|
1. 王文軒, 發明與創新(學生版). 2007.10. 2. Hawkes, P. W., Ernst Ruska. Physics Today 1990, 43, 84. 3. Nixon, W. C., Scanning electron microscopy. Microelectronics Reliability 1965, 4 (1), 55-56. 4. 汪建民, 材料分析. 2001, 121-150. 5. In-situ heating holder. Hummingbird Scientific 6. Nukui, S.; Mikazuki, H., Specimen heating and positioning device for an electron microscope. Google Patents: 1975. 7. Jones, J. S.; Swann, P. R., Specimen heating holder for electron microscopes. Google Patents: 1991. 8. Aoyama, T.; Hosoi, K.; Misawa, Y.; Kimoto, K.; Isakozawa, S.; Ueda, K., Electron microscope specimen holder. Google Patents: 1994. 9. In-Situ Heating Solutions for TEM Platforms. 10. Allard, L. F.; Bigelow, W. C.; Jose‐Yacaman, M.; Nackashi, D. P.; Damiano, J.; Mick, S. E., A new MEMS‐based system for ultra‐high‐resolution imaging at elevated temperatures. Microscopy research and technique 2009, 72 (3), 208-215. 11. K. Nakajima; M. Morita; H. Niimi; T. Suzuki; N. Kikuchi; N.Erdman; C.Nielsen, Applications of dynamic microstructure observation and chemical analysis with SEM-EDS. 2013. 12. Ito, T.; Hiziya, K., A Specimen Reaction Device for the Electron Microscope and its Applications. Journal of Electron Microscopy 1958, 6 (1), 4-8. 13. Li, C.-M.; Robertson, I. M.; Jenkins, M. L.; Hutchison, J. L.; Doole, R. C., In situ TEM observation of the nucleation and growth of silver oxide nanoparticles. Micron 2005, 36 (1), 9-15. 14. Chiou, Y. C., Preparation of Silicon Nanoribbons and Investigation on the Formation of the Nickel Silicide Nanoribbons by In situ Transmission Electron Microscopy. 2006. 15. Zink, N.; Therese, H. A.; Pansiot, J.; Yella, A.; Banhart, F.; Tremel, W., In Situ Heating TEM Study of Onion-like WS2 and MoS2 Nanostructures Obtained via MOCVD. Chemistry of Materials 2008, 20 (1), 65-71. 16. Meyer, M. A.; Herrmann, M.; Langer, E.; Zschech, E., In situ SEM observation of electromigration phenomena in fully embedded copper interconnect structures. Microelectronic Engineering 2002, 64 (1), 375-382. 17. Chen, K.-C.; Wu, W.-W.; Liao, C.-N.; Chen, L.-J.; Tu, K. N., Observation of Atomic Diffusion at Twin-Modified Grain Boundaries in Copper. Science 2008, 321 (5892), 1066. 18. Ouyang, F.-Y.; Kao, C.-L., In situ observation of thermomigration of Sn atoms to the hot end of 96.5Sn-3Ag-0.5Cu flip chip solder joints. Journal of Applied Physics 2011, 110 (12), 123525. 19. Huang, A. T.; Gusak, A. M.; Tu, K. N.; Lai, Y.-S., Thermomigration in SnPb composite flip chip solder joints. Applied Physics Letters 2006, 88 (14), 141911. 20. Hsiao, H.-Y.; Chen, C., Thermomigration in Pb-free SnAg solder joint under alternating current stressing. Applied Physics Letters 2009, 94 (9), 092107. 21. Chen, H.-Y.; Chen, C., Thermomigration of Cu–Sn and Ni–Sn intermetallic compounds during electromigration in Pb-free SnAg solder joints. Journal of Materials Research 2011, 26 (8), 983-991. 22. Guo, M.-Y.; Lin, C. K.; Chen, C.; Tu, K. N., Asymmetrical growth of Cu6Sn5 intermetallic compounds due to rapid thermomigration of Cu in molten SnAg solder joints. Intermetallics 2012, 29, 155-158. 23. Hsu, W.-N.; Ouyang, F.-Y., Effect of Ag3Sn: Effective suppression of thermomigration-induced Cu dissolution in micro-scale Pb-free interconnects. Materials Chemistry and Physics 2015, 165, 66-71. 24. Su, Y.-P.; Wu, C.-S.; Ouyang, F.-Y., Asymmetrical Precipitation of Ag3Sn Intermetallic Compounds Induced by Thermomigration of Ag in Pb-Free Microbumps During Solid-State Aging. Journal of Electronic Materials 2016, 45 (1), 30-37. 25. Meinshausen, L.; Frémont, H.; Weide-Zaage, K.; Plano, B., Electro- and thermomigration induced Cu3Sn and Cu6Sn5 formation in SnAg3.0Cu0.5 bumps. Microelectronics Reliability 2015, 55 (1), 192-200. 26. Ouyang, F.-Y.; Jhu, W.-C.; Chang, T.-C., Thermal-gradient induced abnormal Ni3Sn4 interfacial growth at cold side in Sn2.5Ag alloys for three-dimensional integrated circuits. Journal of Alloys and Compounds 2013, 580, 114-119. 27. Ouyang, F.-Y.; Jhu, W.-C., Comparison of thermomigration behaviors between Pb-free flip chip solder joints and microbumps in three dimensional integrated circuits: Bump height effect. Journal of Applied Physics 2013, 113 (4), 043711. 28. Lloyd, J. R.; Connelly, N. A.; He, X.; Ryan, K. J.; Wood, B. H., Fast diffusers in a thermal gradient (solder ball). Microelectronics Reliability 2010, 50 (9), 1355-1358. 29. Chen, H.-Y.; Chen, C.; Tu, K.-N., Failure induced by thermomigration of interstitial Cu in Pb-free flip chip solder joints. Applied Physics Letters 2008, 93 (12), 122103. 30. Hsu, W.-N.; Ouyang, F.-Y., Effects of anisotropic β-Sn alloys on Cu diffusion under a temperature gradient. Acta Materialia 2014, 81, 141-150.
|