帳號:guest(3.133.134.123)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃敬倫
作者(外文):Huang, Ching-Lun
論文名稱(中文):開發用於原位電子顯微鏡之具溫度梯度之加熱晶片
論文名稱(外文):Development of Heating Chip with Temperature Gradient for TEM In-Situ Observation
指導教授(中文):陳福榮
指導教授(外文):Chen, Fu-Rong
口試委員(中文):曾繁根
歐陽汎怡
口試委員(外文):Tseng, Fan-Gang
Ouyang, Fan-Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:105011519
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:76
中文關鍵詞:臨場觀測溫度梯度穿透式電子顯微鏡熱遷移
外文關鍵詞:in-situ observationtemperature gradientTEMthermal migration
相關次數:
  • 推薦推薦:0
  • 點閱點閱:21
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
隨著時代的進步,電子顯微鏡也不斷地蓬勃發展,而其中TEM臨場觀測更是近年來科學家努力發展之觀測方式,如加熱及流體臨場觀測系統,因其提供了真實環境下物質變化過程之分析。
本研究之目的是開發新型加熱晶片,而此加熱晶片可以在TEM中建構出溫度梯度。不同於舊式單迴圈加熱晶片提供單一溫度,此加熱晶片利用兩組加熱線圈,施予不同的電流以產生不同的溫度,在微小的距離建構出溫度梯度,並搭配與其相符合的晶片載台,使我們可以在穿透式電子顯微鏡中觀察物質因溫度梯度所產生之反應。
此加熱晶片採用微機電製程,經由黃光微影定義出加熱線圈的圖形,利用電子束蒸鍍在矽晶片上沉積厚度為200nm之Pt or Ni當作加熱線圈,隨後沉積Si3N4將加熱線圈絕緣,利用KOH濕蝕刻並搭配Focus ion beam切割出直徑約6μm之觀測視窗,可以使電子束穿透並成像,以用於觀測試片。
在電子元件日益微小化的過程中,散熱是最需要克服的課題。在微小的電子元件中,因為元件發熱而產生的溫度梯度會造成UBM材料的擴散速度不同,導致焊錫出現缺陷,進而影響電子元件的使用。因此本研究選擇電子封裝技術中焊錫的Cu/Sn介面當作觀測試片,試圖利用自行設計的加熱晶片觀察Cu因溫度梯度而產生擴散的行為,甚至進一步解決電子封裝上的問題。
As time progresses, the development of electron microscopy keeps moving forward constantly, and in-situ observation of TEM is a new method that scientists have been developing hard in recent years. Such as heating and fluid in-situ observation systems, which provides an analysis of the process that materials change in real environment. The purpose of this study is to develop a new type of heating chip that differs from the old single-loop heating chip that it can only provide a single temperature. This heating chip utilizes two sets of heating coils, which can produce different temperatures between a small distance. By constructing a temperature gradient and matching it with the TEM holder, we can observe the reaction caused by temperature gradient in transmission electron microscope.
This heating chip uses the microelectromechanical process to define a pattern of the heating coil by lithography, depositing Pt or Ni as a heating coil having a thickness of 200nm on silicon wafer by electron beam evaporation, and then depositing Si3N4 to insulate the heating coil. Using KOH wet etching and focus ion beam to cut a viewing window with a diameter about 6 μm that allows the electron beam to penetrate and imaged for viewing the sample.
In the process of increasing the miniaturization of electronic components, heat dissipation is the most important problem to be overcome. In tiny electronic components, the temperature gradient caused by heat causes a difference of the diffusion speed of Cu, which causes defects in solders, which in turn affects the use of electronic components. Therefore, this study selects the Cu/Sn interface of solder in electronic packaging technology as sample, and attempts to observe the diffusion behavior of Cu due to the temperature gradient by using the self-designed heating chip, and even further solve the problem of the electronic package.
摘要 i
Abstract ii
致謝 iv
圖目錄 ix
第一章 緒論 1
1.1 顯微鏡的發展 1
1.1.1 光學顯微鏡的發展 1
1.2 電子顯微鏡的發展 3
1.2.1 掃描式電子顯微鏡 4
1.2.2 穿透式電子顯微鏡 6
1.3 研究動機 8
第二章 文獻回顧 9
2.1 電子顯微鏡加熱載具 9
2.1.1 穿透式電子顯微鏡加熱載具 10
2.1.2 微機電製程之微型加熱器 14
2.2 臨場加熱電子顯微鏡之分析 19
2.2.1 高溫臨場相變化之分析 19
2.2.2 臨場觀測奈米結構成核與成長 22
2.2.3 臨場觀測原子擴散與電遷移現象 29
2.3 熱遷移 32
2.3.1 熱遷移之基礎原理 32
2.3.2 無鉛焊錫中之熱遷移 34
2.3.3 UBMs材料之熱遷移 37
第三章 載具開發與實驗方法 40
3.1 實驗大綱 40
3.2 製程設備 41
3.3 分析儀器 43
3.4 穿透式電子顯微鏡之加熱系統架設 46
3.4.1 儀器設備 47
3.5 樣品桿設計與製作 48
3.6 微型加熱晶片設計與製作 50
3.6.1 晶片結構設計 50
3.6.2 光罩繪製與製作 51
3.6.3 黃光微影 52
3.6.4 微型加熱晶片製作流程 55
3.7 加熱晶片溫度校正之儀器校正 59
3.8 穿透式電子顯微鏡臨場觀測之加熱系統架設 61
3.8.1 設備儀器 61
3.8.2 實驗步驟 62
第四章 結果與討論 63
4.1 加熱晶片 63
4.1.1 觀測視窗形狀定義 63
4.1.2 確認觀測視窗 65
4.1.3 加熱晶片之溫度校正 66
4.1.4 加熱晶片與試片之結合 68
4.2 TEM臨場觀測 70
第五章 結論 72
第六章 參考文獻 73

1. 王文軒, 發明與創新(學生版). 2007.10.
2. Hawkes, P. W., Ernst Ruska. Physics Today 1990, 43, 84.
3. Nixon, W. C., Scanning electron microscopy. Microelectronics Reliability 1965, 4 (1), 55-56.
4. 汪建民, 材料分析. 2001, 121-150.
5. In-situ heating holder. Hummingbird Scientific
6. Nukui, S.; Mikazuki, H., Specimen heating and positioning device for an electron microscope. Google Patents: 1975.
7. Jones, J. S.; Swann, P. R., Specimen heating holder for electron microscopes. Google Patents: 1991.
8. Aoyama, T.; Hosoi, K.; Misawa, Y.; Kimoto, K.; Isakozawa, S.; Ueda, K., Electron microscope specimen holder. Google Patents: 1994.
9. In-Situ Heating Solutions for TEM Platforms.
10. Allard, L. F.; Bigelow, W. C.; Jose‐Yacaman, M.; Nackashi, D. P.; Damiano, J.; Mick, S. E., A new MEMS‐based system for ultra‐high‐resolution imaging at elevated temperatures. Microscopy research and technique 2009, 72 (3), 208-215.
11. K. Nakajima; M. Morita; H. Niimi; T. Suzuki; N. Kikuchi; N.Erdman; C.Nielsen, Applications of dynamic microstructure observation and chemical analysis with SEM-EDS. 2013.
12. Ito, T.; Hiziya, K., A Specimen Reaction Device for the Electron Microscope and its Applications. Journal of Electron Microscopy 1958, 6 (1), 4-8.
13. Li, C.-M.; Robertson, I. M.; Jenkins, M. L.; Hutchison, J. L.; Doole, R. C., In situ TEM observation of the nucleation and growth of silver oxide nanoparticles. Micron 2005, 36 (1), 9-15.
14. Chiou, Y. C., Preparation of Silicon Nanoribbons and Investigation on the Formation of the Nickel Silicide Nanoribbons by In situ Transmission Electron Microscopy. 2006.
15. Zink, N.; Therese, H. A.; Pansiot, J.; Yella, A.; Banhart, F.; Tremel, W., In Situ Heating TEM Study of Onion-like WS2 and MoS2 Nanostructures Obtained via MOCVD. Chemistry of Materials 2008, 20 (1), 65-71.
16. Meyer, M. A.; Herrmann, M.; Langer, E.; Zschech, E., In situ SEM observation of electromigration phenomena in fully embedded copper interconnect structures. Microelectronic Engineering 2002, 64 (1), 375-382.
17. Chen, K.-C.; Wu, W.-W.; Liao, C.-N.; Chen, L.-J.; Tu, K. N., Observation of Atomic Diffusion at Twin-Modified Grain Boundaries in Copper. Science 2008, 321 (5892), 1066.
18. Ouyang, F.-Y.; Kao, C.-L., In situ observation of thermomigration of Sn atoms to the hot end of 96.5Sn-3Ag-0.5Cu flip chip solder joints. Journal of Applied Physics 2011, 110 (12), 123525.
19. Huang, A. T.; Gusak, A. M.; Tu, K. N.; Lai, Y.-S., Thermomigration in SnPb composite flip chip solder joints. Applied Physics Letters 2006, 88 (14), 141911.
20. Hsiao, H.-Y.; Chen, C., Thermomigration in Pb-free SnAg solder joint under alternating current stressing. Applied Physics Letters 2009, 94 (9), 092107.
21. Chen, H.-Y.; Chen, C., Thermomigration of Cu–Sn and Ni–Sn intermetallic compounds during electromigration in Pb-free SnAg solder joints. Journal of Materials Research 2011, 26 (8), 983-991.
22. Guo, M.-Y.; Lin, C. K.; Chen, C.; Tu, K. N., Asymmetrical growth of Cu6Sn5 intermetallic compounds due to rapid thermomigration of Cu in molten SnAg solder joints. Intermetallics 2012, 29, 155-158.
23. Hsu, W.-N.; Ouyang, F.-Y., Effect of Ag3Sn: Effective suppression of thermomigration-induced Cu dissolution in micro-scale Pb-free interconnects. Materials Chemistry and Physics 2015, 165, 66-71.
24. Su, Y.-P.; Wu, C.-S.; Ouyang, F.-Y., Asymmetrical Precipitation of Ag3Sn Intermetallic Compounds Induced by Thermomigration of Ag in Pb-Free Microbumps During Solid-State Aging. Journal of Electronic Materials 2016, 45 (1), 30-37.
25. Meinshausen, L.; Frémont, H.; Weide-Zaage, K.; Plano, B., Electro- and thermomigration induced Cu3Sn and Cu6Sn5 formation in SnAg3.0Cu0.5 bumps. Microelectronics Reliability 2015, 55 (1), 192-200.
26. Ouyang, F.-Y.; Jhu, W.-C.; Chang, T.-C., Thermal-gradient induced abnormal Ni3Sn4 interfacial growth at cold side in Sn2.5Ag alloys for three-dimensional integrated circuits. Journal of Alloys and Compounds 2013, 580, 114-119.
27. Ouyang, F.-Y.; Jhu, W.-C., Comparison of thermomigration behaviors between Pb-free flip chip solder joints and microbumps in three dimensional integrated circuits: Bump height effect. Journal of Applied Physics 2013, 113 (4), 043711.
28. Lloyd, J. R.; Connelly, N. A.; He, X.; Ryan, K. J.; Wood, B. H., Fast diffusers in a thermal gradient (solder ball). Microelectronics Reliability 2010, 50 (9), 1355-1358.
29. Chen, H.-Y.; Chen, C.; Tu, K.-N., Failure induced by thermomigration of interstitial Cu in Pb-free flip chip solder joints. Applied Physics Letters 2008, 93 (12), 122103.
30. Hsu, W.-N.; Ouyang, F.-Y., Effects of anisotropic β-Sn alloys on Cu diffusion under a temperature gradient. Acta Materialia 2014, 81, 141-150.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *