帳號:guest(18.119.162.17)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許元瑞
作者(外文):Hsu, Yuan-Ruei
論文名稱(中文):在鈷/錫銀焊錫/銅非對稱結構中溫度梯度對界面介金屬化合物成長的影響
論文名稱(外文):Effect of temperature gradient on the growth of interfacial intermetallic compounds in Co/SnAg/Cu asymmetrical structure
指導教授(中文):歐陽汎怡
指導教授(外文):Ouyang, Fan-Yi
口試委員(中文):陳智
廖建能
口試委員(外文):Chen, Chih
Liao, Chien-Neng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:105011504
出版年(民國):107
畢業學年度:107
語文別:中文
論文頁數:109
中文關鍵詞:熱遷移無鉛銲錫界面反應介金屬化合物鈷/焊錫/銅非對稱結構擴散
外文關鍵詞:ThermomigrationLead-free solderInterfacial reactionsIntermetallic compoundsCo/SnAg/Cu asymmetrical structureDiffusion
相關次數:
  • 推薦推薦:0
  • 點閱點閱:128
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,Solid-liquid interdiffusion (SLID) bonding 或稱作Transient
liquid phase (TLP) bonding 被視為是晶圓對接(Wafer bonding)或是3D IC 堆疊
中的新興科技,透過兩種不同熔點的金屬進行接合的動作,製程中採用比低熔點金
屬還高的製程溫度,使低熔點金屬在對接過程中保持液態,可以增加高熔點金屬在
低熔點金屬中的擴散速率,大幅降低接合所需時間,是SLID bonding 的重要優點
之一。近期更有作者在SLID bonding 技術中引進熱梯度(thermal gradient)的概
念,結果顯示一旦導入溫度梯度,接合時間將可以比傳統製程快上3-10 倍。
加上為了因應人工智慧(Artificial Intelligence, AI)世代的來臨與高效能
運算(High Performance Computing, HPC)晶片的需求逐漸增溫,傳統導電材料像
是銅與鎢金屬在10 奈米以下製程無法再順利微縮,加上電性不良與填洞(Gapfill)
能力不佳等問題,讓電晶體效能無法有效發揮,成為先進製程上的阻礙。然而全球
最大半導體設備商:應用材料於2018 年6 月的新聞稿表示,透過“鈷”金屬當作新
的導電材料,使導線擁有更低的功耗、增加導電性與提升晶片效能,可望一舉突破
限制,為未來個位數奈米節點製程注入一線生機,繼續延續摩爾定律。
有鑑於此本研究試片一共分為4 個系列,分別為系列1-鈷(冷)/焊錫/銅(熱)、
系列2-銅(冷)/焊錫/鈷(熱)非對稱結構與對照組系列3-鈷(冷)/焊錫/鈷(熱)、系
列4-銅(冷)/焊錫/銅(熱)對稱結構。我們將各系列試片連同特殊載具一同放置在
260°C 的加熱板上,並在試片上端擺放鋁製散熱鰭片,研究鈷和銅元素在溫度梯度
環境下的擴散行為、擴散元素對界面生成相種類與表面形貌的影響以及相關的動力
學機制探討。
研究結果顯示,在靠近鈷端界面的焊錫中銅濃度多寡將大大影響(Co,Cu)Sn3 相
的生成與否,銅濃度較低鈷端界面生成相為:(Co,Cu)Sn3 與(Cu,Co)6Sn5 兩項共存;
銅濃度較高則鈷端界面僅有(Cu,Co)6Sn5 存在。非常有趣的是,如果鈷端界面僅有
一相(Cu,Co)6Sn5 存在,在生成一定厚度之後會有大量(Cu,Co)6Sn5 脫離界面的特別
現象,在鈷端界面形成鈷/(Cu,Co)6Sn5/焊錫/(Cu,Co)6Sn5/焊錫的分層結果;然而鈷
端界面一但有(Co,Cu)Sn3 的生成,即使只有非常的少量,(Cu,Co)6Sn5 就可以完整附
著在其上,所以我們可以得知,鈷端(Cu,Co)6Sn5 的分層、脫離界面與否,跟是否
生成(Co,Cu)Sn3 有直接的關係。
最讓人意外的是,在本研究系列2 中,鈷基板擺放於熱端,在時間20 分鐘後,
竟讓在溫度梯度條件下熱端所生成的(Cu,Co)6Sn5 厚度持續大於冷端,與文獻中銅
原子會受溫度梯度驅使往冷端擴散造成冷端IMC 厚度較厚的結果截然不同。由此可
見,鈷基板擺放於熱端或冷端,對於(Cu,Co)6Sn5 的生成厚度有著重大的影響,也
顯示鈷基板具有吸引銅原子擴散的驅動力。
The Solid-liquid interdiffusion (SLID) bonding, also known as transient liquid phase (TLP) bonding, is a very promising technology for direct wafer bonding or three-dimensional integrated circuit (3D IC) stacking in recent years. The SLID bonding process was conducted by bonding two different metals; one has low melting point, yet the other has higher melting point. Firstly, the process took place at a temperature higher than the low melting point metal; thus the interdiffusion occurred between solid and liquid phases during the bonding process. Secondly, after reaching the solubility limit, the intermetallic compound (IMC) phases with a high melting point were formed. As a result, the bonding joint can withstand the high temperature environment which is one of the advandages of SLID bonding. Instead of using isothermal bonding process, some studies proposed to superimpose a temperature gradient across the joint during the bonding process to shorten the bonding period, which is 3-10 times faster than the traditional process. In addition, for the forthcoming artificial intelligence era and high requirement of high performance computing chips, using Cu as local interconnects are suffering in term of gapfill, resistance and reliability problems, which limit the performance of the chips. Thus, Applied Materials company launches new technology - using Co for metallization instead of Cu. In this study, we investigate the diffusion behavior of Co and Cu in Pb-free solder
joints under a temperature gradient to understand the interfacial reaction and phase evolution of intermetallic compounds during the bonding process. We designed four series of samples, there were asymmetrical structures of series1-Co(cold)/SnAg/Cu(hot), series2-Cu(cold)/SnAg/Co(hot) and symmetrical structures of series3-Co(cold)/SnAg/Co(hot) and series4-Cu(cold)/SnAg/Cu(hot) as control group. In order to establish a temperature gradient across the solder layer, the Al heat sink was placed on the sample during reflowing
the samples at 260℃ on a hot plate for different durations. The results showed that the concentration of Cu would determine the phase of the IMC at the Co side. For regions with relatively low Cu concentration, (Cu,Co)6Sn5 and (Co,Cu)Sn3 coexisted. On the contrary,
for the regions with relatively high Cu concentration, only (Cu,Co)6Sn5 appeared at the Co/solder interface, suggesting that the interfacial reaction between Co and solder was very sensitive to the Cu concentration near the interface. Interestingly, if only one phase
(Cu,Co)6Sn5 was formed at the Co/solder interface, a lot amount of (Cu,Co)6Sn5 would detached from the Co interface and dissolved into the solder. In addition, it is surprised to find that the thickness of (Cu,Co)6Sn5 at the hot end was thicker than the cold end in the sample of series2 after 20 min, which was inconsistent with the result in the traditional Cu/Solder/Cu symmetrical structure, implying that the Co substrate played a significant role on the growth of the interfacial
IMC.
摘要................................................................I
ABSTRACT..........................................................III
致謝................................................................V
目錄...............................................................VII
表格目錄............................................................IX
圖目錄..............................................................X
第一章簡介..........................................................1
第二章文獻回顧.......................................................3
2.1 熱遷移..........................................................3
2.1.1 熱遷移原理....................................................3
2.1.2 在覆晶封裝技術中焦耳熱誘發溫度梯度..............................6
2.1.3 銲錫中的熱遷移................................................11
2.1.4 金屬墊層(UBM, Under Bump Metallurgy)的熱遷移..................21
2.2 焊錫與金屬的界面反應(等溫熱處理).................................30
2.2.1 焊錫/銅的界面反應.............................................30
2.2.2 焊錫/鈷的界面反應.............................................36
2.2.3 鈷/錫/銅的界面反應............................................44
第三章實驗步驟......................................................49
3.1 試片製備.......................................................49
3.2 熱遷移實驗設置與分析.............................................49
3.3 ANSYSWORKBENCH 溫度梯度模擬.....................................50
第四章結果與討論.....................................................54
4.1 三明治結構中的溫度分佈...........................................54
4.2 溫度梯度下焊錫和金屬的界面反應....................................59
4.2.1 系列1-鈷(冷)/焊錫/銅(熱).......................................59
4.2.2 系列2-銅(冷)/焊錫/鈷(熱).......................................67
4.2.3 系列3-鈷(冷)/焊錫/鈷(熱).......................................74
4.2.4 系列4-銅(冷)/焊錫/銅(熱).......................................82
4.3 綜合討論........................................................88
4.3.1 在非對稱結構中CoSn3 的成長情形..................................88
4.3.2 溫度梯度下介金屬化合物成長機制探討(S1 vs. S4)....................93
第五章結論..........................................................101
第六章未來工作......................................................103
參考文獻............................................................104

1. Tu, K.N., Reliability challenges in 3D IC packaging technology.
Microelectronics Reliability, 2011. 51(3): p. 517-523.
2. Wang, C.-h. and S.-w. Chen, Peltier Effect on Sn/Co Interfacial
Reactions. Journal of Electronic Materials, 2009. 38(5): p. 655-
662.
3. Sullivan, E.J.O., et al., Electrolessly deposited diffusion
barriers for microelectronics. IBM Journal of Research and
Development, 1998. 42(5): p. 607-620.
4. Magagnin, L., et al., Electroless Co–P for diffusion barrier in
Pb-free soldering. Electrochimica Acta, 2005. 50(23): p. 4621-
4625.
5. Limaye, P., et al., Influence of Intermetallic Properties on
Reliability of Lead-Free Flip-Chip Solder Joints. IEEE
Transactions on Advanced Packaging, 2008. 31(1): p. 51-57.
6. Wu, W.C., T.-E. Hsieh, and H.-C. Pan, Investigation of Electroless
Co(W,P) Thin Film as the Diffusion Barrier of Underbump
Metallurgy. Journal of The Electrochemical Society, 2008. 155(5).
7. Pan, H.-C. and T.-E. Hsieh, An Investigation of Diffusion Barrier
Characteristics of an Electroless Co(W,P) Layer to Lead-Free SnBi
Solder. Journal of Electronic Materials, 2011. 40(3): p. 330-339.
8. Pan, H.-C. and T.-E. Hsieh, Diffusion Barrier Characteristics of
Electroless Co(W,P) Thin Films to Lead-Free SnAgCu Solder. Journal
of The Electrochemical Society, 2011. 158(11).
9. Aasmundtveit, K.E., et al. Solid-Liquid Interdiffusion (SLID)
bonding — Intermetallic bonding for high temperature
applications. in 2013 Eurpoean Microelectronics Packaging
Conference (EMPC). 2013.
10. Aasmundtveit, K.E., et al. Solid-Liquid Interdiffusion (SLID)
bonding. in 2016 Symposium on Design, Test, Integration and
Packaging of MEMS/MOEMS (DTIP). 2016.
11. Brincker, M., et al., Strength and reliability of low temperature
transient liquid phase bonded Cu Sn Cu interconnects.
Microelectronics Reliability, 2017. 76-77: p. 378-382.
12. Flötgen, C., et al., Wafer bonding using Cu–Sn intermetallic
bonding layers. Microsystem Technologies, 2013. 20(4-5): p. 653-
662.
13. Fukumoto, S., et al., Solid-Liquid Interdiffusion Bonding of
Copper Using Ag-Sn Layered Films. Materials Transactions, 2015.
56(7): p. 1019-1024.
14. Fukumoto, S., et al., Effect of Zinc Addition on Void Formation in
Solid-Liquid Interdiffusion Bonding of Copper. Materials
Transactions, 2016. 57(6): p. 846-852.
15. Lee, B.-S., S.-K. Hyun, and J.-W. Yoon, Cu–Sn and Ni–Sn
transient liquid phase bonding for die-attach technology
applications in high-temperature power electronics packaging.
Journal of Materials Science: Materials in Electronics, 2017.
28(11): p. 7827-7833.
16. Li, J.F., P.A. Agyakwa, and C.M. Johnson, Interfacial reaction in
Cu/Sn/Cu system during the transient liquid phase soldering
process. Acta Materialia, 2011. 59(3): p. 1198-1211.
17. Liu, H., et al., Intermetallic Compound Formation Mechanisms for
Cu-Sn Solid–Liquid Interdiffusion Bonding. Journal of Electronic
Materials, 2012. 41(9): p. 2453-2462.
18. Rautiainen, A., et al., Vertical cracking of Cu-Sn solid-liquid
interdiffusion bond under thermal shock test. Materials Today:
Proceedings, 2017. 4(7): p. 7093-7100.
19. Yang, T.L., et al., Full intermetallic joints for chip stacking by
using thermal gradient bonding. Acta Materialia, 2016. 113: p.
90-97.
20. Tian, Y., et al., Phase transformation and fracture behavior of
Cu/In/Cu joints formed by solid–liquid interdiffusion bonding.
Journal of Materials Science: Materials in Electronics, 2014.
25(9): p. 4170-4178.
21. Li, Z.L., et al., Rapid formation of Ni3Sn4 joints for die
attachment of SiC-based high temperature power devices using
ultrasound-induced transient liquid phase bonding process.
Ultrason Sonochem, 2017. 36: p. 420-426.
22. Li, J.F., P.A. Agyakwa, and C.M. Johnson, Kinetics of Ag3Sn growth
in Ag–Sn–Ag system during transient liquid phase soldering
process. Acta Materialia, 2010. 58(9): p. 3429-3443.
23. Dong, H.J., et al., Grain morphology evolution and mechanical
strength change of intermetallic joints formed in Ni/Sn/Cu system
with variety of transient liquid phase soldering temperatures.
Materials Science and Engineering: A, 2017. 705: p. 360-365.
24. Dong, H.J., et al., Grain morphology and mechanical strength of
high-melting-temperature intermetallic joints formed in
asymmetrical Ni/Sn/Cu system using transient liquid phase
soldering process. Journal of Alloys and Compounds, 2017. 723: p.
1026-1031.
25. Li, Z.L., et al., Homogeneous (Cu, Ni)6Sn5 intermetallic compound
joints rapidly formed in asymmetrical Ni/Sn/Cu system using
ultrasound-induced transient liquid phase soldering process.
Ultrason Sonochem, 2018. 42: p. 403-410.
26. Ludwig, C., Diffusion zwischen ungleich erwwärmten orten gleich
zusammengestzter lösungen. 1856: p. 539.
27. SORET, C., Sur l'état d'équilibre que prend, au point de vue de sa
concentration, une dissolution saline primitivement homogène, dont
deux parties sont portées à des températures différentes.
JournArchives de Genève, 1879: p. p. 48.
28. Shewmon, P., The thermal diffusion of carbon in α and γ iron.
Acta Metallurgica, 1960. 8(9): p. 605-611.
29. Shaw, J.G. and W.A. Oates, Thermomigration of carbon in metals.
Metallurgical and Materials Transactions B, 1971. 2(8): p. 2127-
2134.
30. Chen, H.-Y. and C. Chen, Thermomigration of Cu–Sn and Ni–Sn
intermetallic compounds during electromigration in Pb-free SnAg
solder joints. Journal of Materials Research, 2011. 26(08): p.983-991.
31. Ouyang, F.-Y. and W.-C. Jhu, Comparison of thermomigration
behaviors between Pb-free flip chip solder joints and microbumps
in three dimensional integrated circuits: Bump height effect.
Journal of Applied Physics, 2013. 113(4).
32. Huang, A.T., et al., Thermomigration in SnPb composite flip chip
solder joints. Applied Physics Letters, 2006. 88(14).
33. Chuang, Y.C. and C.Y. Liu, Thermomigration in eutectic SnPb alloy.
Applied Physics Letters, 2006. 88(17).
34. Ouyang, F.-Y. and C.L. Kao, In situ observation of thermomigration
of Sn atoms to the hot end of 96.5Sn-3Ag-0.5Cu flip chip solder
joints. Journal of Applied Physics, 2011. 110(12).
35. Blech, I.A., Electromigration in thin aluminum films on titanium
nitride. Journal of Applied Physics, 1976. 47(4): p. 1203-1208.
36. Lloyd, J.R., et al., Fast diffusers in a thermal gradient (solder
ball). Microelectronics Reliability, 2010. 50(9-11): p. 1355-
1358.
37. Yang, Y.-S., C.-J. Yang, and F.-Y. Ouyang, Interfacial reaction of
Ni3Sn4 intermetallic compound in Ni/SnAg solder/Ni system under
thermomigration. Journal of Alloys and Compounds, 2016. 674: p.
331-340.
38. Su, Y.-P., C.-S. Wu, and F.-Y. Ouyang, Asymmetrical Precipitation
of Ag3Sn Intermetallic Compounds Induced by Thermomigration of Ag
in Pb-Free Microbumps During Solid-State Aging. Journal of
Electronic Materials, 2015. 45(1): p. 30-37.
39. Guo, M.-Y., et al., Asymmetrical growth of Cu6Sn5 intermetallic
compounds due to rapid thermomigration of Cu in molten SnAg solder
joints. Intermetallics, 2012. 29: p. 155-158.
40. Zhao, N., et al., Growth kinetics of Cu6Sn5 intermetallic compound
at liquid-solid interfaces in Cu/Sn/Cu interconnects under
temperature gradient. Sci Rep, 2015. 5: p. 13491.
41. Hsu, W.-N. and F.-Y. Ouyang, Effects of anisotropic β-Sn alloys
on Cu diffusion under a temperature gradient. Acta Materialia, 2014. 81: p. 141-150.
42. Furtauer, S., et al., The Cu-Sn phase diagram, Part I: New
experimental results. Intermetallics (Barking), 2013. 34: p. 142-
147.
43. Nogita, K., et al., Kinetics of the η–η′ transformation in
Cu6Sn5. Scripta Materialia, 2011. 65(10): p. 922-925.
44. Zeng, G., et al., Kinetics of the polymorphic phase transformation
of Cu6Sn5. Acta Materialia, 2014. 69: p. 135-148.
45. Shen, J., et al., Growth behaviors of intermetallic compounds at
Sn–3Ag–0.5Cu/Cu interface during isothermal and non-isothermal
aging. Journal of Alloys and Compounds, 2013. 574: p. 451-458.
46. Gao, F., T. Takemoto, and H. Nishikawa, Effects of Co and Ni
addition on reactive diffusion between Sn–3.5Ag solder and Cu
during soldering and annealing. Materials Science and Engineering:
A, 2006. 420(1-2): p. 39-46.
47. Wang, Y.W., et al., Effects of minor Fe, Co, and Ni additions on
the reaction between SnAgCu solder and Cu. Journal of Alloys and
Compounds, 2009. 478(1-2): p. 121-127.
48. Vassilev, G.P., K.I. Lilova, and J.C. Gachon, Calorimetric and
phase diagram studies of the Co–Sn system. Intermetallics, 2007.
15(9): p. 1156-1162.
49. Zhu, W., et al., The interfacial reaction between Sn–Ag alloys
and Co substrate. Materials Science and Engineering: A, 2007.
456(1-2): p. 109-113.
50. Wang, C.-h. and S.-w. Chen, Cruciform pattern formation in Sn/Co
couples. Journal of Materials Research, 2007. 22(12): p. 3404-
3409.
51. Wang, C.-h. and S.-w. Chen, Sn/Co solid/solid interfacial
reactions. Intermetallics, 2008. 16(4): p. 524-530.
52. O, M., Y. Takamatsu, and M. Kajihara, Kinetics of Solid-State
Reactive Diffusion between Co and Sn. Materials Transactions,
2014. 55(7): p. 1058-1064.
53. Wang, C.-h. and C.-y. Kuo, Growth kinetics of the solid-state
interfacial reactions in the Sn–Cu/Co and Sn/Co–Cu couples.
Materials Chemistry and Physics, 2011. 130(1-2): p. 651-656.
54. Du, C., X. Wang, and S. Tian, Effect of bonding time on the
microstructure and mechanical properties of Co/Sn/Cu joint.
Journal of Materials Science: Materials in Electronics, 2017.
29(1): p. 455-466.
55. 陳昱愷, Sn-Co-Cu-Ni phase equilibria and Sn-Co-(Cu)/Ni interfacial
reactions. 2009.
56. Chen, H., et al., Effect of massive spalling on mechanical
strength of solder joints in Pb-free solder reflowed on Co-based
surface finishes. Journal of Alloys and Compounds, 2016. 671: p.
100-108.
57. 洪功霖, Microstructure evolution and interfacial growth of
intermetallic compound for Co/SnAg/Co structure under
thermomigration. 2017.
58. Liu, H., et al., Prediction of formation of intermetallic
compounds in diffusion couples. Journal of Materials Research,
2011. 22(06): p. 1502-1511.
59. Thompson, C.V., On the role of diffusion in phase selection during
reactions at interfaces. Journal of Materials Research, 2011.
7(02): p. 367-373.
60. Toschev, S. and I. Gutzow, Time Lag in Heterogeneous Nucleation
due to Nonstationary Effects. physica status solidi (b), 1967.
21(2): p. 683-691.
61. Wang, C.-h., et al., Temperature effects on liquid-state Sn/Co
interfacial reactions. Intermetallics, 2013. 32: p. 57-63.
62. Wang, S.J. and C.Y. Liu, Study of interaction between Cu-Sn and
Ni-Sn interfacial reactions by Ni-Sn3.5Ag-Cu sandwich structure.
Journal of Electronic Materials, 2003. 32(11): p. 1303-1309.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *