帳號:guest(3.141.192.246)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭廷尉
作者(外文):Zheng, Ting-Wei
論文名稱(中文):鈦介層對鍍覆於矽基板之氮化鋯/鈦雙層薄膜殘留應力釋放之影響
論文名稱(外文):Effect of Ti Interlayer on Stress Relief of ZrN/Ti Bilayer Thin Films on Silicon Substrate
指導教授(中文):黃嘉宏
喻冀平
指導教授(外文):Haung, Jia-Hong
Yu, Ge-Ping
口試委員(中文):李志偉
呂福興
口試委員(外文):Lee, Jyh-Wei
Lu, Fu-Hsing
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:105011506
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:106
中文關鍵詞:殘留應力鈦介層塑性應變平均X光應變氮化鋯
外文關鍵詞:Residual StressTi InterlayerPlastic StrainAverage X-ray StrainZrN
相關次數:
  • 推薦推薦:0
  • 點閱點閱:479
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
純金屬介層廣泛地被應用於硬質鍍層以改善其附著性與降低殘留應力。然而,對應力釋放之介層厚度設計大多依經驗而定,而並無定量的依循基礎。本研究的目的是探討金屬介層對硬膜應力釋放之影響,並建立物理模型以連結介層塑性變形與應力釋放之關係。本研究以氮化鋯/鈦雙層薄膜鍍覆於矽基板作為模型系統,並以非平衡磁控濺鍍系統製備試片。試片種類包括具有不同鈦介層厚度及使用不同基板偏壓於氮化鋯製程之氮化鋯/鈦雙層薄膜。試片整體與單一薄膜層之殘留應力值以曲率量測法與平均X光應變搭配奈米壓痕法精準量測之。實驗結果顯示應力釋放比例介於59.7到80.4%之間,其數值隨介層厚度增厚而上升,但隨氮化鋯層之應力增加而下降。應力釋放效率則隨介層厚度增加而下降,然而不同氮化鋯之應力條件對釋放效率並無顯著趨勢存在。在本研究中,我們使用氮化鋯硬膜彈性儲存能與金屬介層塑變功間之能量平衡的觀點建立物理模型,藉此說明介層塑變與應力釋放的關聯,並以等軸平面應力狀態下頸縮時之塑性應變作為介層釋放應力之上限。此模型後續以實驗結果進一步驗證。藉此模型,我們可以量化估計在特定介層厚度條件下可容許之應力釋放值,或是釋放特定應力時所需之介層厚度。此外,驗證實驗結果顯示,此模型所提供之金屬介層應力釋放值為保守估計值。此模型也顯示應力釋放主要來自於鈦介層之塑性變形。
Pure metal interlayers have been widely used to enhance adhesion and relieve residual stress in hard coatings. However, the interlayer thickness for stress relief was mostly designed empirically without quantitative basis. The objectives of this study were to investigate the effect of metal interlayer on stress relief of hard coatings, and to establish a physical model associating plastic deformation of interlayer with stress relief. ZrN/Ti bilayer thin films on Si substrate was chosen as the model system. ZrN/Ti specimens with different interlayer thicknesses and with ZrN coatings deposited at different bias voltages were prepared using unbalanced magnetron sputtering. Wafer curvature method and average X-ray strain combined with nanoindentation technique were employed to accurately measure the residual stresses in the entire specimen and individual layer, respectively. Experimental results showed that the extent of stress relief, ranging from 59.7 to 80.4%, increased with interlayer thickness, while decreased with increasing stress transferring from top ZrN layer. The efficiency of stress relief decreased with increasing interlayer thcikness, but varied irregularly with the stress transferring from ZrN layer. A physical model was developed to account for the stress relief due to plastic deformation of the interlayer, based on the energy balance between elastic stored energy in ZrN and plastic work of metal interlayer. The upper limit of stress relief by the interlayer was assumed to be the necking strain of the interlayer under equibiaxial stress state. The model was verified by the experimental results. Using the model, we could quantitatively estimate the allowable stress relief with a specific interlayer thickness or the required interlayer thickness to relieve certain amount of stress. Furthermore, a critical experiment was conducted and confrimed that the model could provide a conservative estimation on stress relief for practical applicaitons. The proposed model also indicated that the stress relief was mainly due to plastic deformation of Ti interlayer.
Contents

Abstract ………………………………………………………………….……..i
摘要 …………………………………………………………………….….…..ii
誌謝 ..………………………………………………………….…….….…......iii
Contents ………………………………………………………………..…....…v
List of Figures ………..………………………………………………..…….viii
List of Tables …………………………………………………………..…….. xii
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1 Residual Stress in Polycrystalline Thin Films 3
2.2 The Effect of Metal Interlayer 4
2.3 Characteristics of ZrN 7
2.4 Measurement of the Residual Stress on Thin Films 8
2.4.1 Laser Curvature Method (LCM) ………………………………...…… 9
2.4.2 Grazing Incidence XRD cos2αsin2ψ Method 9
2.4.3 The Average X-ray Strain (AXS) Method 12
2.5 The Elastic Stored Energy in the Hard Coating 13
2.6 The Work of Plastic Deformation of Metal Interlayer 14
Chapter 3 Experimental Details 16
3.1 Specimen Preparation and Film Deposition 16
3.2 Characterization of Composition and Structure 18
3.2.1 Chemical Composition: XPS 18
3.2.2 Compositional depth profiles: Auger Electron Spectroscopy (AES) 20
3.2.3 Crystal Structure and Preferred Orientation: XRD and GIXRD 20
3.2.4 Surface Morphology and Cross-sectional Microstructure: FEG-SEM 21
3.2.5 Surface Roughness: AFM 22
3.3 Characterization of Properties 22
3.3.1 Residual Stress: Laser Curvature Measurement & XRD cos2αsin2ψ Method... 22
3.3.2 Hardness and Young’s Modulus: Nanoindentation 25
3.3.3 Electrical Resistivity: Four Point Probe 26
Chapter 4 Results 28
4.1 Chemical Composition 32
4.2 Crystal Structure and Preferred Orientation 32
4.3 Microstructure 39
4.4 Surface Roughness 43
4.5 Residual Stress 44
4.6 Hardness and Young’s Modulus 51
4.7 Electrical Resistivity 51
Chapter 5 Discussion 52
5.1 The Plastic Deformation of Ti Interlayer due to Stress from ZrN Top Layer 52
5.2 The Stress Relief by Introducing Ti Interlayer 53
5.2.1 The Considerations of Stress Relief in a ZrN/Ti Bilayer Specimen 53
5.2.2 The Estimation of Stress Relief due to Plastic Deformation of Ti Interlayer 53
5.2.3 Feasibility for Stress Relief by Introducing Ti Interlayer 55
5.3 Verification of the Stress-Relief Estimation Model 58
5.4 Evaluation of Stress Relief by Ti Interlayer 59
5.4.1 The Extent of Stress Relief 59
5.4.2 The Efficiency of Stress Relief 60
5.4.3 The Capability of Stress Relief 62
5.4.4 Contributions of Stress Relief from ZrN Thin Film and Si Curvature Relief 63
Chapter 6 Conclusions 65
References……………………………………………………………………..66
Appendix………………………………………………………………………73
Appendix A Deconvolution of XPS Spectra 73
Appendix B The Cross-sectional SEM Images 83
Appendix C The SEM Plan-view Images 85
Appendix D AFM Surface Morphology Images 87
Appendix E AXS Linear Regression Fitting 91
Appendix F The Azimuthal Stress Distribution 100
Appendix G Fracture Morphology of Cracked Specimens 104


List of Figures
Fig. 2.1 The crystal structure of ZrN. 7
Fig. 2.2 The binary phase diagram of Zr-N . 8
Fig. 2.3 The schematic diagram of unsymmetrical geometry. γ is the grazing incident angle of X-ray, and θ is the diffraction angle…………………………………………………………..11
Fig. 2.4 (a) Definition of the laboratory coordinate system Li and sample coordinate system Si. (b) Definition of laboratory coordinate system Li, sample coordinate system Si and the angles α and ψ. (c) The laboratory coordinate system L3, X-ray incident and diffraction direction, and the angle α …………………………………………………………………………………....11
Fig. 2.5 The schematic diagram for the AXS residual stress measurement. Two coordination definition: L system is the coordinate system of diffraction plane, and S is the coordinate system of the sample. ……………………………………………………………………………...…13
