帳號:guest(3.142.54.83)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳彥治
作者(外文):Wu, Yen-Chih
論文名稱(中文):重組式燃料電池蒸發器應用與系統熱管理
論文名稱(外文):Application of evaporator with balanced thermal management for reformed methanol fuel cell
指導教授(中文):曾繁根
蘇育全
指導教授(外文):Tseng, Fan-Gang
Su, Yu-Chuan
口試委員(中文):潘欽
陳紹文
薛康琳
口試委員(外文):Pan, Chin
Chen, Shao-Wen
Hsueh, Kan-Lin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:105011533
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:97
中文關鍵詞:重組式燃料電池蒸發器分散結構水平漸擴結構沸騰熱傳抗乾化能力甲醇轉換率快速啟動
外文關鍵詞:reformed methanol fuel cellevaporatordispersion structurehorizontal diverging structureflow boilingresist dry-out abilitymethanol conversion ratemethanol conversion rate
相關次數:
  • 推薦推薦:0
  • 點閱點閱:210
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究探討重組式燃料電池之系統熱平衡,設計重組裝置入口燃料(甲醇與水)蒸發之蒸發器(Evaporator)元件,蒸發甲醇與水提供足量的蒸氣燃料供重組器進行SRM( steam reforming of methanol)甲醇重組反應產氫。另外將重組器與磷酸燃料電池進行系統整合,減少重組式燃料電池啟動時間與維持系統熱平衡。
上述目標,蒸發器根據過去曾繁根教授實驗室與潘欽教授實驗室研究成果,設計五種排序結構之蒸發器,流道尾端2/5區域提供加熱場。分散結構有利流體側向分布,漸擴流道利於沸騰流動穩定,本研究用銅製作蒸發器進行沸騰熱傳研究,最佳蒸發器與重組器整合產氫。系統整合根據過去整合之成果,改善過去啟動時間過長的問題,使用絕熱封裝與高功率加熱縮短啟動時間。
研究結果前端分散結構後端水平漸擴結構蒸發器熱傳效率最佳,當流量為4.5ml/min時,有最佳熱傳效率91.41%,臨界熱通量達到147.95kW/m2,但在抗乾化能力上不如純漸擴結構蒸發器,在超過100W加熱功率下純漸擴結構有較好的臨界熱通量表現,其中又以水平漸擴結構蒸發器表現最佳臨界熱通量可達178.9 kW/m2,水平漸擴結構蒸發器與重組器進行重組反應產氫,甲醇轉換率在280℃可達到70.3%,氫氣產量達到443ml/min,與純蒸汽整合重組器相比,重組器在與燃料電池系統整合允許操作溫度240-260℃之間,最差情況下在260℃時,蒸發器可以達到純蒸氣88.1%的甲醇轉換率效能。系統快速啟動主要問題為加熱器功率不足,改用1000W加熱啟動時間縮短為10.8分鐘。
關鍵詞:重組式燃料電池、蒸發器、分散結構、水平漸擴結構、沸騰熱傳、抗乾化能力、甲醇轉換率、快速啟動
This study investigates the system thermal management of a reformed methanol fuel cell, designing evaporator components for evaporation of fuel (methanol and water) at the inlet of the reformation, providing sufficient evaporation of fuel for steam reforming of methanol (SRM) to produce hydrogen. In addition, the reformed device is systematically integrated with the phosphoric acid fuel cell to reduce the excessive startup time of the reformed fuel cell and maintain the system thermal balance.
According to the above objectives, five different structures of evaporator have been designed following previous researches, providing a local heating field for the two-fifths of the end area. The dispersed structure is beneficial to the lateral distribution of the fluid, and the diverging channel is beneficial to the stability of the flow boiling. In this study, the evaporator of different heat sink configurations of copper is used for boiling heat transfer research to find the best heat transfer effect of the evaporator and integrate with Swiss shape flow channel reformer that filled with 20 grams of copper and zinc catalyst for hydrogen production. For system integration experiment section, excessive start-up heating times for reformer fuel cells use adiabatic package with high power heaters to significantly reduce start-up time.
The results show that the heat transfer efficiency of dispersion combine horizontal diverging structure evaporator is the best. When the flow rate is 4.5ml/min, the optimal heat transfer efficiency is 91.41%, and the critical heat flux reaches 147.95kW/m2, however the ability to resist dry-out is not good as the purely diverging structure evaporator. When the heating power exceeds 100 W, the purely diverging structure has better critical heat flux performance, among them, the horizontally diverging structure evaporator has the best performance, reaching heat flux 178.9 kW/m2. Integrating the horizontal diverging structure evaporator and the reformer to do the reformation reaction, the highest methanol conversion rate can reach 70.3% at 280 °C, and the hydrogen production reaches 443 ml/min. Compared to the pure steam integrated reformer, the evaporator of reformer integrated with fuel cell can achieve 88.1% methanol conversion efficiency of the pure steam at operating temperature 260oC, which is the worst case among the operating temperature of 240~260oC.
In the system integration experiment, we found completely different results from the past. The main problem of the system quick start is the heater provides insufficient energy instead of the system heat loss. The start time is improved with a 1000W heater, and the start time is shortened from 158.25 minutes to 10.8 minutes.
Keywords: reformed methanol fuel cell, evaporator, dispersion structure, horizontal diverging structure, flow boiling, resist dry-out ability, methanol conversion rate, methanol conversion rate
摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VIII
表目錄 XII
符號說明表 XIII
第一章 緒論 1
1.1.前言 1
1.2.燃料電池的發展 2
1.3.重組製氫工作原理 5
1.4.研究動機與目的 8
1.5.研究方向 11
第二章 文獻回顧 12
2.1.蒸發流道結構設計相關研究 12
2.1.1.流動穩定性研究 12
2.1.2.流動均勻性研究 13
2.1.3.熱交換鰭片研究 15
2.2. 雙相流相關研究 16
2.3. 甲醇重組式燃料電池整合性裝置相關研究 18
2.4.絕熱材料相關研究 20
第三章 實驗設計與方法 22
3.1.實驗概要 22
3.2實驗耗材與設備 22
3.2.1實驗藥品、耗材 22
3.2.2實驗設備 22
3.2.3分析儀器 23
3.3蒸發器實驗規劃 23
3.3.1蒸發器實驗設備環路 23
3.3.2蒸發器實驗測試規劃 24
3.3.3蒸發器實驗方法與步驟 30
3.4燃料電池啟動加熱實驗規劃 32
3.4.1實驗系統設計 32
3.4.2實驗測試規劃 32
3.4.3加熱實驗方法與步驟 35
第四章 研究方法與分析 36
4.1.燃料電池功率蒸發器流量分析 36
4.2工作流體物理性質分析 37
4.3蒸發器熱效率與熱損失分析 38
4.4絕熱層熱散失分析 41
4.5重組式產氫轉換率分析 41
4.6重組式燃料電池熱效率分析 42
第五章 結果與討論 45
5.1.蒸發器效能之討論 45
5.1.1蒸發器流量影響熱傳之討論 45
5.1.2蒸發器流量影響熱傳效率之討論 48
5.2蒸發器結構效能之討論 50
5.2.1蒸發器結構加熱分析 50
5.2.2蒸發器結構熱效率分析 54
5.2.3蒸發器結構壓降分析 57
5.3蒸發器結構沸騰流譜討論 59
5.3.1低功率蒸發器流譜 59
5.3.2中功率蒸發器流譜 64
5.3.3高功率蒸發器流譜 70
5.3.4結構流動沸騰狀態比較 77
5.4 重組反應效能討論 81
5.5系統升溫熱散失討論 84
第六章 結論與未來建議 87
6.1結論 87
6.2未來建議 89
參考文獻 90

[1] International Energy Agency, “Energy Technology Perspectives 2014 Executive Summary,” IEA Publ., p. 14, 2014.
[2] J.Larm, Fuel cell systems explained, second edition. Wiley&Sons.
[3] L.Carrette, K. aFriedrich, andU.Stimming, “Fuel cells: principles, types, fuels, and applications.,” Chemphyschem, vol. 1, no. 4, pp. 162–93, Dec.2000.
[4] J.Zhang, Y.Tang, C.Song, J.Zhang, andH.Wang, “PEM fuel cell open circuit voltage (OCV) in the temperature range of 23°C to 120°C,” J. Power Sources, vol. 163, no. 1, pp. 532–537, Dec.2006.
[5] B.Lindström, “Development of a methanol reformer for fuel cell vehicles.” 2003.
[6] G.Park, D.Seo, S.Park, andY.Yoon, “Development of microchannel methanol steam reformer,” Chem. Eng. J., vol. 101, pp. 87–92, 2004.
[7] C.Lamy, J.Léger, andS.Srinivasan, “Direct methanol fuel cells: from a twentieth century electrochemist’s dream to a twenty-first century emerging technology,” Mod. Asp. Electrochem., 2001.
[8] A.Heinzel andV. M.Barragan, “A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells,” J. Power Sources, vol. 84, pp. 70–74, 1999.
[9] B.Lindström andL.Pettersson, “Development of a methanol fuelled reformer for fuel cell applications,” J. Power Sources, vol. 118, pp. 71–78, 2003.
[10] 王學聖, “可與磷酸燃料電池整合之具指柵狀結構之低溫高效能甲醇重組器,” 國立清華大學博士論文, 2017.
[11] W. H.Chen andC. T.Shen, “Partial oxidation of methanol over a Pt/Al2O3catalyst enhanced by sprays,” Energy, vol. 106, pp. 1–12, 2016.
[12] 林昭男, “低一氧化碳選擇率、高熱穩定性的金、铈修飾銅鋅觸媒甲醇-過氧化氫蒸氣重組之研究,” 國立清華大學碩士論文, 2018.
[13] 劉鈞, “高性能甲醇重組器與濃度梯度法,” 國立清華大學碩士論文, 2016.
[14] 許昶逸, “甲醇雙氧水混合蒸發器應用後端甲醇重組反應,” 國 立 清 華 大 學 碩 士 論 文, 2016.
[15] S. S.Williamson, S. M.Lukic, andA.Emadi, “Comprehensive drive train efficiency analysis of hybrid electric and fuel cell vehicles based on motor-controller efficiency modeling,” IEEE Trans. Power Electron., vol. 21, no. 3, pp. 730–740, 2006.
[16] G.Park, S.Yim, Y.Yoon, C.Kim, D.Seo, andK.Eguchi, “Hydrogen production with integrated microchannel fuel processor using methanol for portable fuel cell systems,” vol. 110, pp. 108–113, 2005.
[17] 張雅婷, “重組式甲醇燃料電池蒸發器沸騰熱傳研究,” 國 立 清 華 大 學 碩 士 論 文, 2017.
[18] D.Bogojevic et al., “Experimental investigation of non-uniform heating effect on flow boiling instabilities in a microchannel-based heat sink,” Int. J. Therm. Sci., vol. 50, no. 3, pp. 309–324, 2011.
[19] W.Wan, D.Deng, Q.Huang, T.Zeng, andY.Huang, “Experimental study and optimization of pin fin shapes in flow boiling of micro pin fin heat sinks,” Appl. Therm. Eng., vol. 114, pp. 436–449, 2017.
[20] C. T.Lu andC.Pan, “Stabilization of flow boiling in microchannel heat sinks with a diverging cross-section design,” J. Micromechanics Microengineering, vol. 18, no. 7, 2008.
[21] D.Deng, Y.Xie, Q.Huang, andW.Wan, “On the flow boiling enhancement in interconnected reentrant microchannels,” Int. J. Heat Mass Transf., vol. 108, pp. 453–467, 2017.
[22] G.Wang, P.Cheng, andH.Wu, “Unstable and stable flow boiling in parallel microchannels and in a single microchannel,” Int. J. Heat Mass Transf., vol. 50, no. 21–22, pp. 4297–4310, 2007.
[23] K. H.Chang andC.Pan, “Two-phase flow instability for boiling in a microchannel heat sink,” Int. J. Heat Mass Transf., vol. 50, no. 11–12, pp. 2078–2088, 2007.
[24] S.Szczukiewicz, N.Borhani, andJ. R.Thome, “Two-phase flow operational maps for multi-microchannel evaporators,” Int. J. Heat Fluid Flow, vol. 42, pp. 176–189, 2013.
[25] S.Zhang, W.Yuan, Y.Tang, J.Chen, andZ.Li, “Enhanced flow boiling in an interconnected microchannel net at different inlet subcooling,” Appl. Therm. Eng., vol. 104, no. May, pp. 659–667, 2016.
[26] Y.Zhai, Z.Li, H.Wang, andJ.Xu, “Thermodynamic analysis of the effect of channel geometry on heat transfer in double-layered microchannel heat sinks,” Energy Convers. Manag., vol. 143, pp. 431–439, 2017.
[27] C.Falsetti, H.Jafarpoorchekab, M.Magnini, N.Borhani, andJ. R.Thome, “Two-phase operational maps, pressure drop, and heat transfer for flow boiling of R236fa in a micro-pin fin evaporator,” Int. J. Heat Mass Transf., vol. 107, pp. 805–819, 2017.
[28] S.Chakraborty, O.Sahu, andP. K.Das, “Flow Boiling in a Heat Sink Embedded With Hexagonally Linked Minichannels,” J. Heat Transfer, vol. 138, no. 8, p. 081504, 2016.
[29] R.Ajith Krishnan, K. R.Balasubramanian, andS.Suresh, “Experimental investigation of the effect of heat sink orientation on subcooled flow boiling performance in a rectangular microgap channel,” Int. J. Heat Mass Transf., vol. 120, pp. 1341–1357, 2018.
[30] R.Ajith Krishnan, K. R.Balasubramanian, andS.Suresh, “The effect of heating area orientation on flow boiling performance in microchannels heat sink under subcooled condition,” Int. J. Heat Mass Transf., vol. 110, pp. 276–293, 2017.
[31] S.Saisorn andS.Wongwises, “Flow pattern, void fraction and pressure drop of two-phase air-water flow in a horizontal circular micro-channel,” Exp. Therm. Fluid Sci., vol. 32, no. 3, pp. 748–760, 2008.
[32] S.Saisorn andS.Wongwises, “An experimental investigation of two-phase air-water flow through a horizontal circular micro-channel,” Exp. Therm. Fluid Sci., vol. 33, no. 2, pp. 306–315, 2009.
[33] J. D.deOliveira, J. C.Passos, J. B.Copetti, andC. W. M.van derGeld, “Flow boiling heat transfer of propane in 1.0 mm tube,” Exp. Therm. Fluid Sci., vol. 96, no. March, pp. 243–256, 2018.
[34] T.Wen, H.Zhan, L.Lu, andD.Zhang, “Experimental investigation and development of new correlation for flow boiling heat transfer in mini-channel,” Int. J. Therm. Sci., vol. 129, no. May 2017, pp. 209–217, 2018.
[35] A.V.Belyaev, A. N.Varava, A.V.Dedov, andA. T.Komov, “Critical heat flux at flow boiling of refrigerants in minichannels at high reduced pressure,” Int. J. Heat Mass Transf., vol. 122, pp. 732–739, 2018.
[36] L. E.O’Neill et al., “Experimental investigation into the impact of density wave oscillations on flow boiling system dynamic behavior and stability,” Int. J. Heat Mass Transf., vol. 120, pp. 144–166, 2018.
[37] L.Pan andS.Wang, “A compact integrated fuel-processing system for proton exchange membrane fuel cells,” Int. J. Hydrogen Energy, vol. 31, no. 4, pp. 447–454, 2006.
