,並 比較簡 易的中性鏈模型,確認 兩種高分子模型之
Currently, the theories of single polymer confi ned in the micro/nano channel are classfi ed to fi ve regime, from weak confi nement to strong confi nement: bulk, de Gennes,
extended de Gennes, transition and Odijk. The behavior of every regime have been
repeatedly verifi ed by many computer simulation, including the static and dynamic properties, but most of these results are all based on the neutral chain model, and ignore the
interaction with ions which include counterion, cation and anion. Although the assumption of neutral chain model is useful to simplify the complex structure of polymer, this
situation is quite di fferent to the real experiment in which researchers are more interested
in understanding confi ned biomolecules, such as DNA or protein, in micro/nano-scale devices for biological application.
These biomolecules are not only ionized, but also survive
in the bu er which contain many kind of ion. Therefore, to understand the more realistic system, the simulation model should employ charged chains and ions. Including ions
accounts for important electrostatic screening and ion condensation e ffects, which may
lead to complex phenomenon. In this work, we perform molecular dynamics simulations to investigate charged polymers confi ned in a cylindrical channel with diameter D.
The coarse-grained method is used to model polyelectrolyte chains and monovalent ions in the solutions, and study the con figuration of polymer from the interactions between ions,
polymers and the channel wall.
Abstract------------------------------------- i
摘要----------------------------------------- ii
Acknowledgment------------------------------- iii
Contents------------------------------------- iv
List of figures------------------------------ vi
Introduction--------------------------------- 1
Theory--physics of neutral chain------------- 5
Simulation model and method------------------ 13
Results and Discussions---------------------- 19
Conclusion and Future work------------------- 47
[1] Yoori Kim, Ki Seok Kim, Kristy L Kounovsky, Rakwoo Chang, Gun Young Jung, Kyubong Jo, David C Schwartz, et al. Nanochannel connement: Dna stretch approaching full contour length. Lab on a Chip, 11(10):1721-1729, 2011.
[2] Walter Reisner, Jonas N Pedersen, and Robert H Austin. Dna confinement in nanochannels: physics and biological applications. Reports on Progress in Physics, 75(10):106601, 2012.
[3] Takahito Ohshiro, Kazuki Matsubara, Makusu Tsutsui, Masayuki Furuhashi, Masateru Taniguchi, and Tomoji Kawai. Single-molecule electrical random resequencing of dna and rna. Scientic reports, 2, 2012.
[4] Douglas R Tree, Abhiram Muralidhar, Patrick S Doyle, and Kevin D Dorfman. Is dna a good model polymer? Macromolecules, 46(20):8369-8382, 2013.
[5] Seung Kyu Min, Woo Youn Kim, Yeonchoo Cho, and Kwang S Kim. Fast dna sequencing with a graphene-based nanochannel device. Nature nanotechnology, 6(3):162-165, 2011.
[6] Jonggu Jeon and Myung-Suk Chun. Structure of
flexible and semiflexible polyelectrolyte chains in conned spaces of slit micro/nanochannels. The Journal of chemical
physics, 126(15):154904, 2007.
[7] Liang Dai, Johan van der Maarel, and Patrick S Doyle. Extended de gennes regime of dna confined in a nanochannel. Macromolecules, 47(7):2445-2450, 2014.
[8] Yanwei Wang, Douglas R Tree, and Kevin D Dorfman. Simulation of dna extension in nanochannels. Macromolecules, 44(16):6594-6604, 2011.
[9] Liang Dai, C Benjamin Renner, and Patrick S Doyle. The polymer physics of single dna confined in nanochannels. Advances in colloid and interface science, 232:80-100,2016.
[10] Walter Reisner, Keith J Morton, Robert Riehn, Yan Mei Wang, Zhaoning Yu, Michael Rosen, James C Sturm, Stephen Y Chou, Erwin Frey, and Robert H Austin. Statics and dynamics of single dna molecules confined in nanochannels. Physical
Review Letters, 94(19):196101, 2005.
[11] Jonas O Tegenfeldt, Christelle Prinz, Han Cao, Steven Chou, Walter W Reisner, Robert Riehn, Yan Mei Wang, Edward C Cox, James C Sturm, and Pascal Silberzan. The dynamics of genomic-length dna molecules in 100-nm channels. Proceedings of
the National Academy of Sciences of the United States of America, 101(30):10979-10983, 2004.
[12] Shuai Chang, Shuo Huang, Jin He, Feng Liang, Peiming Zhang, Shengqing Li, Xiang Chen, Otto Sankey, and Stuart Lindsay. Electronic signatures of all four dna nucleosides in a tunneling gap. Nano letters, 10(3):1070-1075, 2010.
[13] Edwin M Southern. Detection of specific sequences among dna fragments separated by gel electrophoresis. Journal of molecular biology, 98(3):503-517, 1975.
[14] Allan M Maxam and Walter Gilbert. A new method for sequencing dna. Proceedings of the National Academy of Sciences, 74(2):560-564, 1977.
[15] Masato Orita, Hiroyuki Iwahana, Hiroshi Kanazawa, Kenshi Hayashi, and Takao Sekiya. Detection of polymorphisms of human dna by gel electrophoresis as singlestrand conformation polymorphisms. Proceedings of the National Academy of
Sciences, 86(8):2766-2770, 1989.
[16] Michael Zwolak and Massimiliano Di Ventra. Colloquium: Physical approaches to dna sequencing and detection. Reviews of Modern Physics, 80(1):141, 2008.
[17] Molecular Biomethods Handbook. Polymerase chain reaction. 1994.
[18] Gerald Schochetman, Chin-Yih Ou, and Wanda K Jones. Polymerase chain reaction. The Journal of infectious diseases, 158(6):1154-1157, 1988.
[19] Henry A Erlich. Polymerase chain reaction. Journal of clinical immunology, 9(6):437-447, 1989.
[20] Yury E Khudyakov, Mian-er Cong, Barbara Nichols, Deoine Reed, Xiao-Guang Dou, Sergei O Viazov, Joy Chang, Michael W Fried, Ian Williams, and William Bower. Sequence heterogeneity of virus and closely related viruses. Journal of virology, 74(7):2990-3000, 2000.
[21] Terry McNearney, Zuzana Hornickova, Richard Markham, Anahid Birdwell, Max Arens, Alfred Saah, and Lee Ratner. Relationship of human immunodeciency virus type 1 sequence heterogeneity to stage of disease. Proceedings of the National Academy of Sciences, 89(21):10247-10251, 1992.
[22] Qiucen Zhang and Robert H Austin. Physics of cancer: the impact of heterogeneity. Annu. Rev. Condens. Matter Phys., 3(1):363-382, 2012.
[23] Andrey V Dobrynin. Electrostatic persistence length of semi
flexible and flexible polyelectrolytes. Macromolecules, 38(22):9304-9314, 2005.
[24] Theo Odijk. Polyelectrolytes near the rod limit. Journal of Polymer Science: Polymer Physics Edition, 15(3):477-483, 1977.
[25] Jerey Skolnick and Marshall Fixman. Electrostatic persistence length of a wormlike polyelectrolyte. Macromolecules, 10(5):944-948, 1977.
[26] Gerald S Manning. The persistence length of dna is reached from the persistence length of its null isomer through an internal electrostatic stretching force. Biophysical
journal, 91(10):3607-3616, 2006.
[27] Rakwoo Chang and Kyubong Jo. Dna conformation in nanochannels: Monte carlo simulation studies using a primitive dna model. The Journal of chemical physics, 136(9):03B602, 2012.
[28] Peter Cifra. Channel connement of flexible and semiflexible macromolecules. The Journal of chemical physics, 131(22):224903, 2009.
[29] Zheng Yu Chen and Jaan Noolandi. Renormalization-group scaling theory for flexible and wormlike polymer chains. The Journal of chemical physics, 96(2):1540-1548,1992.
[30] Masao Doi and Sam F Edwards. The theory of polymer dynamics, volume 73. oxford university press, 1988.
[31] Roger W Hockney and James W Eastwood. Computer simulation using particles. CRC Press, 1988.
[32] Peter Cifra, Zuzana Benkova, and Tomas Bleha. Persistence length of dna molecules confi ned in nanochannels. Physical Chemistry Chemical Physics, 12(31):8934-8942,2010.
[33] Peter Cifra, Zuzana Benkova, and Tomas Bleha. Persistence lengths and structure factors of wormlike polymers under con nement. The Journal of Physical Chemistry B, 112(5):1367-1375, 2008.
[34] Ashok Garai, Suman Saurabh, Yves Lansac, and Prabal K Maiti. Dna elasticity from short dna to nucleosomal dna. The Journal of Physical Chemistry B, 119(34):11146-11156, 2015.
[35] Viktoria Blavatska and Wolfhard Janke. Shape anisotropy of polymers in disordered environment. The Journal of chemical physics, 133(18):184903, 2010.
[36] S Liu and M Muthukumar. Langevin dynamics simulation of counterion distribution around isolated flexible polyelectrolyte chains. The Journal of chemical physics, 116(22):9975-9982, 2002.
[37] Robert M Elder and Arthi Jayaraman. Coarse-grained simulation studies of e ffects of polycation architecture on structure of the polycation and polycation{polyanion complexes. Macromolecules, 45(19):8083-8096, 2012.
[38] RS Dias and AACC Pais. Polyelectrolyte condensation in bulk, at surfaces, and under con finement. Advances in colloid and interface science, 158(1):48-62, 2010.
[39] Dirk Stigter. Interactions of highly charged colloidal cylinders with applications to double-stranded dna. Biopolymers, 16(7):1435-1448, 1977.
[40] Francisco J Solis and Monica Olvera de la Cruz. Collapse of
flexible polyelectrolytes in multivalent salt solutions. The Journal of Chemical Physics, 112(4):2030-2035, 2000.
[41] Peter Cifra, Zuzana Benkova, and Tomas Bleha. Chain extension of dna con fined in channels. The Journal of Physical Chemistry B, 113(7):1843-1851, 2009.
[42] JH Van Vliet, MC Luyten, and G Ten Brinke. Scaling behavior of dilute polymer solutions con ned between parallel plates. Macromolecules, 25(14):3802-3806, 1992.
[43] Huimin Chen, Steve P Meisburger, Suzette A Pabit, Julie L Sutton, Watt W Webb, and Lois Pollack. Ionic strength-dependent persistence lengths of single-stranded rna and dna. Proceedings of the National Academy of Sciences, 109(3):799-804, 2012.
[44] Pai-Yi Hsiao, Yu-Fu Wei, and Hsueh-Chia Chang. Unfolding collapsed polyelectrolytes in alternating-current electric fields. Soft Matter, 7(3):1207-1213, 2011.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *