|
1. Tu, K.N., Reliability challenges in 3D IC packaging technology. Microelectronics Reliability, 2011. 51(3): p. 517-523. 2. Wang, C.-h. and S.-w. Chen, Peltier Effect on Sn/Co Interfacial Reactions. Journal of Electronic Materials, 2009. 38(5): p. 655- 662. 3. Sullivan, E.J.O., et al., Electrolessly deposited diffusion barriers for microelectronics. IBM Journal of Research and Development, 1998. 42(5): p. 607-620. 4. Magagnin, L., et al., Electroless Co–P for diffusion barrier in Pb-free soldering. Electrochimica Acta, 2005. 50(23): p. 4621- 4625. 5. Limaye, P., et al., Influence of Intermetallic Properties on Reliability of Lead-Free Flip-Chip Solder Joints. IEEE Transactions on Advanced Packaging, 2008. 31(1): p. 51-57. 6. Wu, W.C., T.-E. Hsieh, and H.-C. Pan, Investigation of Electroless Co(W,P) Thin Film as the Diffusion Barrier of Underbump Metallurgy. Journal of The Electrochemical Society, 2008. 155(5). 7. Pan, H.-C. and T.-E. Hsieh, An Investigation of Diffusion Barrier Characteristics of an Electroless Co(W,P) Layer to Lead-Free SnBi Solder. Journal of Electronic Materials, 2011. 40(3): p. 330-339. 8. Pan, H.-C. and T.-E. Hsieh, Diffusion Barrier Characteristics of Electroless Co(W,P) Thin Films to Lead-Free SnAgCu Solder. Journal of The Electrochemical Society, 2011. 158(11). 9. Aasmundtveit, K.E., et al. Solid-Liquid Interdiffusion (SLID) bonding — Intermetallic bonding for high temperature applications. in 2013 Eurpoean Microelectronics Packaging Conference (EMPC). 2013. 10. Aasmundtveit, K.E., et al. Solid-Liquid Interdiffusion (SLID) bonding. in 2016 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP). 2016. 11. Brincker, M., et al., Strength and reliability of low temperature transient liquid phase bonded Cu Sn Cu interconnects. Microelectronics Reliability, 2017. 76-77: p. 378-382. 12. Flötgen, C., et al., Wafer bonding using Cu–Sn intermetallic bonding layers. Microsystem Technologies, 2013. 20(4-5): p. 653- 662. 13. Fukumoto, S., et al., Solid-Liquid Interdiffusion Bonding of Copper Using Ag-Sn Layered Films. Materials Transactions, 2015. 56(7): p. 1019-1024. 14. Fukumoto, S., et al., Effect of Zinc Addition on Void Formation in Solid-Liquid Interdiffusion Bonding of Copper. Materials Transactions, 2016. 57(6): p. 846-852. 15. Lee, B.-S., S.-K. Hyun, and J.-W. Yoon, Cu–Sn and Ni–Sn transient liquid phase bonding for die-attach technology applications in high-temperature power electronics packaging. Journal of Materials Science: Materials in Electronics, 2017. 28(11): p. 7827-7833. 16. Li, J.F., P.A. Agyakwa, and C.M. Johnson, Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process. Acta Materialia, 2011. 59(3): p. 1198-1211. 17. Liu, H., et al., Intermetallic Compound Formation Mechanisms for Cu-Sn Solid–Liquid Interdiffusion Bonding. Journal of Electronic Materials, 2012. 41(9): p. 2453-2462. 18. Rautiainen, A., et al., Vertical cracking of Cu-Sn solid-liquid interdiffusion bond under thermal shock test. Materials Today: Proceedings, 2017. 4(7): p. 7093-7100. 19. Yang, T.L., et al., Full intermetallic joints for chip stacking by using thermal gradient bonding. Acta Materialia, 2016. 113: p. 90-97. 20. Tian, Y., et al., Phase transformation and fracture behavior of Cu/In/Cu joints formed by solid–liquid interdiffusion bonding. Journal of Materials Science: Materials in Electronics, 2014. 25(9): p. 4170-4178. 21. Li, Z.L., et al., Rapid formation of Ni3Sn4 joints for die attachment of SiC-based high temperature power devices using ultrasound-induced transient liquid phase bonding process. Ultrason Sonochem, 2017. 36: p. 420-426. 22. Li, J.F., P.A. Agyakwa, and C.M. Johnson, Kinetics of Ag3Sn growth in Ag–Sn–Ag system during transient liquid phase soldering process. Acta Materialia, 2010. 58(9): p. 3429-3443. 23. Dong, H.J., et al., Grain morphology evolution and mechanical strength change of intermetallic joints formed in Ni/Sn/Cu system with variety of transient liquid phase soldering temperatures. Materials Science and Engineering: A, 2017. 705: p. 360-365. 24. Dong, H.J., et al., Grain morphology and mechanical strength of high-melting-temperature intermetallic joints formed in asymmetrical Ni/Sn/Cu system using transient liquid phase soldering process. Journal of Alloys and Compounds, 2017. 723: p. 1026-1031. 25. Li, Z.L., et al., Homogeneous (Cu, Ni)6Sn5 intermetallic compound joints rapidly formed in asymmetrical Ni/Sn/Cu system using ultrasound-induced transient liquid phase soldering process. Ultrason Sonochem, 2018. 42: p. 403-410. 26. Ludwig, C., Diffusion zwischen ungleich erwwärmten orten gleich zusammengestzter lösungen. 1856: p. 539. 27. SORET, C., Sur l'état d'équilibre que prend, au point de vue de sa concentration, une dissolution saline primitivement homogène, dont deux parties sont portées à des températures différentes. JournArchives de Genève, 1879: p. p. 48. 28. Shewmon, P., The thermal diffusion of carbon in α and γ iron. Acta Metallurgica, 1960. 8(9): p. 605-611. 29. Shaw, J.G. and W.A. Oates, Thermomigration of carbon in metals. Metallurgical and Materials Transactions B, 1971. 2(8): p. 2127- 2134. 30. Chen, H.-Y. and C. Chen, Thermomigration of Cu–Sn and Ni–Sn intermetallic compounds during electromigration in Pb-free SnAg solder joints. Journal of Materials Research, 2011. 26(08): p.983-991. 31. Ouyang, F.-Y. and W.-C. Jhu, Comparison of thermomigration behaviors between Pb-free flip chip solder joints and microbumps in three dimensional integrated circuits: Bump height effect. Journal of Applied Physics, 2013. 113(4). 32. Huang, A.T., et al., Thermomigration in SnPb composite flip chip solder joints. Applied Physics Letters, 2006. 88(14). 33. Chuang, Y.C. and C.Y. Liu, Thermomigration in eutectic SnPb alloy. Applied Physics Letters, 2006. 88(17). 34. Ouyang, F.-Y. and C.L. Kao, In situ observation of thermomigration of Sn atoms to the hot end of 96.5Sn-3Ag-0.5Cu flip chip solder joints. Journal of Applied Physics, 2011. 110(12). 35. Blech, I.A., Electromigration in thin aluminum films on titanium nitride. Journal of Applied Physics, 1976. 47(4): p. 1203-1208. 36. Lloyd, J.R., et al., Fast diffusers in a thermal gradient (solder ball). Microelectronics Reliability, 2010. 50(9-11): p. 1355- 1358. 37. Yang, Y.-S., C.-J. Yang, and F.-Y. Ouyang, Interfacial reaction of Ni3Sn4 intermetallic compound in Ni/SnAg solder/Ni system under thermomigration. Journal of Alloys and Compounds, 2016. 674: p. 331-340. 38. Su, Y.-P., C.-S. Wu, and F.-Y. Ouyang, Asymmetrical Precipitation of Ag3Sn Intermetallic Compounds Induced by Thermomigration of Ag in Pb-Free Microbumps During Solid-State Aging. Journal of Electronic Materials, 2015. 45(1): p. 30-37. 39. Guo, M.-Y., et al., Asymmetrical growth of Cu6Sn5 intermetallic compounds due to rapid thermomigration of Cu in molten SnAg solder joints. Intermetallics, 2012. 29: p. 155-158. 40. Zhao, N., et al., Growth kinetics of Cu6Sn5 intermetallic compound at liquid-solid interfaces in Cu/Sn/Cu interconnects under temperature gradient. Sci Rep, 2015. 5: p. 13491. 41. Hsu, W.-N. and F.-Y. Ouyang, Effects of anisotropic β-Sn alloys on Cu diffusion under a temperature gradient. Acta Materialia, 2014. 81: p. 141-150. 42. Furtauer, S., et al., The Cu-Sn phase diagram, Part I: New experimental results. Intermetallics (Barking), 2013. 34: p. 142- 147. 43. Nogita, K., et al., Kinetics of the η–η′ transformation in Cu6Sn5. Scripta Materialia, 2011. 65(10): p. 922-925. 44. Zeng, G., et al., Kinetics of the polymorphic phase transformation of Cu6Sn5. Acta Materialia, 2014. 69: p. 135-148. 45. Shen, J., et al., Growth behaviors of intermetallic compounds at Sn–3Ag–0.5Cu/Cu interface during isothermal and non-isothermal aging. Journal of Alloys and Compounds, 2013. 574: p. 451-458. 46. Gao, F., T. Takemoto, and H. Nishikawa, Effects of Co and Ni addition on reactive diffusion between Sn–3.5Ag solder and Cu during soldering and annealing. Materials Science and Engineering: A, 2006. 420(1-2): p. 39-46. 47. Wang, Y.W., et al., Effects of minor Fe, Co, and Ni additions on the reaction between SnAgCu solder and Cu. Journal of Alloys and Compounds, 2009. 478(1-2): p. 121-127. 48. Vassilev, G.P., K.I. Lilova, and J.C. Gachon, Calorimetric and phase diagram studies of the Co–Sn system. Intermetallics, 2007. 15(9): p. 1156-1162. 49. Zhu, W., et al., The interfacial reaction between Sn–Ag alloys and Co substrate. Materials Science and Engineering: A, 2007. 456(1-2): p. 109-113. 50. Wang, C.-h. and S.-w. Chen, Cruciform pattern formation in Sn/Co couples. Journal of Materials Research, 2007. 22(12): p. 3404- 3409. 51. Wang, C.-h. and S.-w. Chen, Sn/Co solid/solid interfacial reactions. Intermetallics, 2008. 16(4): p. 524-530. 52. O, M., Y. Takamatsu, and M. Kajihara, Kinetics of Solid-State Reactive Diffusion between Co and Sn. Materials Transactions, 2014. 55(7): p. 1058-1064. 53. Wang, C.-h. and C.-y. Kuo, Growth kinetics of the solid-state interfacial reactions in the Sn–Cu/Co and Sn/Co–Cu couples. Materials Chemistry and Physics, 2011. 130(1-2): p. 651-656. 54. Du, C., X. Wang, and S. Tian, Effect of bonding time on the microstructure and mechanical properties of Co/Sn/Cu joint. Journal of Materials Science: Materials in Electronics, 2017. 29(1): p. 455-466. 55. 陳昱愷, Sn-Co-Cu-Ni phase equilibria and Sn-Co-(Cu)/Ni interfacial reactions. 2009. 56. Chen, H., et al., Effect of massive spalling on mechanical strength of solder joints in Pb-free solder reflowed on Co-based surface finishes. Journal of Alloys and Compounds, 2016. 671: p. 100-108. 57. 洪功霖, Microstructure evolution and interfacial growth of intermetallic compound for Co/SnAg/Co structure under thermomigration. 2017. 58. Liu, H., et al., Prediction of formation of intermetallic compounds in diffusion couples. Journal of Materials Research, 2011. 22(06): p. 1502-1511. 59. Thompson, C.V., On the role of diffusion in phase selection during reactions at interfaces. Journal of Materials Research, 2011. 7(02): p. 367-373. 60. Toschev, S. and I. Gutzow, Time Lag in Heterogeneous Nucleation due to Nonstationary Effects. physica status solidi (b), 1967. 21(2): p. 683-691. 61. Wang, C.-h., et al., Temperature effects on liquid-state Sn/Co interfacial reactions. Intermetallics, 2013. 32: p. 57-63. 62. Wang, S.J. and C.Y. Liu, Study of interaction between Cu-Sn and Ni-Sn interfacial reactions by Ni-Sn3.5Ag-Cu sandwich structure. Journal of Electronic Materials, 2003. 32(11): p. 1303-1309. |