Fig. 2.6 The schematic diagram of true stress-strain curve of a metal for Considére’s criterion of necking………………………………………………………………………………….....15
Fig. 3.1 The schematic diagram of UBMS system…………………………………………...18
Fig. 3.2 The flow chart of experimental procedures…………………………………………..18
Fig. 3.3 Schematic diagram of laser curvature measurement…………………………………23
Fig. 3.4 The illustrated diagram of four point probe……………………….....……………….26
Fig. 4.1 AES compositional depth profiles of Z12 specimen………………………………...32
Fig. 4.2 XRD patterns of Ti thin films with different thickness. 34
Fig. 4.3 XRD patterns for the (a) Z0X, (b) ZX2, and (c) Z2X series specimens……………..34
Fig. 4.4 The variation of texture coefficients with (a) interlayer thickness and (b) negative substrate bias. The open symbol is monolayer ZrN and solid symbol is ZrN/Ti bilayer specimens…………………………………………………………………………………….36
Fig. 4.5 GIXRD patterns for the (a) Z0X, (b) ZX2, and (c) Z2X series specimens. 38
Fig. 4.6 Cross-sectional microstructure of (a) Z02 (b) Z12 (c) Z22 (d) Z32 specimens. 40
Fig. 4.7 The plan-view microstructure of (a) Z02 (b) Z12 (c) Z22 (d) Z32 specimens. 41
Fig. 4.8 The plan-view microstructure of (a) T1 (b) T2 (c) T3 specimens. 42
Fig. 4.9 The effect of Ti interlayer on roughness of the ZrN top layer. 43
Fig. 4.10 The surface morphology of (a) Z02, (b) Z12, (c) Z22, and (d) Z32 specimens. 44
Fig. 4.11 The effect of substrate bias on residual stress of ZrN thin films………………...…46
Fig. 4.12 The variation of residual stress in ZrN with (a) interlayer thickness and (b) negative substrate bias for all specimens. The open symbol denotes monolayer ZrN and solid symbol represents ZrN/Ti bilayer specimens. 47
Fig. 4.13 The variation of stored energy in ZrN with (a) interlayer thickness and (b) negative substrate bias for all specimens. The open symbol represents monolayer ZrN and solid symbol denotes ZrN/Ti bilayer specimens. 48
Fig. 4.14 The extent of residual stress relief with respect to interlayer thickness. 49
Fig. 4.15 The extent of residual stress relief with respect to negative substrate bias. 49
Fig. 4.16 The azimuthal stress distribution of (a) Z02 and (b) Z20 specimens. 50
Fig. 5.1 The schematic diagram of constrained plastic deformation at the Ti interlayer…… .60
Fig. 5.2 Efficiency of stress relief with respect to (a) interlayer thickness and (b) substrate bias………………………………………………………………………………………….. .61
Fig. 5.3 Capability of stress relief with respect to (a) interlayer thickness and (b) substrate bias…………………………………………………………………………………………. ..62
Fig. 5.4 Contributions of stress relief with respect to (a) interlayer thickness and (b) substrate bias………………………………………………………………………………………….. .64
Fig. A.1 XPS spectra deconvolution of (a) O-1s (b) N-1s (c) Zr-3d for specimen Z00 73
Fig. A.2 XPS spectra deconvolution of (a) O-1s (b) N-1s (c) Zr-3d for specimen Z01 74
Fig. A.3 XPS spectra deconvolution of (a) O-1s (b) N-1s (c) Zr-3d for specimen Z02 75
Fig. A.4 XPS spectra deconvolution of (a) O-1s (b) N-1s (c) Zr-3d for specimen Z03 76
Fig. A.5 XPS spectra deconvolution of (a) O-1s (b) N-1s (c) Zr-3d for specimen Z12 77
Fig. A.6 XPS spectra deconvolution of (a) O-1s (b) N-1s (c) Zr-3d for specimen Z22 78
Fig. A.7 XPS spectra deconvolution of (a) O-1s (b) N-1s (c) Zr-3d for specimen Z32 79
Fig. A.8 XPS spectra deconvolution of (a) O-1s (b) N-1s (c) Zr-3d for specimen Z20 80
Fig. A.9 XPS spectra deconvolution of (a) O-1s (b) N-1s (c) Zr-3d for specimen Z21 81
Fig. A.10 XPS spectra deconvolution of (a) O-1s (b) N-1s (c) Zr-3d for specimen Z23 82
Fig. B The Cross sectional SEM Images .……...…………………………………….………83
Fig. C Plan-view images of (a) Z0X- (b) ZX2- (c) Z2X- series specimen………………….. 85
Fig. D (a) to (j) AFM Surface Morphology Images…………………………………………. 87
Fig. E.1 The ZrN layer cos2αsin2ψ linear regression fitting line for different ϕ angles for Z12 specimen……………………………………………………………………..…………...…..91
Fig. E.2 The ZrN layer cos2αsin2ψ linear regression fitting lines for different ϕ angles for Z22 specimen……………………………………………………………..…………………….....92
Fig. E.3 The ZrN layer cos2αsin2ψ linear regression fitting lines for different ϕ angles for Z32 specimen………………………………………………………..………………………...…..93
Fig. E.4 The ZrN layer cos2αsin2ψ linear regression fitting lines for different ϕ angles for Z20 specimen…………………………………………………………………..……………….…94
Fig. E.5 The ZrN layer cos2αsin2ψ linear regression fitting lines for different ϕ angles for Z21 specimen………………………………..………………………………………………….…95
Fig. E.6 The ZrN layer cos2αsin2ψ linear regression fitting lines for different ϕ angles for Z23 specimen………..………………………………………………………………………….....96
Fig. E.7 The ZrN monolayer cos2αsin2ψ linear regression fitting lines for different ϕ angles for Z02 specimen…..…………………………………………………………………………97
Fig. E.8 The AXS value of ZrN top layer by using linear regression fitting with all ϕ angle data for Z02, ZX2, and Z2X- series specimens. 98
Fig. E.9 The AXS value of Ti interlayer by using linear regression fitting with all ϕ angle data for ZX- and Z-X series specimens 99
Fig. F.1,2 The azimuthal residual stress in Z02 specimen 100
Fig. F.3,4 The azimuthal residual stress in Z22 specimen 101
Fig. F.5,6 The azimuthal residual stress in Z20 specimen 102
Fig. F.7 The azimuthal residual stress in Z23 specimen 103
Fig. G The fracture morphology observed by OM at (a) Ti (b) ZrN (c) Junction between Ti and ZrN………………………………………………………………………………………….104
Fig. G The fracture morphology observed by SEM at (d) ZrN crack morphology (e) crack at ZrN/Ti (f) Junction between Ti and ZrN. 106


List of Tables
Table 2.1 Characteristics of ZrN……………………………………………………………….8
Table 3.1 The deposition parameters of ZrN/Ti bilayer thin films. 17
Table 3.2 The binding energy of ZrN for Zr-3d, N-1s, O-1s spectra . 20
Table 3.3 The correction factor for different dimension of the specimens …………………..27
Table 4.1 Summary of film thickness, composition, grain size, texture coefficient, lattice parameter, and surface roughness of ZrN, and ZrN/Ti thin films. 29
Table 4.2 Summary of properties, including residual stress, hardness, Young’s modulus and electrical resistivity of ZrN, and ZrN/Ti thin films. 30
Table 4.3 Summary of variation of the residual stress. The stress relief are referred as three classification. First, the stress variation between monolayer ZrN and bilayer ZrN. Second, the stress variation between bilayer ZrN and overall of the bilayer. Third, the overall stress variation between monolayer ZrN and bilayer ZrN/Ti, respectively. 31
Table 5.1 Estimation of allowable stress relief of ZX2, and Z2X series specimen…………..57
Table 5.2 Plastic strain and flow stress of Ti interlayer after the plastic deformation .……….59
Louis E. Toth, Transition metal carbides and nitrides 1st edition, New York and London: Academic Press (1971).
H. Oettel, R. Wiedemann, Residual stress in PVD hard coatings, Surf. Coat. Technol., 76-77 (1995) 265-273.
I. Petrov, P.B. Barna, L. Hultman, J.E. Greene, Microstructure evolution during film growth, J. Vac. Sci. Technol., A 21 (2003) 117-128.
Jinke Tang, Li Feng, Jeffrey S. Zabinski, The effect of metal interlayer insertion on the friction wear and adhesion of TiC hard coatings, Surf. Coat. Technol., 99 (1998) 242-247.
J. Gerth, U. Wiklund, The influence of metallic interlayers on the adhesion of PVD TiN coatings on high-speed steel, Wear, 264 (2008) 885-892.
J.-Y. Chen, G.-P. Yu, J.-H. Huang, Corrosion behavior and adhesion of ion-plated TiN films on AISI 304 steel, Mater. Chem. Phys., 65 (2000) 310-315.
J.-H. Huang, F.-Y. Ouyang, G.-P. Yu, Effect of film thickness and Ti interlayer on the structure and properties of nanocrystalline TiN thin film on AISI D2 steel, Surf. Coat. Technol., 201(2007) 7043-7053.
F.-S. Shieu, L.-H. Cheng, M.-H. Shiao, S.-H. Lin, Effect of Ti interlayer on the microstructure of ion-plated TiN coatings on AISI 304 stainless steel., Thin Solid Films, 311 (1997) 138-145.
H. Sheng, H.-Y. Chen, Z.-C. Chang, J.-H. Lin, C.-J. Yang, F.-H. Lu, F.-S. Shieu, H.-C. Shih, Effect of metal vapor vacuum arc Cr-implanted interlayers on the microstructure of CrN film on silicon, Thin Solid Films, 436 (2003) 238-243.
R. Daniel, K.J. Martinschitz, J. Keckes, C. Mitterer, The origin of stresses in magnetron-sputtered thin films with zone T structures, Acta Materialia, 58 (2010) 2621-2633.
Leoni M., Scardi P., Rossi S., Fedrizzi L., Massiani Y., (Ti,Cr)N and Ti/TiN PVD Coatings on 304 stainless steel substrates: Texture and residual stress, Thin Solid Films, 345 (1999) 263-269.
G.A. Fontalvo, R. Daniel, C. Mitterer, Interlayer thickness influence on the tribological response of bi-layer coatings, Tribology, 42 (2010) 108-112.
R. Ali, M. Sebastiani, E. Bemporad, Influence of Ti/TiN multilayer PCD-coatings on residual stress and adhesion, Mater. Des., 75 (2015) 47-56.
J.-H. Huang, C.-H. Ma, H. Chen, Effect of Ti interlayer on the residual stress and texture development of TiN thin films deposited by unbalanced magnetron sputtering, Surf. Coat. Technol., 201 (2006) 3199-3204.
J.-H. Huang, C.-H. Ma, H. Chen, Effect of Ti interlayer on the residual stress and texture development of TiN thin films, Surf. Coat. Technol., 200 (2006) 5937-5945.
Soichen Lei, J.-H. Huang, Haydn Chen, Measurement of residual stress on TiN/Ti bilayer thin films using average X-ray strain combined with laser curvature and nanoindentation methods, Mater. Chem. And Phys., 199 (2017) 185-192.
D.S. Rickerby, S.J. Bull, T. Robertson, A. Hendry, The role of titanium in the abrasive wear resistance of physically vapor-deposited TiN, Surf. Coat. Technol., 401 (1990) 63-74.
W.-L. Pan, G.-P. Yu, J.-H. Huang, “Mechanical properties of ion-plated TiN films on AISI D2 steel”, Surf. Coat. Technol., 110 (1998) 111-119.
G.S. Kim, S.Y. Lee, J.H. Hahn, B.Y. Lee, J.G. Han, J.H. Lee, Effects of the thickness of Ti buffer layer on the mechanical properties of TiN coatings, Surf. Coat. Technol., 171 (2003) 83-90.
J. Creus, H. Idrissi, H. Mazille, F. Sanchette, P. Jacquot, Improvement of the corrosion resistance of CrN coated steel by an interlayer, Surf. Coat. Technol., 107 (1998) 183-190.
C.-H. Ma, J.-H. Huang, H. Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction, Thin Solid Films, 418 (2002) 73-78.
A.-N. Wang, C.-P Chuang, G.-P. Yu, J.-H. Huang, Determination of average X-ray strain (AXS) on TiN hard coatings using cos^2 αsin^2 ψ X-ray diffraction method, Surf. Coat. Technol., 262 (2015) 40-47.
A.-N. Wang, J.-H Huang, H.-W. Hsiao, G.-P. Yu, H. Chen, Residual stress measurement on TiN thin films by combining nanoindentation and average X-ray strain (AXS) method, Surf. Coat. Technol., 280 (2015) 43-49.
J.A. Thornton, D.W. Hoffman, Stress-related effects in thin films, Thin Solid Films, 171 (1989) 5-31.
W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to Ceramics, John and Wiley, New York, NY, 1976, pp. 197-199.
H.-W. Hsiao, J.-H. Huang, G.-P. Yu, Effect of oxygen on fracture toughness of Zr(N,O) hard coatings, Surf. Coat. Technol., 304 (2016) 330-339.
P.R. Chalker, S.J. Bull, D.S. Rickerby, A review of the methods for the evaluation of coating-substrate adhesion, J. Mater. Sci. Eng. A., 140 (1991) 583-592.
Y.-W. Lin, J.-H. Huang, W.-J. Cheng, G.-P. Yu, Effect of Ti interlayer on mechanical properties of TiZrN coatings on D2 steel, Surf. Coat. Technol., Master Thesis, National Tsing Hua University, R.O.C., (2018).
H. Ljungcrantz, L. Hultman, JE. Sandgrens, Residual stress and fracture properties of magnetron sputtered Ti films on Si microelements, J. Vac. Sci. Technol., A 11 (1993) 543-553.
J.-H. Huang, Y.-H. Chen, A.-N. Wang, G.-P. Yu, Haydn Chen, Evaluation of fracture toughness of ZrN hard coatings by internal energy induced cracking method, Surf. Coat. Technol., 258 (2014) 211-218.
U. Helmersson, B. O. Johansson, J.-E. Sundgren, Adhesion of titanium nitride coatings on high-speed steels, J, Vac. Sci. Technol., A 3(1985) 308-315.
C.-L. Huang, Effect of Zr Interlayer on Residual Stress of ZrN Thin Films, Master Thesis, National Tsing Hua University, R.O.C. (2016).
Fatemeh Shahsavari, Maryam Ehteshamzadeh, M Reza Naimi-Jamal, Ahmad Irannejad, Nanoindentation and nanoscratch behaviors of DLC films growth on different thickness of Cr interlayers, Dia. Relat. Mater., 70 (2016) 76-82.
Yang, G. Ayoub, I. Salehinia, B. Mansoor, H. Zbib, Deformation mechanisms in Ti/TiN multilayer under compressive loading, Acta Mater., 122 (2017) 99-108.
P. Wang, X. Wang, T. Xu, W. Liu, J. Zhang, Comparing internal stress in diamond-like carbon films with different structure, Thin Solid Films, 515 (2007) 6899-6903.
C.-L Chang, J.-Y. Jao, W.-Y. Ho, D.-Y. Wang, Effects of titanium-implanted pre-treatments on the residual stress of TiN coatings on high-speed steel substrates, Surf. Coat. Technol., 201 (2007) 6702-6706.
H. H. Modifi, A. Sabour rough aghdam, S. Ahangarani, M. Bozorg, M. Azabi, Fracture toughness of TiN coatings as a function of interlayer thickness, Adv. Mat. Res., 829 (2014) 466-470.
C.-L. Jiang, H.-L. Zhu, K.-S. Shin, Y.B-. Tang, Influence of titanium interlayer thickness distribution on mechanical properties of Ti/TiN multilayer coatings, Thin Solid Films, 632 (2017) 97-105.
B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, Prentice Hall, NewJersey, 2001, p.466.
Z. Wokulski, Mechanical properties of TiN whiskers, Phys. Status Solidi A, 120 (1990) 175-184.
W.J. Chou, G-P Yu, J-H Huang, Bias effect of ion-plated zirconium nitride film on Si (100), Thin Solid Films, 405 (2002) 162-169.
H. Okamoto, N-Zr (Nitrogen-Zirconium), J. Phase Equilibria Diffus., 27 (2006) 551-551.
JCPDS file 35-0753.
J.E. Hove, W.C. Riley, Modern ceramics; some principles and concepts, J. Wiley, 1965.
J. Adachi, K. Kurosaki, M. Uno, S. Yamanaka, Porosity influence on the mechanical properties of polycrystalline zirconium nitride ceramics, J. Nucl. Mater., 358 (2006) 106-110.
A. Singh, P. Kuppusami, S. Khan, C. Sudha, R. Thirumurugesan, R. Ramaseshan, R. Divakar, E. Mohandas, S. Dash, Influence of nitrogen flow rate on microstructure and nanomechanical properties of Zr-N thin films prepared by pulsed DC magnetron sputtering, Appl. Surf. Sci., 280 (2013) 117-123.
A. Perry, A contribution to the study of Poisson’s ratio and elastic constants of TiN, ZrN, and HfN, Thin Solid Films, 193 (1990) 463-471.
P.Jin, S. Maruno, Evaluation of internal stress in reactively sputter-deposited ZrN thin films, Jpn. J.Appl. Phys., 30 (1991) 1463.
E. Budke, J. Krempel-Hesse, H. Maidhof, H. Schüssler, Decorative hard coatings with improved corrosion resistance, Surf. Coat. Technol., 112 (1999) 108-113.
H. Holleck, Material selection for hard coatings, J. Vac. Sci. Technol., A4 (1986) 2661-2669.
G.G. Stoney, The tension of metallic films deposited by electrolysis, Proc. Roy. Soc. Lond. A. Mat., A82 (1909) 172-175.
C.A. Klein, How accurate are Stoney’s equation and recent modifications, J. Appl. Phys., 88 (2000) 5487.
V. Hauk, Structure and residual stress analysis by nondestructive methods, 1st edition ed., Elsevier Science, Aachen, Germany, 10 Nov 1997.
A.-N. Wang, G.-P. Yu, J.-H. Huang, Fracture toughness measurement on TiN hard coatings using internal energy induced cracking, Surf. Coat. Technol., 239 (2014) 20-27.
William F. Hosford, Robert M. Caddell, Metal Forming Mechanics and Metallurgy, Third Edition, Cambridge, 2007.
D.A. Shirley, High-resolution X-ray photoemission spectrum of the valence bands of gold, Phys. Rev. B, 5 (1972) 4709.
M. Del Re, R. Gouttebaron, J.-P. Dauchot, P. Leclère, G. Terwagne, M. Hecq, Study of ZrN layers deposited by reactive magnetron sputtering, Surf. Coat. Technol., 174 (2003) 240-245.
C. Morant, J.M. Sanz, L. Galán, L. Soriano, F. Rueda, An XPS study of the interaction of oxygen with zirconium, Surf. Sci., 218 (1989) 331-345.
I. Milošev, H.H. Strehblow, M. Gaberšček, B. Navinšek, Electrochemical oxidation of ZrN hard (PVD) coatings studied by XPS, Surf. Interface Anal., 24 (1996) 448-458.
M. Matsuoka, S. Isotani, W. Sucasaire, N. Kuratani, K. Ogata, X-ray photoelectron spectroscopy analysis of zirconium nitride-like films prepared on Si (100) substrates by ion beam assisted deposition, Surf. Coat. Technol., 202 (2008) 3129-3135.
P. Scherrer, Bestimmung der Grӧsse und der inner Struktur von Kolloidteilchen mittels Rӧntgenstrahlen, Gӧtt. Nachr., 2 (1918) 98-100.
L. V. Azάroff, M.J. Buerger, The powder method in X-ray crystallography, McGraw-Hill, 1958.
J. Wortman, R. Evans, Young's modulus, shear modulus, and Poisson's ratio in silicon and germanium, J. Appl. Phys., 36 (1965) 153-156.
B.B He, Two-dimensional X-ray diffraction, John Wiley & Sons Ltd., New Jersey, USA (2009) p. 312.
ASM Metals Handbook 9th edition, Properties and Selection: Nonferrous Alloys and Pure Metals, vol. 2, ASM, Metals Park, Ohio, 1979, p. 816.
G.W.C. Kaye, T.H. Laby, Tables of Physical and Chemical Constants, 14th ed., Longman, London, 1973, p. 31.
J.Y. Chang, G.-P. Yu, J.-H. Huang, Determination of Young’s modulus and Poisson’s ratio of thin films by combining sin^2 ψ X-ray diffraction and laser curvature methods, Thin Solid Films. 517, (2009) 6759-6766.
W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7 (1992) 1564-1583.
S. N. Monteiro, R. E. Reed-Hill, An empirical analysis of titanium stress-strain curve, Metall. Mater. Trans., A4 (1973) 1011-1015.
R. Hull, Properties of crystalline silicon, the Institution of Electrical Engineers, London, 1999.
ASM International, ASM Metals Handbook Desk Edition 2001, Properties and Selection Nonferrous Alloys and Special-Purpose Materials 2, ASM International, U.S.A., 2001, 3199-3204.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *