帳號:guest(18.118.37.209)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):錢譽丹
作者(外文):Chien, Yu-Dan
論文名稱(中文):小角度X光分析成長於奈米碳管及石墨烯之釕鉑核殼觸媒及其應用於直接甲醇燃料電池之研究
論文名稱(外文):SAXS Characterization of MWCNTs and Graphene Supported Ru-Pt Core-Shell Nanocatalysts and their Performance for Fuel Cells Applications
指導教授(中文):林滄浪
鄭有舜
指導教授(外文):Lin, Tsang-Lang
Jeng, U-Ser
口試委員(中文):陳燦耀
王本誠
口試委員(外文):Chen, Tsan-Yao
Wang, Pen-Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:先進光源科技學位學程
學號:105001602
出版年(民國):107
畢業學年度:107
語文別:中文
論文頁數:103
中文關鍵詞:燃料電池小角度散射核殼觸媒石墨烯奈米碳管釕鉑觸媒電化學活性載體
外文關鍵詞:fuel cellsmall angle X-ray scatteringcore shell structuregraphenecarbon nanotubeplatinum-ruthenium catalystelectrochemical activitysupport
相關次數:
  • 推薦推薦:0
  • 點閱點閱:56
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
甲醇燃料電池的觸媒材料主要往兩個方向發展,一為減低成本,二為提升催化活性。觸媒材料可分為觸媒本體及承載觸媒的載體,近年的研究發現釕鉑核殼型的觸媒具有高效率且可以降低觸媒成本和具有良好的抗一氧化碳毒化的能力。常用的載體包括碳黑、奈米碳管及石墨烯,本研究主要研究直接在奈米碳管及石墨烯上成長核殼結構式觸媒及其觸媒電化學特性探討。
本研究主要是利用小角度X光散射分析來探討了利用聚醇還原法直接成長於載體的觸媒,並觀察鉑奈米粒子、釕奈米粒子和釕鉑核殼奈米粒子成長於溶液中、多壁奈米碳管和石墨烯上的粒徑及分布,發現成長於石墨烯的釕顆粒不會隨濃度的增加而變大,,成長在石墨烯上的釕鉑核殼觸媒,實驗結果得到的核殼體積比最接近理論值的體積比,也表示了在石墨烯上的確可成長出核殼結構的觸媒;相對於釕奈米粒子,鉑奈米粒子會隨濃度的增加而變大,尤其是成長在奈米碳管上的成長趨勢更為顯著。由電化學測量結果發現成長於載體上的釕鉑核殼觸媒其催化活性確實高於鉑觸媒的催化活性,也代表了用聚醇還原法直接成長於載體的釕鉑核殼觸媒是一種具有發展潛力的觸媒結構。

The development of the acidic-electrolyte, low-temperature fuel cell catalysts relies on the use of noble metals. Especially, Pt-Ru is a widely used noble metal combination for direct methanol fuel cell (DMFC) anodes and proton-exchange membrane fuel cell (PEMFC) anodes because of the improved CO tolerance and the long-term stability. However, to improve the performance, it concerns not only the metal part of the catalyst but also the support (usually carbon). Recently, graphene has been investigated as a new support of electrocatalysts for fuel cells. In this study, Ru@Pt nanoparticles supported on multiwall carbon nanotubes (MWCNTs) and graphene are successfully prepared as electrocatalysts by polyol redox process. The nanocatalysts were directly synthesized on the carbon surrport and the particle size and distribution were characterized by small angle X-ray scattering (SAXS), transmission electron microscopy (TEM), and X-ray diffraction analysis (XRD). The measured SAXS data were analyzed on the basis of Schulz sphere model, poly core-shell ratio model and fractal model. The volume ratio of the core-shell Ru-Pt nanoparticles supported on grapheme as determined by SAXS analysis is found to be very close to the theoretical value. The TEM images and synchrotron SAXS analysis of the Ru@Pt catalysts supported on graphene indicate that the nanocatalysts were well dispersed on the surface of GNSs as compared to that supported on MWCNTs The catalytic efficiency of Ru@Pt MWCNTs/GNSs catalysts was examined by cyclic voltametry (CV) and methanol oxidation reaction (MOR). The electrodes fabricated with Ru@Pt-MWCNT and Ru@Pt-GNSs show enhanced activity for the electro-reduction of hydrogen over the Ru@Pt electrode. Also, results from stripping voltammetry for the adsorbed CO at Ru@Pt-carbon support catalyst electrodes reveal that CO oxidation is energetically favorable for these electrodes. Thus, Ru@Pt-carbon directly synthesized on MWCNTs and graphenes are suitable for fuel cell applications.
摘要 ………………………………………………………………………i
Abstract …………………………………………………………………ii
致謝 ………………………………………………………………………iv
目錄 ………………………………………………………………………v
表目錄 ……………………………………………………………………viii
圖目錄 ……………………………………………………………………x
第一章 緒論………………………………………………………………1
1.1 前言…………………………………………………………………1
1.2 燃料電池的簡介……………………………………………………2
1.2.1 燃料電池的發展起源………………………………………2
1.2.2 燃料電池工作原理……………………………………………4
1.2.3 燃料電池的發展優勢…………………………………5
1.2.4 燃料電池種類………………………………………………6
1.3 直接甲醇燃料電池………………………………………………8
1.3.1 直接甲醇燃料電池之組成…………………………………8
1.3.2 直接甲醇燃料電池工作原理……………………………10
1.3.3 直接甲醇燃料電池的發展瓶頸…………………………….11
1.3.4 直接甲醇燃料電池陽極觸媒的發展…………………12
1.3.5 觸媒載體的發展演變………………………………………15
1.4 研究動機與目的…………………………………………………17
第二章 文獻回顧………………………………………………………18
2.1 觸媒成長於載體之合成策略…………………………………………18
2.2 鉑金屬觸媒成長於不同載體之比較…………………………………19
2.2.1 探討不同濃度的鉑金屬觸媒成長於石墨烯與碳黑的粒徑分
析………………………………………………………19
2.2.2 探討鉑金屬觸媒成長於石墨烯與碳黑的電催化活性……21
2.3 釕鉑金屬觸媒成長於不同載體之比較………………………………23
2.3.1 探討釕鉑合金觸媒成長於奈米碳管與石墨烯的粒徑分析.....23
2.3.2 探討釕鉑合金觸媒成長於奈米碳管與石墨烯的電催化活性.....24
2.4 鎳鉑合金觸媒成長於不同載體之比較…………………………27
2.4.1 探討鎳鉑合金觸媒成長於碳黑、奈米碳管與石墨烯的粒徑
分析…………………………27
2.4.2 探討鎳鉑合金觸媒成長於碳黑、奈米碳管與石墨烯的電催
化活性……………………………………………………29
2.5 文獻總結……………………………………………………………31
第三章 實驗原理與方法……………………………………………………32
3.1 實驗流程圖…………………………………………………………32
3.2 實驗藥品與儀器……………………………………………………33
3.3 實驗流程與步驟……………………………………………………35
3.3.1 釕鉑核殼金屬奈米觸媒原料合成表與前置作業…………35
3.3.2 釕鉑核殼金屬奈米載體觸媒合成步驟……………………36
3.3.3 工作電極之觸媒漿料製備步驟.……………………………37
3.3.4 小角度散射樣品製備及實驗步驟…………………………38
3.3.5 穿透式電子顯微鏡試片製備………………………………39
3.3.6 粉末繞射樣品製備…………………………………………40
3.3.7 電化學實驗步驟……………………………………………40
3.4 實驗原理與分析方法………………………………………………43
3.4.1 同步加速器光源……………………………………………43
3.4.2 小角度X光散射……………………………………………45
3.4.3 X光繞射……………………………………………………49
3.4.4 穿透式電子顯微鏡……………………………………………50
3.4.5 循環伏安法……………………………………………………51
3.4.6 甲醇氧化分析效率分析……………………………………53
3.4.7 電化學反應之長時效測試…………………………………54
第四章 結果與討論…………………………………………………………55
4.1 觸媒之形貌特徵及奈米結構………………………………………55
4.1.1 穿透式電子顯微鏡影像分析…………………………………55
4.1.2 小角度X光散射分析…………………………………………59
4.1.3 X光粉末繞射分析……………………………………………86
4.2 觸媒之電化學分析…………………………………………………92
4.2.1 循環伏安法分析………………………………………………92
4.2.2 甲醇電氧化效率分析…………………………………………94
4.2.3 甲醇長時效測試分……………………………………………96
4.24 長時效測試前後的循環伏安圖比較…………………………97
第五章 結論………………………………………………………………99
第六章 參考文獻……………………………………………………………101
[1] Larminie, J. Fuel Cell Systems Explained. John Wiley & Sons Ltd, 2003.
[2] S. Colleen, Designing and Building Fuel Cells, McGraw-Hill, 1st Ed., 2007.
[3] H. Dohle, J. Divisek, and R. Jung, Journal of Power Sources, 2000, 86, 469-477.
[4] J. Divisek, R. Jung, K. Gärtner, J. Fuhrmann, Numerical simulation of Direct Methanol Fuel Cells (DMFC), in: Proceedings of 3rd European Congress of Chemical Engineering, Nuremberg, June 26-28, 2001.
[5] T. R. Ralph, and M. P. Hogarth, Platinum Metals Review, 2002, 46, 117-135.
[6] N. A. Tapan, W. E. Mustain, B. Gurau, G. Sandi, and J. Prakash, J. New Mater Electrochem Syst., 2004, 7, 281-286.
[7] Z. Liu, X. Y. Ling, X. Su, J. Y. Lee, The Journal of Physical Chemistry B, 2004, 108 , 8234-8240.
[8] J. Prabhuram, T. S. Zhao, Z. K. Tang, R. Chen, Z. X. Liang, The Journal of Physical Chemistry B, 2006, 110, 5245-5252.
[9] W. Li, X. Wang, Z. Chen, M. Waje, Y. Yan, The Journal of Physical Chemistry B, 2006, 110, 15353-15358.
[10] H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang, D. P. Wilkinson, Journal of Power Sources, 2006, 155 , 95-110.
[11] W. Vielstich, Journal of the Brazilian Chemical Society, 2003, 14 , 503-509.
[12] T. Frelink, W. Visscher, and J. A. R. Van Veen, Surface Science, 1995, 335, 353-360.
[13] T. Y. Chen, T. J. M. Luo, Y. W. Yang, Y. C. Wei, K. W. Wang, T. L. Lin, and C. H. Lee, The Journal of Physical Chemistry C, 2012, 116, 16969-16978.
[14] E. Antolini, Applied Catalysis B, 2009, 88, 1-24.
[15] Y. Si, E. T. Samulski, Chemistry of Materials, 2008, 20, 6792-6797.
[16] Y. Li, W. Gao, L. Ci, C. Wang, P. M. Ajayan, Carbon, 2010, 48, 1124-1130.
[17] L. Dong, R. R. S. Gari, Z. Li, M. M. Craig, S. Hou, Carbon, 2008, 48, 781-787.
[18] S. M. Choi, M. H. Seo, H. J. Kim, W. B. Kim, Carbon, 2011, 49, 904-909.
[19] Y. Zhang, Y. Gu, S. Lin, J. Wei, Z. Wang, C. Wang, Y. Du, W. Ye, Electrochimica Acta., 2011, 56, 8746-8751.
[20] Y. Wang, J. Liu, L. Liu, D. D. Sun, Nanoscale Research Letters, 2011, 6, 241-248.
[21] H. Yang, F. Li, C. Shan, D. Han, Q. Zhang, L. Niu, A. Ivaska, J. Mater. Chem., 2009, 19, 4632-4638.
[22] R. Kou, Y. Shao, D. Mei, Z. Nie, D. Wang, C. Wang, V.V. Viswanathan, S. Park, I.A. Aksay, Y. Lin, Y. Wang, J. Liu, J. Am. Chem. Soc., 2011, 133, 2541-2547.
[23] F. Yang, Y. Liu, L. Gao, J. Sun, J. Phys. Chem. C, 2010, 114, 22085-22091.
[24] X. M. Wu, Y. J. Hu, J. Jin, N. L. Zhou, P. Wu, H. Zhang, C. X. Cai, Anal. Chem., 2010, 82, 3588-3596.
[25] P. Wu, Q. Shao, Y. J. Hu, J. Jin, Y. J. Yin, H. Zhang, C. X. Cai, Electrochim. Acta., 2010, 55, 8606-8614.
[26] A. Guha, W. Lu, T. A. Zawodzinski Jr., D. A. Schiraldi, Carbon, 2007, 45, 1506-1517.
[27] C. C. Chen, C. F. Chen, C. M. Chen, F. T. Chuang, Electrochem. Commun., 2007, 9, 159-163.
[28] A. Halder, S. Sharma, M. S. Hegde, N. Ravishankar, J. Phys. Chem. C., 2009, 113, 1466-14763.
[29] Y. J. Hu, H. Zhang, P. Wu, H. Zhang, B. Zhou, C. X. Cai, Phys. Chem. Chem. Phys., 2011, 13, 4083-4094.
[30] Y. J. Hu, J. Jin, P. Wu, H. Zhang, C. X. Cai, Electrochim. Acta, 2010, 56, 491-500.
[31] H. Zhang, X. Q. Xu, P. Gu, C. Y. Li, P. Wu, C. X. Cai, Electrochim. Acta., 2011, 56, 7064-7070.
[32] N. Shang, P. Papakonstantinou, P. Wang, S. R. P. Silva, J. Phys. Chem. C., 2010, 114, 15837-15841.
[33] Q. Yue, K. Zhang, X. Chen, L. Wang, J. Zhao, J. Liu, J. Jia, Chem. Commun., 2010, 46, 3369-3371.
[34] H. Bo¨nnemann, G. Khelashvili, Appl. Organomet Chem., 2010, 24, 257-268.
[35] M. Shirai, K. Igeta, M. Arai, Chem. Commun., 2000, 7, 623-624.
[36] I. K. Moon, J. Lee, R. S. Ruoff, H. Lee, Nat. Commun., 2010, 1, 73.
[37] J. Hu, B. He, J. Lu, L. Hong, J. Yuan, J. Song, L. Niu, Int J Electrochem Sci., 2012, 7, 10094-10107.
[38] Y Shao., S. Zhang, C. Wang, Z. Nie, J. Liu, Y. Wang, Y. Lin, J. Power Sources, 2010, 195, 4600-4605.
[39] X. Zhu, Y. Zhu, S. Murali, M. D. Stoller, R. S. Ruoff, ACS Nano., 2011, 5, 3333–3338.
[40] N. Seselj, C. Engelbrekt, and J. D. Zhang, Science Bulletin, 2015. 60, 864-876.
[41] S. M. Choi, M. H. Seo, H. J. Kim, W. B. Kim, Carbon, 2011. 49, 904-909.
[42] S. M. Choi, J. H. Kim, J. Y. Jung, E. Y. Yoon, W. B. Kim, Electrochim Acta, 2008, 53, 5804-11.
[43] H. J. Kim, Y. S. Kim, M. H. Seo, S. M. Choi, J. Cho, G. W. Huber, W. B. Kim, Electrochem Commun, 2010, 12, 32-5.
[44] S. H. Lee, N. Kakati, S. H. Jee, J. Maiti, Y. S. Yoon, Materials Letters, 2011. 65, 3281-3284.
[45] Y. Hu, P. Wu, H. Zhang, C. Cai, Applied Catalysis B-Environmental, 2012. 111, 208-217.
[46] H. Zhang, Y. J. Yin, Y. J. Hu, C. Y. Li, P. Wu, S. H. Wei, C. X. Cai, J. Phys. Chem. C., 2010, 114, 11861-11867.
[47] https://www.nsrrc.org.tw/chinese/lightsource.aspx
[48] 張石麟, 科學研究的神燈, 同步加速器光源科學發展期刊484期, 2013, 4月
[49] J. Teixeira, J. Appl. Cryst., 1988. 21, 781-785.
[50] G. V. Schulz, Z. Phys. Chem., 1935, 43, 25.
[51] M. Kotlarchyk and S-H. Chen, J. Chem. Phys., 1983, 79, 2461-2469.
[52] J. B. Hayter in "Physics of Amphiphiles--Micelles, Vesicles, and Microemulsions" Eds. V. DeGiorgio; M. Corti, North-Holland, pp. 59-93
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *