|
1. Liu, C.M., H.W. Lin, Y.S. Huang, Y.C. Chu, C. Chen, D.R. Lyu, K.N. Chen, and K.N. Tu, Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu. Sci Rep, 2015. 5: p. 9734. 2. Lim, D.F., J. Wei, K.C. Leong, and C.S. Tan, Cu passivation for enhanced low temperature (⩽300°C) bonding in 3D integration. Microelectronic Engineering, 2013. 106: p. 144-148. 3. Zhang, X., O. Anderoglu, A. Misra, and H. Wang, Influence of deposition rate on the formation of growth twins in sputter-deposited 330 austenitic stainless steel films. Applied Physics Letters, 2007. 90(15): p. 153101. 4. Kelly, P.J. and R.D. Arnell, Magnetron sputtering a review of recent developments and applications. Vacuum, 2000. 56: p. 159-172. 5. Kelly, P.J. and R.D. Arnell, The influence of magnetron configuration on ion current density and deposition rate in a dual unbalanced magnetron sputtering system. Surface and Coating Technology, 1998. 108-109: p. 317-322. 6. Abbaschian, L.A.R. and R.E. Reed-hill, physical metallurgy principles. 7. Liu, C.-M., H.-W. Lin, C.-L. Lu, and C. Chen, Effect of grain orientations of Cu seed layers on the growth of <111>-oriented nanotwinned Cu. Scientific Reports, 2014. 4: p. 6123. 8. Zhang, X., H. Wang, X.H. Chen, L. Lu, K. Lu, R.G. Hoagland, and A. Misra, High-strength sputter-deposited Cu foils with preferred orientation of nanoscale growth twins. Applied Physics Letters, 2006. 88(17): p. 173116. 9. Chen, X.H., L. Lu, and K. Lu, Electrical resistivity of ultrafine-grained copper with nanoscale growth twins. Journal of Applied Physics, 2007. 102(8): p. 083708. 10. Beyerlein, I.J., X. Zhang, and A. Misra, Growth Twins and Deformation Twins in Metals. Annual Review of Materials Research, 2014. 44(1): p. 329-363. 11. Haasen, C.P., Physical Metallurgy. 1996. 12. Wu, X.L., S.G. Liao Xz Fau - Srinivasan, F. Srinivasan Sg Fau - Zhou, E.J. Zhou F Fau - Lavernia, R.Z. Lavernia Ej Fau - Valiev, Y.T. Valiev Rz Fau - Zhu, and Y.T. Zhu, New deformation twinning mechanism generates zero macroscopic strain in nanocrystalline metals. (0031-9007 (Print)). 13. Christian, J.W. and S. Mahajan, Deformation twinning. Progress in Materials Science, 1995. 39(1): p. 1-157. 14. Zhu, Y.T. and T.G. Langdon, Influence of grain size on deformation mechanisms: An extension to nanocrystalline materials. Materials Science and Engineering: A, 2005. 409(1): p. 234-242. 15. Suzuki, H. and C.S. Barrett, deformation twinning in silver-gold alloys. Acta Metallurgica, 1958. 6: p. 156-165. 16. Meyers, M.A., O. Vöhringer, and V.A. Lubarda, The onset of twinning in metals: a constitutive description. Acta Materialia, 2001. 49(19): p. 4025-4039. 17. Germain, V., J. Li, D. Ingert, Z.L. Wang, and M.-P. Pileni, Stacking Faults in Formation of Silver Nanodisks. The Journal of Physical Chemistry B, 2003. 107: p. 8717-8720. 18. Meng, G., Y. Shao, T. Zhang, Y. Zhang, and F. Wang, Synthesis and corrosion property of pure Ni with a high density of nanoscale twins. Electrochimica Acta, 2008. 53(20): p. 5923-5926. 19. Sun, F., G. Meng, T. Zhang, Y. Shao, F. Wang, C. Dong, and X. Li, Electrochemical corrosion behavior of nickel coating with high density nano-scale twins (NT) in solution with Cl−. Electrochimica Acta, 2009. 54(5): p. 1578-1583. 20. Chen, M., E. Ma, K.J. Hemker, H. Sheng, Y. Wang, and X. Cheng, Deformation Twinning in Nanocrystalline Aluminum. Science, 2003. 300: p. 1275-1277. 21. Meng, G., L. Wei, Y. Shao, T. Zhang, F. wang, C. Domg, and X. Li, high pitting corrosion resistance of pure aluminum with Nanoscale twins. Journal of The Electrochenmical Society, 2009. 156: p. C240-C245. 22. Zhang, X., O. Anderoglu, R.G. Hoagland, and A. Misra, Nanoscale growth twins in sputtered metal films. JOM, 2008. 60(9): p. 75-78. 23. Yan, F.K., G.Z. Liu, N.R. Tao, and K. Lu, Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles. Acta Materialia, 2012. 60(3): p. 1059-1071. 24. Dahlgren, S.D., W.L. Nicholson, M.D. Merz, W. Bollmann, J.F. Devlin, and R. Wang, Microstructural analysis and tensile properties of thick copper and nickel sputter deposits. Thin Solid Films, 1977. 40: p. 345-353. 25. Aifantis, K.E., Interfaces in crystalline materials. Procedia Engineering, 2009. 1(1): p. 167-170. 26. Lu, L., Y. Shen, X. Chen, L. Qian, and K. Lu, Ultrahigh Strength and High Electrical Conductivity in Copper. science, 2004: p. 422. 27. Zhao, Y., T.A. Furnish, M.E. Kassner, and A.M. Hodge, Thermal stability of highly nanotwinned copper: The role of grain boundaries and texture. Journal of Materials Research, 2012. 27(24): p. 3049-3057. 28. Anderoglu, O., A. Misra, H. Wang, and X. Zhang, Thermal stability of sputtered Cu films with nanoscale growth twins. Journal of Applied Physics, 2008. 103(9): p. 094322. 29. Xu, D., V. Sriram, V. Ozolins, J.-M. Yang, K.N. Tu, G.R. Stafford, C. Beauchamp, I. Zienert, H. Geisler, P. Hofmann, and E. Zschech, Nanotwin formation and its physical properties and effect on reliability of copper interconnects. Microelectronic Engineering, 2008. 85(10): p. 2155-2158. 30. Saldana, C., T.G. Murthy, M.R. Shankar, E.A. Stach, and S. Chandrasekar, Stabilizing nanostructured materials by coherent nanotwins and their grain boundary triple junction drag. Applied Physics Letters, 2009. 94(2): p. 021910. 31. Chen, H.-Y., The effect of interlayer on abnormal grain growth of Nanotwinned copper thin film during annealing process. 2015. 32. Huang, Y.-S., C.-M. Liu, W.-L. Chiu, and C. Chen, Grain growth in electroplated (111)-oriented nanotwinned Cu. Scripta Materialia, 2014. 89: p. 5-8. 33. Keller, R.M., S.P. Baker, and E. Arzt, Quantitative analysis of strengthening mechanisms in thin Cu films: Effects of film thickness, grain size, and passivation. Journal of Materials Research, 2011. 13(5): p. 1307-1317. 34. Vaidya, S. and A.K. Sinha, Effect of texture and grain structure on electromigration in Al-0.5%Cu thin films. Thin Solid Films, 1981. 75(3): p. 253-259. 35. Hommel, M. and O. Kraft, Deformation behavior of thin copper films on deformable substrates. Acta Materialia, 2001. 49(19): p. 3935-3947. 36. Vinci, R.P., E.M. Zielinski, and J.C. Bravman, Thermal strain and stress in copper thin films. Thin Solid Films, 1995. 262(1): p. 142-153. 37. Herbstein, F.H. and B.L. Averbach, The structure of lithium-magnesium solid solutions—II: Measurements of diffuse X-ray scattering. Acta Metallurgica, 1956. 4(4): p. 414-420. 38. Frost, H.J., C.V. Thompson, and D.T. Walton, Simulation of thin film grain structures—I. Grain growth stagnation. Acta Metallurgica et Materialia, 1990. 38(8): p. 1455-1462. 39. Frost, H.J., C.V. Thompson, and D.T. Walton, Simulation of thin film grain structures—II. Abnormal grain growth. Acta Metallurgica et Materialia, 1992. 40(4): p. 779-793. 40. Takewaki, T., H. Yamada, T. Shibata, T. Ohmi, and T. Nitta, Formation of giant-grain copper interconnects by a low-energy ion bombardment process for high-speed ULSIs. Materials Chemistry and Physics, 1995. 41(3): p. 182-191. 41. Greiser, J., P. Müllner, and E. Arzt, Abnormal growth of “giant” grains in silver thin films. Acta Materialia, 2001. 49(6): p. 1041-1050. 42. Lu, C.-L., H.-W. Lin, C.-M. Liu, Y.-S. Huang, T.-L. Lu, T.-C. Liu, H.-Y. Hsiao, C. Chen, J.-C. Kuo, and K.-N. Tu, Extremely anisotropic single-crystal growth in nanotwinned copper. NPG Asia Materials, 2014. 6(10): p. e135-e135. 43. Wang, S., E.A. Holm, J. Suni, M.H. Alvi, P.N. Kalu, and A.D. Rollett, Modeling the recrystallized grain size in single phase materials. Acta Materialia, 2011. 59(10): p. 3872-3882. 44. Holm, E.A., M.A. Miodownik, and A.D. Rollett, On abnormal subgrain growth and the origin of recrystallization nuclei. Acta Materialia, 2003. 51(9): p. 2701-2716. 45. Holm, E.A., T.D. Hoffmann, A.D. Rollett, and C.G. Roberts, Particle-assisted abnormal grain growth. IOP Conference Series: Materials Science and Engineering, 2015. 89(1): p. 012005. 46. Park, N.J., D.P. Field, M.M. Nowell, and P.R. Besser, Effect of film thickness on the evolution of annealing texture in sputtered copper films. Journal of Electronic Materials, 2005. 34(12): p. 1500-1508. 47. Sonnweber-Ribic, P., P. Gruber, G. Dehm, and E. Arzt, Texture transition in Cu thin films: Electron backscatter diffraction vs. X-ray diffraction. Acta Materialia, 2006. 54(15): p. 3863-3870. 48. Zielinski, E.M., R.P. Vinci, and J.C. Bravman, Effects of barrier layer and annealing on abnormal grain growth in copper thin films. Journal of Applied Physics, 1994. 76(8): p. 4516-4523. 49. Mechanics of Materials. 1996. p. 314. 50. Riege, S.P. and C.V. Thompson, modeling of texture evolution in copper interconnects annealed in trenches. Scripta Materialia, 1999. 41: p. 403-408. 51. Thompson, C.V. and R. Carel, Stress and grain growth in thin films. Journal of the Mechanics and Physics of Solids, 1996. 44(5): p. 657-673. 52. Sundquist, B.E., A direct determination of the anisotropy of the surface free energy of solid gold, silver, copper, nickel, and alpha and gamma iron. Acta Metallurgica, 1964. 12(1): p. 67-86.
|