帳號:guest(18.223.196.180)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳俊瑋
作者(外文):Chen, Jyun-Wei
論文名稱(中文):腎足細胞培養於多層同軸水膠管狀結構及其應用
論文名稱(外文):Multi-Layer Coaxial Alginate Tubes for Glomerular Podocyte Cells Cultivation and Tube Application
指導教授(中文):曾繁根
指導教授(外文):Tseng, Fan-Gang
口試委員(中文):蘇育全
許翔皓
口試委員(外文):Su, Yu-Chuan
Hsu, Hsiang-Hao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:105011520
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:67
中文關鍵詞:組織工程腎足細胞仿生組織水膠海藻酸鈉
外文關鍵詞:Tissue EngineeringPodocyteBionic tissueHydrogelSodium Alginate
相關次數:
  • 推薦推薦:0
  • 點閱點閱:200
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在人體循環系統當中,腎臟扮演著十分重要的角色,主要負責過濾代謝廢物以及再吸收有用的養分。而腎臟中,約由200萬個腎元組成,每一個腎元是由腎小體及腎小管所組成。而腎小球,腎小體中用於將血液過濾的組織,由內而外分別是內皮細胞、腎小球基底膜和腎足細胞。此三者細胞有著不同的孔洞大小,可以用來過濾血液中不同的物質,例如內皮細胞可擋住紅血球,但能讓血漿與水溶性蛋白通過,而腎足細胞限制血紅素及蛋白的流出。
因此,為了模擬人體中腎小球的構造,我們必須做出多層細胞管狀結構,使我們能研究其行為原理,進一步來發展仿生腎臟組織。在我們的實驗中,我們利用海藻酸鈉來當作細胞貼附的基質,利用海藻酸鈉碰到二價離子時,置換海藻酸鈉中的鈉離子,產生交聯作用固化來維持機械強度,再利用同軸針及注射式幫浦做出中空水膠管,進而在上面培養我們所想要的細胞。
第一階段研究中,我們將塗佈膠原蛋白但卻未培養細胞的氧化鋁薄膜進行加壓測試,並與培養腎足細胞的薄膜進行比較,探討在不同壓力下,腎足細胞在平面裝置的過濾能力。第二階段的研究,主要尋找混合細胞培養的各種參數,包含培養液與溫度兩大條件,因最後想要做出多層細胞的結構,所以細胞可能在非最佳環境中成長,因此必須先行測試不同生長環境對於細胞生長速率的影響,試著找出能讓兩種細胞都順利成長的環境。至於最後一階段則是實際製造出三維細胞水膠管,主要利用海藻酸鈉做為管子基材,利用鍶離子使海藻酸鈉固化,在管上進行表面處理後培養細胞,再用影像記錄其生長狀況。
In the human circulatory system, the kidneys play a very important role, mainly responsible for the filtration of metabolic waste and the reabsorption of useful nutrients. In the kidneys, about 2 million of the nephron, each nephron is composed of renal corpuscle and renal tubule. The glomerulus, the renal corpuscle uses in the blood filtration organization, from the inside and outside is the endothelial cell, the glomerular basement membrane and the podocytes. These three cells have different pore sizes that can be used to filter different substances in the bloodstream, such as endothelial cells that block red blood cells, but allow the plasma and water-soluble proteins to pass through, and podocytes limit the heme.
Therefore, in order to simulate the structure of human glomerular, we should make the multilayer cell tubular structure, so that we can study its behavior principle, further develop the bionic kidney tissue. In our experiment, sodium alginate was used as substrate for cell attachment. When sodium alginate is encountered with bivalent ions, the sodium ions in sodium alginate are replaced by the crosslinking action to maintain the mechanical strength, then the coaxial needle and syringe pump are used to make the hollow water hose, and then we can culture cells which we want.
In the first stage of the study, we tested the AAO membrane coated with collagen but not cultured cells, and compared it with the membrane of the cultured podocytes to discuss the filtration ability of the podocytes under different pressures. The second stage of the study, mainly in the search for co-culture of different cells, including the two conditions of medium and temperature, because the last want to make the structure of multilayer cells, so the cell may grow in a nonoptimal environment. It is necessary to test different environments for the growth rate of cells, and try to find the environment that allows both cells to grow smoothly. The final stage, it is the manufacture of three-dimensional and multi-layer coaxial tube with cells culture, mainly using sodium alginate as a base material, and use strontium ions to cure sodium alginate. Then making surface treatment on alginate tube, and using image to record the cells’ growth condition.
摘要 ii
Abstract iii
致謝 v
總目錄 vi
表目錄 viii
圖目錄 ix
第一章 序論 1
1.1前言 1
1.2研究動機 2
1.3研究目的 3
第二章 文獻回顧 6
2.1影響腎足細胞過濾因素 6
2.2腎足細胞與腎臟疾病關係 8
2.3組織工程 9
2.3.1 生物材料 14
2.4水膠 16
2.4.1 海藻酸鈉(Sodium alginate)的來源與性質 21
2.4.2 不同離子對海藻酸鈉的固化影響 22
2.4.3 明膠(Gelatin)的來源與性質 23
2.5細胞貼附 23
2.6水膠表面培養細胞 25
2.6.1 三維空間水膠培養細胞 26
第三章 實驗設計與規劃 28
3.1平面壓力測試設計 28
3.1.1 發病機理 28
3.1.2 平面壓力實驗 28
3.2 混合細胞培養測試 30
3.2.1 混合細胞培養動機 30
3.2.2 混合細胞培養設計 30
3.3三維多層細胞管製作 30
3.3.1 三維單層細胞管改良 30
3.3.2 三維多層細胞管實驗設計 32
3.3.3 三維細胞管冷凍保存設計 33
第四章 實驗操作流程 34
4.1微生物實驗室基本操作 34
4.1.1細胞培養基本技術 34
4.1.2調配培養液 34
4.1.3細胞培養 35
4.2平面壓力測試實驗流程 35
4.2.1膠原蛋白塗布 35
4.2.2進行壓力測試 35
4.3混合細胞培養測試 37
4.3.1不同環境下細胞培養 37
4.3.2細胞計數與生長曲線 37
4.4 三維多層細胞管測試 38
4.4.1前置藥品製備 38
4.4.2三維單層細胞管改良 38
4.4.3三維多層細胞管培養 40
4.4.4三維細胞管冷凍保存 41
4.5實驗儀器 41
4.5.1平面壓力測試儀器與藥品 41
4.5.2混合細胞培養測試儀器與藥品 43
4.5.3三維多層細胞管儀器與藥品 44
第五章 結果與討論 47
5.1平面壓力實驗結果 47
5.1.1蛋白質洩漏測試 48
5.2混合細胞培養測試結果 48
5.2.1各類參數影響比較 49
5.3三維細胞管培養結果 50
5.3.1三維單層細胞管改良 50
5.3.2三維多層細胞管培養 52
5.3.3三維細胞管冷凍保存 54
第六章 結論 56
6.1平面壓力實驗測試 56
6.2混合細胞培養測試 57
6.2.1各類參數的影響 57
6.3三維細胞管製作 58
6.3.1三維單層細胞管改良 58
6.3.2三維多層細胞管培養 58
6.3.3三維細胞管冷凍保存 59
第七章 未來工作 60
第八章 參考文獻 61

[1] Koeth, Robert A. et al. "Protein Carbamylation Predicts Mortality in ESRD. " Journal of the American Society of Nephrology 24.5 (2013): 853–861
[2] Durvasula, Raghu V., et al. "Activation of a local tissue angiotensin system in podocytes by mechanical strain." Kidney international 65.1 (2004): 30-39.
[3] 王舒民, 楊雅斐, 及黃秋錦. "慢性腎臟病與高血壓." 腎臟與透析19.2 (2007): 64-70.
[4] 呂芷萱. "具奈米孔洞仿生膜之微流體系統應用於研究壓力對腎臟足細胞生理以及病理上的影響." 清華大學奈米工程與微系統研究所學位論文 (2014): 1-69
[5] Pavenstädt, Hermann, Wilhelm Kriz, and Matthias Kretzler. "Cell biology of the glomerular podocyte." Physiological reviews83.1 (2003): 253-307.
[6] 陳甫安, 徐大為, 及王緯書. "血管內皮生長因子的表現量與腎臟疾病的關連性." 內科學誌 21.5 (2010): 337-343.
[7] Mifsud, S. A., et al. "Podocyte foot process broadening in experimental diabetic nephropathy: amelioration with renin-angiotensin blockade." Diabetologia 44.7 (2001): 878-882.
[8] Niklason, Laura E., and Robert Langer. "Prospects for organ and tissue replacement." Jama 285.5 (2001): 573-576.
[9] R.Langer, and J.P.Vacanti, "Tissue engineering." Science 260.5110 (1993): 920-926
[10] Griffith, Linda G., and Gail Naughton. "Tissue engineering--current challenges and expanding opportunities." Science 295.5557 (2002): 1009-1014.
[11] K.J. Jang, A.P. Mehr, G.A. Hamilton, L.A. McPartlin, S.Y. Chung, K.Y. Suh, D.E. Ingber, Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment, Integr Biol-Uk, 5 (2013) 1119-1129.
[12] E.M. Frohlich, X. Zhang, J.L. Charest, The use of controlled surface topography and flow-induced shear stress to influence renal epithelial cell function, Integr Biol-Uk, 4 (2012) 75-83.
[13] Y. Morimoto, M. Kato-Negishi, H. Onoe, S. Takeuchi, Three-dimensional neuron-muscle constructs with neuromuscular junctions, Biomaterials, 34 (2013) 9413-9419.
[14] Y. Yajima, M. Yamada, E. Yamada, M. Iwase, M. Seki, Facile fabrication processes for hydrogel-based microfluidic devices made of natural biopolymers, Biomicrofluidics, 8 (2014).
[15] H. Onoe, T. Okitsu, A. Itou, M. Kato-Negishi, R. Gojo, D. Kiriya, K. Sato, S. Miura, S. Iwanaga, K. Kuribayashi-Shigetomi, Y.T. Matsunaga, Y. Shimoyama, S. Takeuchi, Metre-long cell-laden microfibres exhibit tissue morphologies and functions, Nat Mater, 12 (2013) 584-590.
[16] M. Yamada, R. Utoh, K. Ohashi, K. Tatsumi, M. Yamato, T. Okano, M. Seki, Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions, Biomaterials, 33 (2012) 8304-8315.
[17] S. Mazzitelli, L. Capretto, D. Carugo, X.L. Zhang, R. Piva, C. Nastruzzi, Optimised production of multifunctional microfibres by microfluidic chip technology for tissue engineering applications, Lab Chip, 11 (2011) 1776-1785.
[18] E. Kang, G.S. Jeong, Y.Y. Choi, K.H. Lee, A. Khademhosseini, S.H. Lee, Digitally tunable physicochemical coding of material composition and topography in continuous microfibres, Nat Mater, 10 (2011) 877-883.
[19] Brunski, J.B. Metals. In: Ratner, B.D., Hoffman, A.S., Schoen, F.J., et al., eds. Biomaterials Science: An Introduction to Materials in Medicine. New York: Academic Press,(1996):37–50.
[20] Hench, L.L. Ceramics, glasses, and glass-ceramics. In: Ratner, B.D., Hoffman, A.S., Schoen, F.J., et al., eds. Biomaterials Science: An Introduction to Materials in Medicine. New York: Academic Press, (1996):73–83.
[21] Gajendiran, Mani, et al. "Conductive biomaterials for tissue engineering applications." Journal of Industrial and Engineering Chemistry (2017).
[22] Wichterle, Otto, and Drahoslav Lim. "Hydrophilic gels for biological use." Nature 185.4706 (1960): 117-118.
[23] Lim, Franklin, and Anthony M. Sun. "Microencapsulated islets as bioartificial endocrine pancreas." Science 210.4472 (1980): 908-910.
[24] Yannas, I. V., et al. "Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin." Proceedings of the National Academy of Sciences 86.3 (1989): 933-937.
[25] Hoffman, Allan S. "Hydrogels for biomedical applications." Advanced drug delivery reviews 64 (2012): 18-23.
[26] Qiu, Yong, and Kinam Park. "Environment-sensitive hydrogels for drug delivery." Advanced drug delivery reviews 53.3 (2001): 321-339.
[27] 林育璋.”以水膠應用於人工敷料之研發.” 南台科技大學化學工程系學位論文(2005)
[28] Sun, Shengtong, and Peiyi Wu. "A one-step strategy for thermal-and pH-responsive graphene oxide interpenetrating polymer hydrogel networks." Journal of Materials Chemistry21.12 (2011): 4095-4097
[29] Mamada, Akira, et al. "Photoinduced phase transition of gels." Macromolecules 23.5 (1990): 1517-1519
[30] Ehrick, Jason D., et al. "Genetically engineered protein in hydrogels tailors stimuli-responsive characteristics." Nature materials 4.4 (2005): 298-302
[31] Miyata, Takashi, Noriko Asami, and Tadashi Uragami. "A reversibly antigen-responsive hydrogel." Nature 399.6738 (1999): 766-769.
[32] Lee, K. K., et al. "Pressure-dependent phase transitions in hydrogels." Chemical engineering science 45.3 (1990): 766-767.
[33] Gong, J. P., T. Nitta, and Y. Osada. "Electrokinetic modeling of the contractile phenomena of polyelectrolyte gels. One-dimensional capillary model." The Journal of Physical Chemistry 98.38 (1994): 9583-9587.
[34] Lee, Young Jae, et al. "Preparation of atactic poly (vinyl alcohol)/sodium alginate blend nanowebs by electrospinning." Journal of applied polymer science 106.2 (2007): 1337-1342.
[35] Bajpai, S. K., and Shubhra Sharma. "Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca 2+ and Ba 2+ ions." Reactive and Functional Polymers59.2 (2004): 129-140.
[36] Sun, Jeong-Yun, et al. "Highly stretchable and tough hydrogels." Nature 489.7414 (2012): 133-136.
[37] Topuz, Fuat, et al. "Magnesium ions and alginate do form hydrogels: a rheological study." Soft Matter 8.18 (2012): 4877-4881.
[38] Place, Elsie S., et al. "Strontium-and zinc-alginate hydrogels for bone tissue engineering." Tissue Engineering Part A 17.21-22 (2011): 2713-2722.
[39] Tabata, Yasuhiko, et al. "Skull bone regeneration in primates in response to basic fibroblast growth factor." Journal of neurosurgery 91.5 (1999): 851-856.
[40] Ozekp, Makoto, et al. "Controlled release of hepatocyte growth factor from gelatin hydrogels based on hydrogel degradation." Journal of drug targeting 9.6 (2001): 461-471.
[41] Karp, Gerald. Cell and Molecular Biology: Concepts and Experiments 4th Edition with Plus Set. John Wiley & Son, 2006.
[42] Rich, A. K. H. A., and Albert K. Harris. "Anomalous preferences of cultured macrophages for hydrophobic and roughened substrata." Journal of cell science50.1 (1981): 1-7.
[43] Meyle, J., et al. "Fibroblast anchorage to microtextured surfaces." Journal of biomedical materials research 27.12 (1993): 1553-1557.
[44] Chou, Laisheng, et al. "Substratum surface topography alters cell shape and regulates fibronectin mRNA level, mRNA stability, secretion and assembly in human fibroblasts." Journal of Cell Science 108.4 (1995): 1563-1573.
[45] Sheetz, Michael P., Dan P. Felsenfeld, and Catherine G. Galbraith. "Cell migration: regulation of force on extracellular-matrix-integrin complexes."Trends in cell biology 8.2 (1998): 51-54.
[46] Barralet, J. E., et al. "Comparison of bone marrow cell growth on 2D and 3D alginate hydrogels." Journal of materials science: materials in medicine 16.6 (2005): 515-519.
[47] Rowley, Jon A., Gerard Madlambayan, and David J. Mooney. "Alginate hydrogels as synthetic extracellular matrix materials." Biomaterials 20.1 (1999): 45-53.
[48] Shapiro, Jenna M., and Michelle L. Oyen. "Hydrogel composite materials for tissue engineering scaffolds." Jom 65.4 (2013): 505-516.
[49] Ignatius, Anita, et al. "Tissue engineering of bone: effects of mechanical strain on osteoblastic cells in type I collagen matrices." Biomaterials 26.3 (2005): 311-318.
[50] Li, Zhensheng, et al. "Chitosan–alginate hybrid scaffolds for bone tissue engineering." Biomaterials 26.18 (2005): 3919-3928.
[51] Adekogbe, Iyabo, and Amyl Ghanem. "Fabrication and characterization of DTBP-crosslinked chitosan scaffolds for skin tissue engineering." Biomaterials26.35 (2005): 7241-7250.
[52] Huang, Yan, et al. "In vitro characterization of chitosan–gelatin scaffolds for tissue engineering." Biomaterials 26.36 (2005): 7616-7627.
[53] Li, Xudong, et al. "Demineralized bone matrix gelatin as scaffold for osteochondral tissue engineering." Biomaterials 27.11 (2006): 2426-2433.
[54] Hsieh, Hsin-Yi, et al. "Gradient static-strain stimulation in a microfluidic chip for 3D cellular alignment." Lab on a Chip 14.3 (2014): 482-493.
[55] Naito, Hiroshi, et al. "The advantages of three‐dimensional culture in a collagen hydrogel for stem cell differentiation." Journal of Biomedical Materials Research Part A 101.10 (2013): 2838-2845.
[56] Jongpaiboonkit, Leenaporn, William J. King, and William L. Murphy. "Screening for 3D environments that support human mesenchymal stem cell viability using hydrogel arrays." Tissue Engineering Part A 15.2 (2008): 343-353.
[57] FW Greiner, Johannes, et al. "Going 3D–Cell Culture Approaches for Stem Cell Research and Therapy." Current Tissue Engineering 2.1 (2013): 8-19.
[58] 陳杰陞. "腎足細胞培養於鍶離子固化3D水膠管狀結構". 清華大學工程與系統科學研究所學位論文 (2016): 1-71

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *