|
[1] Koeth, Robert A. et al. "Protein Carbamylation Predicts Mortality in ESRD. " Journal of the American Society of Nephrology 24.5 (2013): 853–861 [2] Durvasula, Raghu V., et al. "Activation of a local tissue angiotensin system in podocytes by mechanical strain." Kidney international 65.1 (2004): 30-39. [3] 王舒民, 楊雅斐, 及黃秋錦. "慢性腎臟病與高血壓." 腎臟與透析19.2 (2007): 64-70. [4] 呂芷萱. "具奈米孔洞仿生膜之微流體系統應用於研究壓力對腎臟足細胞生理以及病理上的影響." 清華大學奈米工程與微系統研究所學位論文 (2014): 1-69 [5] Pavenstädt, Hermann, Wilhelm Kriz, and Matthias Kretzler. "Cell biology of the glomerular podocyte." Physiological reviews83.1 (2003): 253-307. [6] 陳甫安, 徐大為, 及王緯書. "血管內皮生長因子的表現量與腎臟疾病的關連性." 內科學誌 21.5 (2010): 337-343. [7] Mifsud, S. A., et al. "Podocyte foot process broadening in experimental diabetic nephropathy: amelioration with renin-angiotensin blockade." Diabetologia 44.7 (2001): 878-882. [8] Niklason, Laura E., and Robert Langer. "Prospects for organ and tissue replacement." Jama 285.5 (2001): 573-576. [9] R.Langer, and J.P.Vacanti, "Tissue engineering." Science 260.5110 (1993): 920-926 [10] Griffith, Linda G., and Gail Naughton. "Tissue engineering--current challenges and expanding opportunities." Science 295.5557 (2002): 1009-1014. [11] K.J. Jang, A.P. Mehr, G.A. Hamilton, L.A. McPartlin, S.Y. Chung, K.Y. Suh, D.E. Ingber, Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment, Integr Biol-Uk, 5 (2013) 1119-1129. [12] E.M. Frohlich, X. Zhang, J.L. Charest, The use of controlled surface topography and flow-induced shear stress to influence renal epithelial cell function, Integr Biol-Uk, 4 (2012) 75-83. [13] Y. Morimoto, M. Kato-Negishi, H. Onoe, S. Takeuchi, Three-dimensional neuron-muscle constructs with neuromuscular junctions, Biomaterials, 34 (2013) 9413-9419. [14] Y. Yajima, M. Yamada, E. Yamada, M. Iwase, M. Seki, Facile fabrication processes for hydrogel-based microfluidic devices made of natural biopolymers, Biomicrofluidics, 8 (2014). [15] H. Onoe, T. Okitsu, A. Itou, M. Kato-Negishi, R. Gojo, D. Kiriya, K. Sato, S. Miura, S. Iwanaga, K. Kuribayashi-Shigetomi, Y.T. Matsunaga, Y. Shimoyama, S. Takeuchi, Metre-long cell-laden microfibres exhibit tissue morphologies and functions, Nat Mater, 12 (2013) 584-590. [16] M. Yamada, R. Utoh, K. Ohashi, K. Tatsumi, M. Yamato, T. Okano, M. Seki, Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions, Biomaterials, 33 (2012) 8304-8315. [17] S. Mazzitelli, L. Capretto, D. Carugo, X.L. Zhang, R. Piva, C. Nastruzzi, Optimised production of multifunctional microfibres by microfluidic chip technology for tissue engineering applications, Lab Chip, 11 (2011) 1776-1785. [18] E. Kang, G.S. Jeong, Y.Y. Choi, K.H. Lee, A. Khademhosseini, S.H. Lee, Digitally tunable physicochemical coding of material composition and topography in continuous microfibres, Nat Mater, 10 (2011) 877-883. [19] Brunski, J.B. Metals. In: Ratner, B.D., Hoffman, A.S., Schoen, F.J., et al., eds. Biomaterials Science: An Introduction to Materials in Medicine. New York: Academic Press,(1996):37–50. [20] Hench, L.L. Ceramics, glasses, and glass-ceramics. In: Ratner, B.D., Hoffman, A.S., Schoen, F.J., et al., eds. Biomaterials Science: An Introduction to Materials in Medicine. New York: Academic Press, (1996):73–83. [21] Gajendiran, Mani, et al. "Conductive biomaterials for tissue engineering applications." Journal of Industrial and Engineering Chemistry (2017). [22] Wichterle, Otto, and Drahoslav Lim. "Hydrophilic gels for biological use." Nature 185.4706 (1960): 117-118. [23] Lim, Franklin, and Anthony M. Sun. "Microencapsulated islets as bioartificial endocrine pancreas." Science 210.4472 (1980): 908-910. [24] Yannas, I. V., et al. "Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin." Proceedings of the National Academy of Sciences 86.3 (1989): 933-937. [25] Hoffman, Allan S. "Hydrogels for biomedical applications." Advanced drug delivery reviews 64 (2012): 18-23. [26] Qiu, Yong, and Kinam Park. "Environment-sensitive hydrogels for drug delivery." Advanced drug delivery reviews 53.3 (2001): 321-339. [27] 林育璋.”以水膠應用於人工敷料之研發.” 南台科技大學化學工程系學位論文(2005) [28] Sun, Shengtong, and Peiyi Wu. "A one-step strategy for thermal-and pH-responsive graphene oxide interpenetrating polymer hydrogel networks." Journal of Materials Chemistry21.12 (2011): 4095-4097 [29] Mamada, Akira, et al. "Photoinduced phase transition of gels." Macromolecules 23.5 (1990): 1517-1519 [30] Ehrick, Jason D., et al. "Genetically engineered protein in hydrogels tailors stimuli-responsive characteristics." Nature materials 4.4 (2005): 298-302 [31] Miyata, Takashi, Noriko Asami, and Tadashi Uragami. "A reversibly antigen-responsive hydrogel." Nature 399.6738 (1999): 766-769. [32] Lee, K. K., et al. "Pressure-dependent phase transitions in hydrogels." Chemical engineering science 45.3 (1990): 766-767. [33] Gong, J. P., T. Nitta, and Y. Osada. "Electrokinetic modeling of the contractile phenomena of polyelectrolyte gels. One-dimensional capillary model." The Journal of Physical Chemistry 98.38 (1994): 9583-9587. [34] Lee, Young Jae, et al. "Preparation of atactic poly (vinyl alcohol)/sodium alginate blend nanowebs by electrospinning." Journal of applied polymer science 106.2 (2007): 1337-1342. [35] Bajpai, S. K., and Shubhra Sharma. "Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca 2+ and Ba 2+ ions." Reactive and Functional Polymers59.2 (2004): 129-140. [36] Sun, Jeong-Yun, et al. "Highly stretchable and tough hydrogels." Nature 489.7414 (2012): 133-136. [37] Topuz, Fuat, et al. "Magnesium ions and alginate do form hydrogels: a rheological study." Soft Matter 8.18 (2012): 4877-4881. [38] Place, Elsie S., et al. "Strontium-and zinc-alginate hydrogels for bone tissue engineering." Tissue Engineering Part A 17.21-22 (2011): 2713-2722. [39] Tabata, Yasuhiko, et al. "Skull bone regeneration in primates in response to basic fibroblast growth factor." Journal of neurosurgery 91.5 (1999): 851-856. [40] Ozekp, Makoto, et al. "Controlled release of hepatocyte growth factor from gelatin hydrogels based on hydrogel degradation." Journal of drug targeting 9.6 (2001): 461-471. [41] Karp, Gerald. Cell and Molecular Biology: Concepts and Experiments 4th Edition with Plus Set. John Wiley & Son, 2006. [42] Rich, A. K. H. A., and Albert K. Harris. "Anomalous preferences of cultured macrophages for hydrophobic and roughened substrata." Journal of cell science50.1 (1981): 1-7. [43] Meyle, J., et al. "Fibroblast anchorage to microtextured surfaces." Journal of biomedical materials research 27.12 (1993): 1553-1557. [44] Chou, Laisheng, et al. "Substratum surface topography alters cell shape and regulates fibronectin mRNA level, mRNA stability, secretion and assembly in human fibroblasts." Journal of Cell Science 108.4 (1995): 1563-1573. [45] Sheetz, Michael P., Dan P. Felsenfeld, and Catherine G. Galbraith. "Cell migration: regulation of force on extracellular-matrix-integrin complexes."Trends in cell biology 8.2 (1998): 51-54. [46] Barralet, J. E., et al. "Comparison of bone marrow cell growth on 2D and 3D alginate hydrogels." Journal of materials science: materials in medicine 16.6 (2005): 515-519. [47] Rowley, Jon A., Gerard Madlambayan, and David J. Mooney. "Alginate hydrogels as synthetic extracellular matrix materials." Biomaterials 20.1 (1999): 45-53. [48] Shapiro, Jenna M., and Michelle L. Oyen. "Hydrogel composite materials for tissue engineering scaffolds." Jom 65.4 (2013): 505-516. [49] Ignatius, Anita, et al. "Tissue engineering of bone: effects of mechanical strain on osteoblastic cells in type I collagen matrices." Biomaterials 26.3 (2005): 311-318. [50] Li, Zhensheng, et al. "Chitosan–alginate hybrid scaffolds for bone tissue engineering." Biomaterials 26.18 (2005): 3919-3928. [51] Adekogbe, Iyabo, and Amyl Ghanem. "Fabrication and characterization of DTBP-crosslinked chitosan scaffolds for skin tissue engineering." Biomaterials26.35 (2005): 7241-7250. [52] Huang, Yan, et al. "In vitro characterization of chitosan–gelatin scaffolds for tissue engineering." Biomaterials 26.36 (2005): 7616-7627. [53] Li, Xudong, et al. "Demineralized bone matrix gelatin as scaffold for osteochondral tissue engineering." Biomaterials 27.11 (2006): 2426-2433. [54] Hsieh, Hsin-Yi, et al. "Gradient static-strain stimulation in a microfluidic chip for 3D cellular alignment." Lab on a Chip 14.3 (2014): 482-493. [55] Naito, Hiroshi, et al. "The advantages of three‐dimensional culture in a collagen hydrogel for stem cell differentiation." Journal of Biomedical Materials Research Part A 101.10 (2013): 2838-2845. [56] Jongpaiboonkit, Leenaporn, William J. King, and William L. Murphy. "Screening for 3D environments that support human mesenchymal stem cell viability using hydrogel arrays." Tissue Engineering Part A 15.2 (2008): 343-353. [57] FW Greiner, Johannes, et al. "Going 3D–Cell Culture Approaches for Stem Cell Research and Therapy." Current Tissue Engineering 2.1 (2013): 8-19. [58] 陳杰陞. "腎足細胞培養於鍶離子固化3D水膠管狀結構". 清華大學工程與系統科學研究所學位論文 (2016): 1-71
|