[38] A. M.Moreno andB. A.Wilhite, “Autothermal hydrogen generation from methanol in a ceramic microchannel network,” J. Power Sources, vol. 195, no. 7, pp. 1964–1970, 2010.
[39] N.Miyamoto et al., “Development of a thermally efficient microreactor with a methanol reformer for small PEMFC systems,” vol. 145, no. mm, pp. 1–4, 2005.
[40] A.Kasuga, S.Tanaka, andM.Esashi, “Design and Fabrication of a Vacuum-Packaged Micro Fuel Reformer,” pp. 35–38, 2006.
[41] G.Avgouropoulos, A.Paxinou, andS.Neophytides, “In situ hydrogen utilization in an internal reforming methanol fuel cell,” Int. J. Hydrogen Energy, vol. 39, no. 31, pp. 18103–18108, 2014.
[42] G.Avgouropoulos et al., “Performance evaluation of a proof-of-concept 70 W internal reforming methanol fuel cell system,” J. Power Sources, vol. 307, pp. 875–882, 2016.
[43] P.Ribeirinha, G.Schuller, M.Boaventura, andA.Mendes, “Synergetic integration of a methanol steam reforming cell with a high temperature polymer electrolyte fuel cell,” Int. J. Hydrogen Energy, vol. 42, no. 19, pp. 13902–13912, 2017.
[44] G.Dolanc et al., “A miniature fuel reformer system for portable power sources,” J. Power Sources, vol. 271, pp. 392–400, 2014.
[45] R.Chein, Y.Chen, andJ. N.Chung, “Thermal resistance effect on methanol-steam reforming performance in micro-scale reformers,” Int. J. Hydrogen Energy, vol. 37, no. 1, pp. 250–262, 2011.
[46] J.Zhang, W.Jiang, X.Wang, J.Zhou, andH.Yang, “Design and fabrication of high performance wafer-level vacuum packaging based on glass-silicon-glass bonding techniques,” J. Micromechanics Microengineering, vol. 22, no. 12, 2012.
[47] S.Vanapalli, T.Klünder, I.Hegeman, N.Tolboom, andH. J. M.terBrake, “Un appareil pour mesurer la conductivité thermique de panneaux d’isolation à une température sous-ambiante,” Int. J. Refrig., vol. 74, pp. 642–648, 2017.
[48] B.Choi, I.Yeo, J.Lee, W. K.Kang, andT. H.Song, “Pillar-supported vacuum insulation panel with multi-layered filler material,” Int. J. Heat Mass Transf., vol. 102, pp. 902–910, 2016.
[49] B.Chang, L.Zhong, andM.Akinc, “Low cost composites for vacuum insulation core material,” Vacuum, vol. 131, pp. 120–126, 2016.
[50] E. L.Krüger, G.Suetake, andA.Matoski, “Evaluation of the thermal performance of insulation sheets in fiberglass security booths,” Build. Environ., vol. 136, no. February, pp. 1–10, 2018.
[51] 凃妙華, “入口設計與局部加熱對微型甲醇蒸發器效能之影響,” 國立清華大學碩士論文, 2015.
[52] C.Pan et al., “Integration of high temperature PEM fuel cells with a methanol reformer,” J. Power Sources, vol. 145, no. 2, pp. 392–398, 2005.
[53] Y. A.Cengel, Thermodynamics, SEVENTH. Mc Graw Hill, 2012.
[54] H.Zhao, Z.Liu, C.Zhang, N.Guan, andH.Zhao, “Pressure drop and friction factor of a rectangular channel with staggered mini pin fins of different shapes,” Exp. Therm. Fluid Sci., vol. 71, pp. 57–69, 2016.
[55] W. C.Liu andC. Y.Yang, “Two-phase flow visualization and heat transfer performance of convective boiling in micro heat exchangers,” Exp. Therm. Fluid Sci., vol. 57, pp. 358–364, 2014.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *