帳號:guest(3.144.92.235)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林宛萱
作者(外文):Lin, Wan-Hsuan
論文名稱(中文):印刷奈米銀導線之電遷移行為研究
論文名稱(外文):Electromigration Behavior of Screen-Printing Ag nanoparticles Interconnects
指導教授(中文):歐陽汎怡
指導教授(外文):Ouyang, Fan-Yi
口試委員(中文):陳智
廖建能
口試委員(外文):Chen, Chih
Liao, Chien-Neng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:105011503
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:132
中文關鍵詞:電遷移網版印刷奈米銀導線
外文關鍵詞:ElectromigrationScreen-PrintingAgNanoparticlesInterconnects
相關次數:
  • 推薦推薦:0
  • 點閱點閱:298
  • 評分評分:*****
  • 下載下載:1
  • 收藏收藏:0
近年來,印刷技術逐漸受到重視,其以創新設計的技術,將精密導線以直接印刷方式(Direct printing)進行導線製作在超薄、可撓式基板上,只要一台設備就可完成製程,故相較於步驟繁複及成本高昂的黃光蝕刻製程,超細導線印刷技術兼具了成本競爭力與環保優勢。可撓式基板材料為具有可連續捲對捲(Roll-to Roll)生產優勢的新世代基板技術,在材料上則需具備輕、薄、耐衝擊、不易破碎以及攜帶方便、可彎曲性之特性。而材料方面,奈米銀在經過燒結後有著很高的導電率,且奈米銀導線製程擁有高度的圖案可撓性、可大面積印刷以及低廉的製程成本;其中電遷移破壞數十年以來都是電子產品在高電流驅動之下的一種主流破壞機制。然而目前尚未有人針對印刷製程的奈米銀導線進行電遷移破壞的研究。而隨著電子產品的微縮,印刷電路中的導線尺寸將變得更加細長,其長寬比會激增,當元件通過一定電流時,由於微縮下的銀導線其截面積小,因此通過的電流密度會激增,電遷移破壞的驅動力與產生的焦耳熱也會跟著增強,進一步造成結構較為脆弱的印刷銀導線更迅速達到斷路的破壞,減短電子產品的使用壽命。本實驗建立的不同長度的銀導線在150°C的環境下施加1.5×10^5 A/cm^2的高電流密度架設電遷移測試,以了解電遷移對於印刷銀導線製程的影響以及其破壞機制與微結構的變化,並與傳統濺鍍製程的電遷移行為做比較以建立印刷製程的可靠度研究。
In recent years, printing technology is one of the promising patterning techniques in flexible electronic devices due to its low cost manufacturing process, reduction of waste materials, and large-area patternability. To date, silver nanopaste has mostly been used, because silver has the lowest resistivity among all the metals. Second, Ag nanoparticles are relatively easy to be formed into various sizes and shapes, and disperse well in a variety of organic solvent. Moreover, direct printing is capable of putting interconnects on flexible substrate. With the trend of miniaturization of electronic products, electronic packaging is shrinking dramatically year after year. Therefore, when a process is developed into fine-pitch conductive interconnects, electromigration (EM) associated with open-circuit failure could become a concern due to the increased current density, so there is an increasing significance of the reliability in the interconnect packaging. In this study, EM behavior of printed interconnects composed of silver nanoparticles was evaluated under a current density of 1.5×10^5 A/cm^2 at 150°C through in-situ resistance versus time measurement. During the EM test, the resistance of the interconnects increased and the morphologies of silver nanoparticles changed due to Joule heating generated under high current density, eventually causing failures of the interconnects. The interconnects with different lengths from 100 μm to 400 μm were also examined and discussed. In addition, the reliability of the printed interconnect would be compared to that of conventional deposited silver interconnect under the same condition.
摘要 I
Abstract II
Content III
致謝 VI
List of Figures VIII
List of Tables XVI
Chapter1 Introduction 1
Chapter2 Literature Review 3
2.1 Sintered silver nanoparticles 3
2.2 Electromigration 9
2.2.1 Electromigration phenomenon in metals 10
2.2.2 Back stress and critical length 14
2.2.3 Black’s equation 17
2.3 Current crowding effect 19
2.4 Joule heating 22
2.5 Percolation model for porous structure 24
Chapter3 Experimental Details 29
3.1 Specimen preparation 29
3.1.1 Structure design 29
3.1.2 Specimen fabrication 30
3.2 Experimental setup 34
3.2.1 Electromigration test 34
3.2.2 Joule heating measurement 37
3.2.3 Infrared camera observation 38
3.2.4 ANSYS simulation 41
Chapter4 Experimental Results 45
4.1 Microstructures of interconnects under different fabrication method 45
4.2 Joule heating measurement 49
4.3 In-situ Resistance versus time curves measurements 55
4.3.1 RVT curves of printed Ag interconnect 55
4.3.2 RVT curves of sputtered Ag interconnect 59
4.4 Microstructural evolution during electromigration test 62
4.4.1 Microstructural evolution of printed Ag interconnects 62
4.4.2 Microstructural evolution of sputtered Ag interconnects 70
4.4.3 EM test of sputtered interconnects considering different Joule heating 77
4.5 Isothermal sintering of printed interconnects 81
4.6 Infrared camera observation for temperature distribution 83
4.7 The ANSYS simulation 87
Chapter5 Discussions 95
5.1 Effect of back stress and length of Ag interconnect 95
5.1.1 Calculation of critical length 98
5.2 Effect of different fabrication of Ag interconnect 101
5.2.1 Effect of Joule heating 104
5.2.2 Modification of Joule heating and current density effect 105
5.3 Microstructures under isothermal sintering of printed interconnects 108
5.4 Resistance and microstructure changes of printed Ag interconnect 111
5.5 Resistance and microstructure changes of sputtered Ag interconnect 114
5.5.1 Calculation of atomic flux during electromigration test 116
Chapter6 Conclusions 119
References 121
[1] A. Biswas, H. Eilers, F. Hidden, O. C. Aktas, C. V. S. Kiran, Large broadband visible to infrared plasmonic absorption from Ag nanoparticles with a fractal structure embedded in a Teflon AF® matrix. Applied Physics Letters 88, 013103 (2006).
[2] Y. Li, K.-s. Moon, C. P. Wong, Electronics Without Lead. Science 308, 1419 (2005).
[3] H. Schwarzbauer, R. Kuhnert, Novel large area joining technique for improved power device performance. IEEE Transactions on Industry Applications 27, 93-95 (1991).
[4] H. Shin, H. Lee, H. Yu, K.-S. Lim, M. Lee, Laser-Direct Patterning of Nanostructured Metal Thin Films. (2010), vol. 48, pp. 163-168.
[5] Y. Sun, Y. Xia, Large‐Scale Synthesis of Uniform Silver Nanowires Through a Soft, Self‐Seeding, Polyol Process. Advanced Materials 14, 833-837 (2002).
[6] K.-S. Kim, W.-R. Myung, S.-B. Jung, Effects of sintering conditions on microstructure and characteristics of screen-printed Ag thin film. Electronic Materials Letters 8, 309-314 (2012).
[7] K.-S. Kim, Y. Kim, S.-B. Jung, Microstructure and adhesion characteristics of a silver nanopaste screen-printed on Si substrate. Nanoscale Research Letters 7, 49 (2012).
[8] C.-H. Tsou, K.-N. Liu, H.-T. Lin, F.-Y. Ouyang, Electrochemical Migration of Fine-Pitch Nanopaste Ag Interconnects. Journal of Electronic Materials 45, 6123-6129 (2016).
[9] T. L. Alford, E. Misra, S. K. Bhagat, J. W. Mayer, Influence of Joule heating during electromigration evaluation of silver lines. Thin Solid Films 517, 1833-1836 (2009).
[10] M. O. Alam, C. Bailey, B. Y. Wu, D. Yang, Y. C. Chan, in 2007 International Symposium on High Density packaging and Microsystem Integration. (2007), pp. 1-7.
[11] K.-T. Jang et al., Current-induced morphological evolution and reliability of Ag interconnects fabricated by a printing method based on nanoparticles. RSC Advances 7, 9719-9723 (2017).
[12] Z. Zhao, A. Mamidanna, C. Lefky, O. Hildreth, T. L. Alford, A percolative approach to investigate electromigration failure in printed Ag structures. Journal of Applied Physics 120, 125104 (2016).
[13] M. Hauder, W. Hansch, J. Gstöttner, D. Schmitt-Landsiedel, Ag metallization with high electromigration resistance for ULSI. Solid-State Electronics 47, 1227-1231 (2003).
[14] S. Strehle et al., Electromigration in electroplated Cu(Ag) alloy thin films investigated by means of single damascene Blech structures. Microelectronic Engineering 86, 2396-2403 (2009).
[15] A. Bittner, H. Seidel, U. Schmid, Electromigration resistance and long term stability of textured silver thin films on LTCC. Microelectronic Engineering 88, 127-130 (2011).
[16] J. R. Greer, R. A. Street, Thermal cure effects on electrical performance of nanoparticle silver inks. Acta Materialia 55, 6345-6349 (2007).
[17] L. Kwi Jong, J. Byung Ho, K. Tae Hoon, J. Jaewoo, Direct synthesis and inkjetting of silver nanocrystals toward printed electronics. Nanotechnology 17, 2424 (2006).
[18] D. Kim, S. Jeong, B. K. Park, J. Moon, Direct writing of silver conductive patterns: Improvement of film morphology and conductance by controlling solvent compositions. Applied Physics Letters 89, 264101 (2006).
[19] T. H. J. van Osch, J. Perelaer, A. W. M. de Laat, U. S. Schubert, Inkjet Printing of Narrow Conductive Tracks on Untreated Polymeric Substrates. Advanced Materials 20, 343-345 (2007).
[20] F. Lange F, Sinterability of Agglomerated Powders. Journal of the American Ceramic Society 67, 83-89 (1984).
[21] C. J. Brinker, G. W. Scherer, in Sol-Gel Science, C. J. Brinker, G. W. Scherer, Eds. (Academic Press, San Diego, 1990), pp. 674-742.
[22] C. Kan-Sen, H. Kuo-Cheng, L. Hsien-Hsuen, Fabrication and sintering effect on the morphologies and conductivity of nano-Ag particle films by the spin coating method. Nanotechnology 16, 779 (2005).
[23] J.-W. Park, S.-G. Baek, Thermal behavior of direct-printed lines of silver nanoparticles. Scripta Materialia 55, 1139-1142 (2006).
[24] H. Moon Yj Fau - Kang et al., Effect of laser intensity on the characteristic of inkjet-printed silver nanoparticles during continuous laser sintering. Journal of Nanoscience and Nanotechnology 14, 8631-8634 (2014).
[25] B. J. Perelaer, A. W. M. de Laat, C. E. Hendriks, U. S. Schubert, Inkjet-printed silver tracks: low temperature curing and thermal stability investigation. Journal of Materials Chemistry 18, 3209-3215 (2008).
[26] Y. J. Moon, H. Kang, K. Kang, S.-J. Moon, J. Young hwang, Effect of Thickness on Surface Morphology of Silver Nanoparticle Layer During Furnace Sintering. Journal of Electronic Materials 44, 1192-1199 (2015).
[27] P. Zeng, S. Zajac, P. C. Clapp, J. A. Rifkin, Nanoparticle sintering simulations1This paper was presented at the Microstructural Evolution in Bulk Phases, MRS Symposium F, 2–5 December, 1996, Boston, Massachusetts and should have been published as part of the conference volume of MSE A, Vol 238/1, October, 1997. The publisher regrets that the paper was omitted from the issue.1. Materials Science and Engineering: A 252, 301-306 (1998).
[28] M. J. Mayo, Processing of nanocrystalline ceramics from ultrafine particles. International Materials Reviews 41, 85-115 (1996).
[29] W. Reitz, Ceramic Processing and Sintering by M. N. Rahaman. Materials and Manufacturing Processes 12, 555-556 (1997).
[30] J. S. Kang, J. Ryu, H. S. Kim, H. T. Hahn, Sintering of Inkjet-Printed Silver Nanoparticles at Room Temperature Using Intense Pulsed Light. Journal of Electronic Materials 40, 2268 (2011).
[31] E. T. Ogawa, L. Ki-Don, V. A. Blaschke, P. S. Ho, Electromigration reliability issues in dual-damascene Cu interconnections. IEEE Transactions on Reliability 51, 403-419 (2002).
[32] K. N. Tu, Recent advances on electromigration in very-large-scale-integration of interconnects. Journal of Applied Physics 94, 5451-5473 (2003).
[33] P. S. Ho, T. Kwok, Electromigration in metals. Reports on Progress in Physics 52, 301 (1989).
[34] I. A. Blech, Electromigration in thin aluminum films on titanium nitride. Journal of Applied Physics 47, 1203-1208 (1976).
[35] M. Gerardin, De l’action de la pile sur les sels de potasse et de soude et sur les alliages soumisa la fusion ignée. CR Acad. Sci. Paris 53, 727 (1861).
[36] H. B. Huntington, in Diffusion in Solids, A. S. Nowick, J. J. Burton, Eds. (Academic Press, 1975), pp. 303-352.
[37] K. N. Tu, J. W. Mayer, L. C. Feldman, Electronic thin film science : for electrical engineers and materials scientists. (Macmillan ; Maxwell Macmillan Canada ; Maxwell Macmillan International, New York; Toronto; New York, 1992).
[38] H. B. Huntington, A. R. Grone, Current-induced marker motion in gold wires. Journal of Physics and Chemistry of Solids 20, 76-87 (1961).
[39] I. A. Blech, C. Herring, Stress generation by electromigration. Applied Physics Letters 29, 131-133 (1976).
[40] C. Herring, Diffusional Viscosity of a Polycrystalline Solid. Journal of Applied Physics 21, 437-445 (1950).
[41] K.-N. Tu, Electronic Thin-Film Reliability. (Cambridge University Press, Cambridge, 2010).
[42] J. R. Lloyd, Electromigration in thin film conductors. Semiconductor Science and Technology 12, 1177 (1997).
[43] K. N. Tu, Electromigration in stressed thin films. Physical Review B 45, 1409-1413 (1992).
[44] J. R. Black, in 2005 IEEE International Reliability Physics Symposium, 2005. Proceedings. 43rd Annual. (2005), pp. 1-6.
[45] J. R. Black, Electromigration - A brief survey and some recent results. IEEE Transactions on Electron Devices 16, 338-347 (1969).
[46] J. R. Black, Electromigration failure modes in aluminum metallization for semiconductor devices. Proceedings of the IEEE 57, 1587-1594 (1969).
[47] J. C. Blair, P. B. Ghate, C. T. Haywood, Concerning electromigration in thin films. Proceedings of the IEEE 59, 1023-1024 (1971).
[48] N. V. Hieu, C. Salm, Effect of current crowding on electromigration lifetime investigated by simulation and experiment. Computational Materials Science 49, S235-S238 (2010).
[49] H. Wang, C. Bruynseraede, D. Chiaradia, K. Maex, The influence of a structurally induced current crowding on electromigration. Microelectronic Engineering 76, 241-244 (2004).
[50] H. Wang, C. Bruynseraede, K. Maex, Impact of current crowding on electromigration-induced mass transport. Applied Physics Letters 84, 517-519 (2004).
[51] Y. C. Chan, D. Yang, Failure mechanisms of solder interconnects under current stressing in advanced electronic packages. Progress in Materials Science 55, 428-475 (2010).
[52] Y.-S. Lai, C.-L. Kao, Electrothermal coupling analysis of current crowding and Joule heating in flip-chip packages. Microelectronics Reliability 46, 1357-1368 (2006).
[53] L. Zhang et al., Effect of current crowding on void propagation at the interface between intermetallic compound and solder in flip chip solder joints. Applied Physics Letters 88, 012106 (2006).
[54] K. Croes, Y. Li, M. Lofrano, C. J. Wilson, Z. Tőkei, Intrinsic study of current crowding and current density gradient effects on electromigration in BEOL copper interconnects. in 2013 IEEE International Reliability Physics Symposium (IRPS). (2013), pp. 2C.3.1-2C.3.4.
[55] J. S. Huang, E. C. C. Yeh, Z. B. Zhang, K. N. Tu, The effect of contact resistance on current crowding and electromigration in ULSI multi-level interconnects. Materials Chemistry and Physics 77, 377-383 (2003).
[56] E. Misra, N. D. Theodore, J. W. Mayer, T. L. Alford, Failure mechanisms of pure silver, pure aluminum and silver–aluminum alloy under high current stress. Microelectronics Reliability 46, 2096-2103 (2006).
[57] W. Wu, J. S. Yuan, S. H. Kang, A. S. Oates, Electromigration subjected to Joule heating under pulsed DC stress. Solid-State Electronics 45, 2051-2056 (2001).
[58] S. H. Kang, E. Shin, A three-dimensional nonlinear analysis of electromigration-induced resistance change and Joule heating in microelectronic interconnects. Solid-State Electronics 45, 341-346 (2001).
[59] J. P. Joule, On the heat evolved by metallic conductors of electricity, and in the cells of a battery during electrolysis. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 19, 260-277 (1841).
[60] R. J. Bearman, Introduction to Thermodynamics of Irreversible Processes. Journal of the American Chemical Society 84, 4995-4996 (1962).
[61] N. F. John, Temperature coefficient of resistance. Physics Education 25, 167 (1990).
[62] M. O. Alam, B. Y. Wu, Y. C. Chan, K. N. Tu, High electric current density-induced interfacial reactions in micro ball grid array (μBGA) solder joints. Acta Materialia 54, 613-621 (2006).
[63] S. W. Liang, Y. W. Chang, C. Chen, Effect of Al-trace dimension on Joule heating and current crowding in flip-chip solder joints under accelerated electromigration. Applied Physics Letters 88, 172108 (2006).
[64] C. Pennetta, L. Reggiani, G. Trefán, Scaling and Universality in Electrical Failure of Thin Films. Physical Review Letters 84, 5006-5009 (2000).
[65] E. Misra, M. M. Islam, M. Hasan, H. C. Kim, T. L. Alford, Percolative approach for failure time prediction of thin film interconnects under high current stress. Microelectronics Reliability 45, 391-395 (2005).
[66] S.-Y. Chang, C.-F. Chen, S.-J. Lin, T. Z. Kattamis, Electrical resistivity of metal matrix composites. Acta Materialia 51, 6291-6302 (2003).
[67] A. Scorzoni, I. De Munari, H. Stulens, V. D’Haeger, Non‐linear resistance behavior in the early stages and after electromigration in Al‐Si lines. Journal of Applied Physics 80, 143-150 (1996).
[68] Material Properties. Engineering ToolBox, https://www.engineeringtoolbox.com/ (2001).
[69] J. H. Choi, K. Ryu, K. Park, S.-J. Moon, Thermal conductivity estimation of inkjet-printed silver nanoparticle ink during continuous wave laser sintering. International Journal of Heat and Mass Transfer 85, 904-909 (2015).
[70] T.-B. Song et al., Nanoscale Joule Heating and Electromigration Enhanced Ripening of Silver Nanowire Contacts. ACS Nano 8, 2804-2811 (2014).
[71] T. Bai, P. Lu, Z. Guo, L. Xiang, L. Liu, A simple approach towards citrate-stabilized Ag nanoparticles with widely tunable sizes. Colloids and Surfaces A: Physicochemical and Engineering Aspects 540, 143-149 (2018).
[72] D. Feng, Y. Feng, S. Yuan, X. Zhang, G. Wang, Melting behavior of Ag nanoparticles and their clusters. Applied Thermal Engineering 111, 1457-1463 (2017).
[73] L. A. Mark et al., Electrical sintering of nanoparticle structures. Nanotechnology 19, 175201 (2008).
[74] M. N. Rahaman, Ceramic Processing and Sintering. Materials Engineering (Taylor & Francis, 2003).
[75] M. Shatzkes, J. R. Lloyd, A model for conductor failure considering diffusion concurrently with electromigration resulting in a current exponent of 2. Journal of Applied Physics 59, 3890-3893 (1986).
[76] M. Hauder, J. Gstöttner, W. Hansch, D. Schmitt-Landsiedel, Scaling properties and electromigration resistance of sputtered Ag metallization lines. Applied Physics Letters 78, 838-840 (2001).
[77] H. Crew, General Physics: An Elementary Text-book for Colleges. (Macmillan, 1910).
[78] J. N. Calata, G.-Q. Lu, K. Ngo, L. Nguyen, Electromigration in Sintered Nanoscale Silver Films at Elevated Temperature. Journal of Electronic Materials 43, 109-116 (2014).
[79] J. E. Morris, Nanoparticle Properties. (2008), pp. 93-107.
[80] M. Ohring, in The Materials Science of Thin Films, M. Ohring, Ed. (Academic Press, San Diego, 1992), pp. 355-402.
[81] R. Anderson, R. Buscall, R. Eldridge, P. Mulvaney, P. J. Scales, Ostwald ripening of comb polymer stabilised Ag salt nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects 459, 58-64 (2014).
[82] A. Baldan, Review Progress in Ostwald ripening theories and their applications to nickel-base superalloys Part I: Ostwald ripening theories. Journal of Materials Science 37, 2171-2202 (2002).
[83] A. Mansourian et al. Electromigration Phenomena in Sintered Nanoparticle Ag Systems Under High Current Density (HiTEN conference, 2015), pp. 59-63.
[84] S. A. Paknejad et al., Microstructural evolution of sintered silver at elevated temperatures. Microelectronics Reliability 63, 125-133 (2016).
[85] C. M. Tan, A. Roy, Electromigration in ULSI interconnects. Materials Science and Engineering: R: Reports 58, 1-75 (2007).
[86] S. Terashima, Y. Kariya, T. Hosoi, M. Tanaka, Effect of silver content on thermal fatigue life of Sn-xAg-0.5Cu flip-chip interconnects. Journal of Electronic Materials 32, 1527-1533 (2003).
[87] K. S. Siow, Are Sintered Silver Joints Ready for Use as Interconnect Material in Microelectronic Packaging? Journal of Electronic Materials 43, 947-961 (2014).
[88] F.-Y. Ouyang, K. N. Tu, C.-L. Kao, Y.-S. Lai, Effect of electromigration in the anodic Al interconnect on melting of flip chip solder joints. Applied Physics Letters 90, 211914 (2007).
[89] Mansourian, Ali, Seyed Amir Paknejad, Qiannan Wen, Gema Vizcay-Barrena, Roland A. Fleck, Anatoly V. Zayats, and Samjid H. Mannan. 2016. "Tunable Ultra-high Aspect Ratio Nanorod Architectures grown on Porous Substrate via Electromigration." Scientific Reports 6: 22272.
[90] Silver Metallization: Stability and Reliability, D. Adams, T. L. Alford, J. W. Mayer, Eds. (Springer London, London, 2008), pp. 75-81.
[91] M. Hauder, W. Hansch, J. Gstöttner, D. Schmitt-Landsiedel, Electromigration resistance of sputtered silver lines using different patterning techniques. Microelectronic Engineering 60, 51-57 (2002).
[92] A. Latz et al., Simulation of electromigration effects on voids in monocrystalline Ag films. Physical Review B 85, 035449 (2012).
[93] A. Bittner, F. Prewein, U. Schmid, Impact of Patterning Technique on the Long Term Stability of Ag Thin Films. Procedia Engineering 87, 116-119 (2014).
[94] A. Bittner, N. Pagel, H. Seidel, U. Schmid, Long-term stability of Ag and Cu thin films on glass, LTCC and alumina substrates. Microsystem Technologies 18, 879-884 (2012).
[95] W. D. Nix, E. Arzt, On void nucleation and growth in metal interconnect lines under electromigration conditions. Metallurgical Transactions A 23, 2007-2013 (1992).
[96] X. Zhu et al., Electromigration in Sn–Ag solder thin films under high current density. Thin Solid Films 565, 193-201 (2014).
(此全文限內部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *