|
1. Ruska, E. The Development of the Electron Microscope and of Electron Microscopy(Nobel Lecture). Angew. Chemie Int. Ed. English 26, 595–605 (1987). 2. https://goo.gl/yHaePb. 3. Lin, B. J. The Future of Sub Half-Micrometer Optical Lithography. Microelectron. Eng. 6, 31–51 (1987). 4. Nunes, S. P. Block Copolymer Membranes for Aqueous Solution Applications. doi:10.1021/acs.macromol.5b02579 5. Gore, I. G. E. et al. United States Patent (19). (1998). 6. Kamino, T., Yaguchi, T., Tomita, M. & Saka, H. In-situ high-resolution electron microscopy study on a surface reconstruction of Au-deposited Si at very high temperatures. Philos. Mag. A 75, 105–114 (1997). 7. Asoro, M. A., Kovar, D. & Ferreira, P. J. In situ transmission electron microscopy observations of sublimation in silver nanoparticles. ACS Nano 7, 7844–7852 (2013). 8. Vijayan, S., Jinschek, J. R., Kujawa, S., Greiser, J. & Aindow, M. Focused Ion Beam Preparation of Specimens for Micro-Electro-Mechanical System-based Transmission Electron Microscopy Heating Experiments. 708–716 (2018). doi:10.1017/S1431927617000605 9. Huang, T. et al. Lab on a Chip. 340–347 (2012). doi:10.1039/c1lc20647h 10. Online, V. A. et al. Soft Matter solution studied with in situ wet-TEM †. 1, 8856–8861 (2013). 11. Liu, S. et al. Nano Energy Quasi-2D liquid cell for high density hydrogen storage. Nano Energy 31, 218–224 (2017). 12. Bates, F. S. & Fredrickson, G. H. Block Copolymer Thermodynamics: Theory and Experiment. Annu. Rev. Phys. Chem. 41, 525–557 (1990). 13. Lo, T. Y. et al. Orienting Block Copolymer Thin Films via Entropy. Macromolecules 49, 624–633 (2016). 14. Lu, K. et al. Orienting Silicon-Containing Block Copolymer Films with Perpendicular Cylinders via Entropy and Surface Plasma Treatment. 1–8 (2017). doi:10.1021/acs.macromol.7b02218 15. Kang, J. et al. Temperature control of micro heater using Pt thin film temperature sensor embedded in micro gas sensor. Micro Nano Syst. Lett. 5, 26 (2017). 16. Ahmadi, M. et al. WO3nano-ribbons: Their phase transformation from tungstite (WO3·H2O) to tungsten oxide (WO3). J. Mater. Sci. 49, 5899–5909 (2014). 17. https://goo.gl/KY9K9s. 18. Spring, J. D. & Bansil, R. A universal scaling analysis of nonisothermal kinetics in block copolymer phase transitions. ACS Macro Lett. 2, 745–748 (2013). 19. Jeon, K. et al. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts. Nat. Mater. 10, 1–5 (2011). 20. JMAK Classic Graph. https://goo.gl/jiEWJv 21. Moghadam, M. M., Pang, E. L., Philippe, T. & Voorhees, P. W. Simulation of phase transformation kinetics in thin fi lms under a constant nucleation rate. Thin Solid Films 612, 437–444 (2016). 22. Pang, E. L., Vo, N. Q., Philippe, T. & Voorhees, P. W. Modeling interface-controlled phase transformation kinetics in thin films. 175304, 1–8 (2015).
|