|
1. C.Kittel. Introduction to Solid State Physics. (2005). 2. W.Eberhardt, E. W. P. a. Angle-resolved photoemission as a tool for the study of surfaces. (1982). 3. Guang, B. Angle-resolved photoemission and first-principles studies of topological thin films. (2013). 4. Caizhi, X. Angle-resolved photoemission studies of thin-film topological materials. (2017). 5. 陳韋全. 以角解析光電子能譜及低能量電子繞射儀研究鉛薄膜成長在鍺(111)之介面效應. (2012). 6. Paggel, J. J., Miller, T. & Chiang, T.-C. Quantum-Well States as Fabry-Pérot Modes in a Thin-Film Electron Interferometer. Science 283, 1709-1711, doi:10.1126/science.283.5408.1709 (1999). 7. Bihlmayer, G., Rader, O. & Winkler, R. Focus on the Rashba effect. New Journal of Physics 17, 050202, doi:10.1088/1367-2630/17/5/050202 (2015). 8. Moreschini, L. et al. Influence of the substrate on the spin-orbit splitting in surface alloys on (111) noble-metal surfaces. Physical Review B 80, doi:10.1103/PhysRevB.80.035438 (2009). 9. S.LaShell, B. A. M., and E. Jensen. Spin Splitting of an Au(111) Surface State Band Observed with Angle Resolved Photoelectron Spectroscopy.pdf. PHYSICAL REVIEW LETTERS 77 (1996). 10. Kuroda, K. et al. Hexagonally deformed Fermi surface of the 3D topological insulator Bi2Se3. Phys Rev Lett 105, 076802, doi:10.1103/PhysRevLett.105.076802 (2010). 11. Patane, A. & Balkan, N. 150, doi:10.1007/978-3-642-23351-7 (2012). 12. Guo, M. et al. Tuning thermoelectricity in a Bi2Se3topological insulator via varied film thickness. New Journal of Physics 18, doi:10.1088/1367-2630/18/1/015008 (2016). 13. 蔡定平. 真空計術與應用. (2001). 14. 謝世慶. 熱脫附法製備鉍-(√3×√3)之重構. (2018). 15. 林卓穎. 鎵在鍺(100)表面上的不尋常成長過程與其原子模型. (2013). 16. 蕭富中. 以氫原子侵蝕Bi2Se3(0001)晶面生成單層鉍雙層之電子能帶結構. (2016). 17. SRS RGA200 Operating Manual and Programming Reference. (2009). 18. IG2 sputter ion gun operation manual. (2008). 19. QUAD-EV-C/QUAD-EV-C HP Mini e-beam evaporator operations manual. 20. Klein, J. Epitaktische Heterostrukturen aus dotierten Manganaten. (2001). 21. Braun, W. Applied RHEED. (1999). 22. Hasegawa. CharacteriMat. (2012). 23. Spicer, W. E. Photoemissive, Photoconductive, and Optical Absorption Studies of Alkali-Antimony Compounds. Physical Review 112, 114-122, doi:10.1103/PhysRev.112.114 (1958). 24. Andrea, D. Probing the Electronic Structure of Complex Systems by ARPES. Physica Scripta 2004, 61 (2004). 25. E.W.Plummer, W. E. Angle-Resolved Photoemission as a Tool for the Study of Surface. (2007). 26. Hüfner, S. Photoelectron Spectroscopy. (2003). 27. Hove, W. S. a. M. A. V. Solid-State Photoemission and Related Methods. (2003). 28. Escher, M., Weber, N. B., Merkel, M., Plucinski, L. & Schneider, C. M. FERRUM: A New Highly Efficient Spin Detector for Electron Spectroscopy. e-Journal of Surface Science and Nanotechnology 9, 340-343, doi:10.1380/ejssnt.2011.340 (2011). 29. Tillmann, D., Thiel, R. & Kisker, E. Very-low-energy spin-polarized electron diffraction from Fe(001). Zeitschrift für Physik B Condensed Matter 77, 1-2, doi:10.1007/BF01313611 (1989). 30. Riccardo Bertacco, F. C. Oxygen-induced enhancement of the spin-dependent effects in electron spectroscopies of Fe(001)
PHYSICAL REVIEW B 59 (1999). 31. Biener, M. M., Biener, J. & Friend, C. M. Sulfur-induced mobilization of Au surface atoms on Au(111) studied by real-time STM. Surface Science 601, 1659-1667, doi:https://doi.org/10.1016/j.susc.2007.01.041 (2007). 32. Caputo, M. et al. Manipulating the Topological Interface by Molecular Adsorbates: Adsorption of Co-Phthalocyanine on Bi2Se3. Nano Letters 16, 3409-3414, doi:10.1021/acs.nanolett.5b02635 (2016).
|