|
[1] A. Kirubakaran, S. Jain, and R. Nema, "A review on fuel cell technologies and power electronic interface," Renewable and Sustainable Energy Reviews, vol. 13, pp. 2430-2440, 2009. [2] R. Lan, X. Xu, S. Tao, and J. T. Irvine, "A fuel cell operating between room temperature and 250 C based on a new phosphoric acid based composite electrolyte," Journal of Power Sources, vol. 195, pp. 6983-6987, 2010. [3] A. B. Stambouli and E. Traversa, "Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy," Renewable and sustainable energy reviews, vol. 6, pp. 433-455, 2002. [4] 本間琢也 and 上松宏吉, 燃料電池. 台灣: 瑞昇文化, 2011. [5] 邱裕婷, "氧化石墨烯修飾之多孔玻璃纖維應用於 燃料電池之酸/鹼複合式質子交換膜," 碩士, 工程與系統科學系, 國立清華大學, 台灣, 2016. [6] J. Larminie, A. Dicks, and M. S. McDonald, Fuel cell systems explained vol. 2: J. Wiley Chichester, UK, 2003. [7] N. Sammes, R. Bove, and K. Stahl, "Phosphoric acid fuel cells: Fundamentals and applications," Current opinion in solid state and materials science, vol. 8, pp. 372-378, 2004. [8] J. Liao, Q. Li, H. Rudbeck, J. O. Jensen, A. Chromik, N. Bjerrum, et al., "Oxidative degradation of polybenzimidazole membranes as electrolytes for high temperature proton exchange membrane fuel cells," Fuel Cells, vol. 11, pp. 745-755, 2011. [9] S. Subianto, "Recent advances in polybenzimidazole/phosphoric acid membranes for high‐temperature fuel cells," Polymer International, vol. 63, pp. 1134-1144, 2014. [10] H. Pu, L. Liu, Z. Chang, and J. Yuan, "Organic/inorganic composite membranes based on polybenzimidazole and nano-SiO 2," Electrochimica acta, vol. 54, pp. 7536-7541, 2009. [11] J. Lobato, P. Cañizares, M. A. Rodrigo, D. Úbeda, and F. J. Pinar, "Enhancement of the fuel cell performance of a high temperature proton exchange membrane fuel cell running with titanium composite polybenzimidazole-based membranes," Journal of Power Sources, vol. 196, pp. 8265-8271, 2011. [12] R. He, Q. Li, G. Xiao, and N. J. Bjerrum, "Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors," Journal of Membrane Science, vol. 226, pp. 169-184, 2003. [13] E. Bakangura, L. Wu, L. Ge, Z. Yang, and T. Xu, "Mixed matrix proton exchange membranes for fuel cells: state of the art and perspectives," Progress in Polymer Science, vol. 57, pp. 103-152, 2016. [14] F. J. Pinar, P. Cañizares, M. A. Rodrigo, D. Ubeda, and J. Lobato, "Titanium composite PBI-based membranes for high temperature polymer electrolyte membrane fuel cells. Effect on titanium dioxide amount," RSC Advances, vol. 2, pp. 1547-1556, 2012. [15] F. J. Pinar, P. Cañizares, M. A. Rodrigo, D. Úbeda, and J. Lobato, "Long-term testing of a high-temperature proton exchange membrane fuel cell short stack operated with improved polybenzimidazole-based composite membranes," Journal of Power Sources, vol. 274, pp. 177-185, 2015. [16] X. Huang, F. Liu, P. Jiang, and T. Tanaka, "Is graphene oxide an insulating material?," in Solid Dielectrics (ICSD), 2013 IEEE International Conference on, 2013, pp. 904-907. [17] K. Hinokuma and M. Ata, "Fullerene proton conductors," Chemical physics letters, vol. 341, pp. 442-446, 2001. [18] C. Xu, Y. Cao, R. Kumar, X. Wu, X. Wang, and K. Scott, "A polybenzimidazole/sulfonated graphite oxide composite membrane for high temperature polymer electrolyte membrane fuel cells," Journal of Materials Chemistry, vol. 21, pp. 11359-11364, 2011. [19] C.-Y. Wu, K.-J. Tu, J.-P. Deng, Y.-S. Lo, and C.-H. Wu, "Markedly Enhanced Surface Hydroxyl Groups of TiO2 Nanoparticles with Superior Water-Dispersibility for Photocatalysis," Materials, vol. 10, p. 566, 2017. [20] 施正雄, 儀器分析原理與應用. 台灣: 五南圖書, 2012. [21] N. Üregen, K. Pehlivanoğlu, Y. Özdemir, and Y. Devrim, "Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells," international journal of hydrogen energy, vol. 42, pp. 2636-2647, 2017. [22] M. Litt, R. Ameri, Y. Wang, R. Savinell, and J. Wainwright, "Polybenzimidazoles/phosphoric acid solid polymer electrolytes: mechanical and electrical properties," MRS Online Proceedings Library Archive, vol. 548, 1998. [23] Y.-L. Ma, J. Wainright, M. Litt, and R. Savinell, "Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells," Journal of The Electrochemical Society, vol. 151, pp. A8-A16, 2004. [24] Y. H. Jeong, K. Oh, S. Ahn, N. Y. Kim, A. Byeon, H.-Y. Park, et al., "Investigation of electrolyte leaching in the performance degradation of phosphoric acid-doped polybenzimidazole membrane-based high temperature fuel cells," Journal of Power Sources, vol. 363, pp. 365-374, 2017. [25] T. Søndergaard, L. N. Cleemann, H. Becker, T. Steenberg, H. A. Hjuler, L. Seerup, et al., "Long-Term Durability of PBI-Based HT-PEM Fuel Cells: Effect of Operating Parameters," Journal of The Electrochemical Society, vol. 165, pp. F3053-F3062, 2018.
|