帳號:guest(3.15.144.132)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):特杜吾
作者(外文):Tyagi, Dhruv
論文名稱(中文):以偏振態控制表面電漿子傳遞方向之研究
論文名稱(外文):Polarization Controlled Directional Control of Surface Plasmon Polaritons
指導教授(中文):黃承彬
指導教授(外文):Huang, Chen-Bin
口試委員(中文):盧廷昌
吳品頡
陳國平
劉昌樺
口試委員(外文):Lu, Tien-Chang
Wu, Pin-Chieh
Chen, Kuo-Ping
Liu, Chang-Hua
學位類別:博士
校院名稱:國立清華大學
系所名稱:跨院國際博士班學位學程
學號:105003859
出版年(民國):109
畢業學年度:109
語文別:英文
論文頁數:69
中文關鍵詞:等離子體
外文關鍵詞:PlasmonicsOpticsCoherence Control
相關次數:
  • 推薦推薦:0
  • 點閱點閱:259
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
我們通過數值和實驗證明了功能等離子超表面,旨在實現多方向SPP操縱。取決於激發光源的偏振,SPP可以被定向到至少七個單向狀態和一個分裂狀態。我們還以數值方式展示了用於將SPP路由到三個獨立方向的納米級蝕刻三角形陣列。此處介紹的工作為實現下一代光學納米電路開闢了新途徑。
Surface plasmon polaritons (SPPs) are electromagnetic excitations whose propagation is confined along the interface of a metal and a dielectric as a result of electromagnetic fields coupled to oscillating electrons. SPPs exhibit unique optical properties in metallic nanostructures which has opened up the possibilities of their applications in many fields such as bio-sensing, photovoltaics, near-field microscopy, integrated optics and sub wavelength optical manipulators. Directional steering of light using plasmonic structures is desirable for next-generation optical nano circuits. Metallic nanostructures support surface plasmon polariton (SPP) propagation under optical excitations at sub-wavelength regimes. SPPs can be launched by coupling free space light into SPP modes using a variety of techniques such as by using prisms and gratings. For efficient manipulation and launch of SPPs metasurfaces with nanostructures in a metal film such as a subwavelength slits and apertures has been demonstrated in past. Directional control over the beam propagation has the potential to enable the development of various highly efficient nanodevices such as plasmonic transmitters, receivers and sensors. Both solid and etched structures have been investigated in the past for achieving unidirectional plasmonic routing. But, very few successful attempts have been made in obtaining polarization sensitive unidirectional routing with more than one directions in a single device. To control the propagation direction of the SPPs, the primary and thus the most important aspect is the ability to control the spatial and temporal phases. To achieve this, metasurfaces can be used since the subwavelength components in a metasurface can be optimized for the enabling polarization dependent field enhancements in the aspired direction. The interference effects between two coupled SPP launch sources can be used for achieving unidirectionality for an orthogonal polarization. An assembly of these components placed at strategic locations can provide with the functionality for direction the SPP launch in the direction of choice based on the polarization of the exciting source. However, controlling the SPP launch in all the directions still remains challenging. We numerically and experimentally demonstrate a functional plasmonic metasurface designed to achieve multi-directional SPP steering. Depending on the polarization of the exciting light source, SPPs can be directed to at least seven unidirectional states and one split state. We also numerically demonstrate a nanoscopic etched triangle array for routing SPPs to three independent directions. The work presented here opens a new avenue for realization of of next-generation optical nanocircuits.
Table of Contents


1. Chapter 1: Introduction- 1
1.1. Nano-scaled optics- 1
1.2. Surface plasmons- 2
1.3. Metamaterials and Metasurface- 3
1.4. Metasurfaces for plasmonic field control- 4
1.5. Use of Babinet inverted nanoantennas- 6
2. Chapter 2: Surface Plasmon Polaritons- 8
2.1. Definition- 8
2.2. SPP: length scales- 8
2.3. SPP: dispersion relation- 11
2.4. SPP: wavelength- 13
2.5. SPP: propagation length- 14
2.6. SPP: penetration depth- 14
3. Chapter 3: Excitation of Surface Plasmon Polaritons- 16
3.1. Using a dielectric prism- 17
3.1.1. Kretschmann configuration- 17
3.1.2. Otto configuration- 18
3.2. Using diffraction and scattering elements- 19
4. Chapter 4: Plasmonic field control by nanostructures- 20
4.1. Theoretical literature- 20
4.2. Experimental literature- 22
5. Chapter 5: Unidirectional Steering by Babinet inverted Optical Slots- 30
5.1. Transmission through rectangular holes- 30
5.1.1. Single optical slot- 30
5.1.2. Two adjacent slots- 32
5.2. Directional coupling by two asymmetric adjacent slots- 33
5.2.1. SPP launch intensities- 34
5.2.2. Phase conditions- 35
5.2.3. Working principle for unidirectionality - 35
6. Chapter 6: Polarization Controlled Three-Directional Routing of SPPs- 37
6.1. Tri-directional SPP overview- 37
6.2. Excitation setup- 39
6.3. Working principle for a single particle- 40
6.4. Array structure- 42
7. Chapter 7: Multidirectional steering by Babinet Inverted Metasurface- 45
7.1. Design- 46
7.2. Working principle- 46
7.2.1. Resonance conditions and OABIAEs dimensions- 46
7.2.2. Phase calculations- 48
7.3. Simulation method- 51
7.4. Materials and sample fabrication- 52
5. Experimental setup- 52
7.6. Results and discussions- 53
7.6.1. E-field intensity H fields- 53
7.6.2. H-fields- 55
7.6.3. E-field profile- 56
7.6.4. Experimental images- 57
7.6.5. Extinction ratio-
7.6.6. SPP excitation efficiency calculations- 59
6.7. Steering curve- 60
8. Chapter 8: Conclusions- 63
9. References- 65


References

[1] V.M. Agranovich, D.L. Mills, Surface Polaritons, North Holland, Amsterdam (1982).
[2] H. Raether, Surface Plamons, Springer-Verlag, Berlin (1988).
[3] A.D. Boardman, Electromagnetic Surface Modes, John Wiley & Sons, New York (1882).
[4] G. Boisde, A. Harmer, Chemical and Biochemical Sensing with Optical Fibers andWaveguides, Arthech House, Boston, (1996).
[5] H.-E. Ponath, G.I. Stegeman (Eds.), Nonlinear Surface Electromagnetic Phenomena, North-Holland, Amsterdam (1991).
[6] W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424, 824 (2003).
[7] A.V. Zayats, I.I. Smolyaninov, J. Opt. A: Pure Appl. Opt., 5 S16 (2003).
[8] F. Keilman, Proc. SPIE 1029 50 (1988).
[9] E. Ozbay, Science 311,189 (2006).
[10] S. A. Maier, Plasmonics: fundamentals and applications, Springer (2007).
[11] P. Biagioni, J.S. Huang, and B. Hecht, Rep. Prog. Phys. 75, 024402 (2012);
[12] C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, Nano Lett. 10, 592 (2010).
[13] K. L. Tsakmakidis, A. D. Boardman, and O. Hess, Nature 450, 397 (2007);
[14] Y. Liu and X. Zhang, Chem. Soc. Rev. 40, 2494 (2011)
[15] D. J. Bergman and M. I. Stockman, Phys. Rev. Lett. 90, 027402 (2003).
[16] For example: Y. Gorodetski, A Niv, V. Kleiner, and E. Hasman, Phys. Rev. Lett. 101, 043903 (2008).
[17] C.‐T. Ku, H.‐N. Lin, and C.‐B. Huang, Appl. Phys. Lett. 106, 053112 (2015).
[18] C.‐D. Ku, W.‐L. Huang, J.‐S. Huang, and C.‐B. Huang, IEEE Photon. J. 5, 4800409 (2013).
[19] W.‐Y. Tsai, J.‐S. Huang, and C.‐B. Huang, Nano Lett. 14, 547 (2014).
[20] W.‐H. Dai,1 F.‐C. Lin,2 C.‐B. Huang,1 and J.‐S. Huang, Nano Lett. 14, 3881 (2014).
[21] Y.‐T. Hung, C.‐B. Huang, and J.‐S. Huang, Opt. Express 20, 20342 (2012).
[22] P. Geisler, G. Razinskas, E. Krauss, X.‐F. Wu, C. Rewitz, P. Tuchscherer, S. Goetz, C.‐B. Huang, T.Brixner, and B. Hecht, Phys. Rev. Lett. 111, 183901 (2013).
[23] F. Monticone, A. Alu, Chin. Phys. B 23, 047809 (2014).
[24] R.A. Shelby, D.R. Smith and S .Schultz, Science 292 77. (2001).
[25] V.G. Veselago Sov. Phys. Uspekhi 10 509. (1968).
[26] A. Alu and N. Engheta, Phys. Rev. E 72 16623 (2005).
[27] J.B. Pendry, D. Schurig and D.R. Smith, Science 312 1780 (2006).
[28] D. Rainwater, A. Kerkhoff, K. Melin, J.C. Soric, G. Moreno and A. Alu New J. Phys. 14 013054 (2012).
[29] D.S. churig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr and D.R. Smith, Science 314 977 (2006).
[30] A. Alu, Phys. Rev. B 80 245115 (2009).
[31] S. Tretyakov, P. Alitalo, O. Luukkonen and C. Simovski, Phys. Rev. Lett. 103 103905 (2009).
[32] U. Leonhardt and T.G. Philbin New J. Phys. 8 247 (2006).
[33] I.I. Smolyaninov, Phys. Rev. Lett. 107 253903 (2011).
[34] I.I. Smolyaninov and V.N. Smolyaninova Advances in condensed matter physics 479635 (2013).
[35] N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.P. Tetienne, F. Capasso and Z. Gaburro, Science 334 333 (2011).
[36] X. Ni, N.K. Emani, A.V. Kildishev, A. Boltasseva and V.M. Shalaev Science 335 427 (2012).
[37] F. Aieta, P.G. Genevet, M.A. Kats, N. Yu, R. Blanchard, Z. Gaburro and F. Capasso Nano Lett. 12 4932 (2012).
[38] X. Ni, A.V. Kildishev and V.M. Shalaev, Nat. Commun. 4 2807 (2013).
[39] C.C. Chen, I.C. Hsieh, S.D. Yang, C.B. Huang, Opt. Express 20, 27062 (2012).
[40] H. Raether, Springer: Berlin, (1988).
[41] H. J. Lezec, A. Degiron, E. Devaux, R.A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, Science, 297, 820−822 (2002).
[42] P. Lalanne, J. P. Hugonin, J. C. Rodier, Phys. Rev. Lett., 95, 263902 (2005).
[43] J.Y. Laluet, A. Drezet, C. Genet, T.W. Ebbessen, New J. Phys., 10, 105014 (2008).
[44] C. So nnichsen, A.C. Duch, G. Steininger, M. Koch, G. von Plessen, J. Feldmann, Appl. Phys. Lett., 76, 140−142 (2000).
[45] L. Yin, V.K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.H. Chang, S. K. Gray, G.C. Schatz, D.B. Brown, C.W. Kimball, Appl. Phys. Lett., 85, 467−469 (2004).
[46] A.L. Baudrion, et al. Opt. Express, 16, 3420−3429 (2008).
[47] V.M. Agranovich, D.L. Mills, Surface Polaritons, North-Holland, Amsterdam, (1982).
[48] H. Raether, Surface Plasmons, Springer-Verlag, Berlin, (1988).
[49] A.V. Zayats et al., Phys. Rep. 408, 131–314 (2005).
[50] W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424, 824 (2003).
[51] A.V. Zayats, I.I. Smolyaninov, J. Opt. A: Pure Appl. Opt. 5, S16 (2003).
[52] A.V. Zayats, I.I. Smolyaninov, A.A Maradudin, Phys. Reports. 408, 131-314 (2005).
[53] M. I. Stockman, S. V. Faleev, and D. J. Bergman, Phys. Rev. Lett. 88, 067402 (2002).
[54] T.‐W. Lee and S. K. Gray, Phys. Rev. B 71, 035423 (2005).
[55] M. Durach, A. Rusina, and M. I. Stockman, Nano Lett. 7, 3145 (2007).
[56] G. Leveque and O. J. F. Martin, Phys. Rev. Lett. 100, 117402 (2008).
[57] M. Sukharev and T. Seideman, Nano Lett. 6, 715 (2006).
[58] T. Brixner, F. J. Garcia de Abajo, J. Schneider, and W. Pheiffer, Phys. Rev. Lett. 95, 093901 (2005).
[59] J. S. Huang, D. V. Voronine, P. Tuchscherer, T. Brixner, and B. Hecht, Phys. Rev. B 79, 195441 (2009).
[60] P. Tuchscherer, C. Rewitz, D. V. Voronine, F. J. Garc´ıa de Abajo, W. Pfeiffer, and T. Brixner, Opt. Express 17, 14235 (2009).
[61] P.N. Li, H.H. Tsao, J.S. Huang, and C.‐B. Huang, Opt. Lett. 36, 2339 (2011).
[62] A. Pors and S. I. Bozhevolnyi, Phys. Rev. App. 5, 064015 (2016).
[63] S. Choi, D. Park, C. Lienau, M. S. Jeong, C. C. Byeon, D.‐K. Ko, and D. S. Kim, Opt. Express 16, 12075 (2008).
[64] J. M. Gunn, M. Ewald, and M. Dantus, Nano Lett. 6, 2804 (2006).
[65] C. Rewitz e.al., Phys. Rev. App. 1, 014007 (2014).
[66] W.H. Dai, F.C. Lin, C.B. Huang, and J.S. Huang, Nano Lett. 14, 3881 (2014).
[67] Y.T. Hung, C.B. Huang, and J.S. Huang, Opt. Express 20, 20342 (2012).
[68] P. Geisler, G. Razinskas, E. Krauss, X.F. Wu, C. Rewitz, P. Tuchscherer, S. Goetz, C.B. Huang, T. Brixner, and B. Hecht, Phys. Rev. Lett. 111, 183901 (2013).
[69] A. Pors, M. G. Nielsen, T. Bernardin, J. C. Weeber, and S. I. Bozhevolnyi, Light: Science and App. 3, e197 (2014).
[70] F. J. Rodriguez‐Fortuno et.al, Science 340, 328 (2013).
[71] L. Huang e.al., Light: Science and App. 2, e70 (2013).
[72] J. Lin et. al., Science 340, 331 (2013).
[73] R. Guo, M. Decker, F. Setzpfandt, I. Staude, D.N. Neshav, Y.S> Kivshar, Nano Lett. 15, 5, 3324 (2015).
[74] S.J. Zeng, Q. Zhang, X.M. Zhang, X.L. Liu, J.J. Xiao, Opt. Lett., 43, 13, 3053 (2018).
[75] I. Sinev, F. Komissarenko, I. Iorsh, D. Permyyakov, A. Samusev, A. Bogdanov, ACS Photonics, 7, 3, 680 (2020).
[76] Y. Y. Tanaka, T. Shimura, Nano Lett. 17, 5, 3165 (2017).
[77] Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, and M. Käll, Nat. Phys. 3(12), 884–889 (2007).
[78] H. A. Bethe, Phys. Rev. 66(7–8), 163–182 (1944).
[79] M. Janipour, T. Pakizeh and F.Hodjat-Kashani, Opti. Expr. 21(26), 31769 (2013).
[80] J. Yang, X. Xiao, C. Hu, W. Zhang, S, Zhou and J. Zhang, Nano Lett. 14, 704-709 (2014).
[81] P. Biagioni, M. Savoini, J. S. Huang, L. Duo, M. Finazzi, B. Hecht, Phys. Rev. B, 80, 153409 (2009).
[82] P. B. Johnson and R. W. Christy, Phys. Rev. B6, 4370 (1972).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *