帳號:guest(18.221.102.79)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):洪郁翔
作者(外文):Hung, Yu-Hsiang
論文名稱(中文):生質廢棄蛋白泡沫做為前驅物製作高孔洞活性碳超級電容之應用與電子結構探討
論文名稱(外文):Application and electronic structure of high-porosity carbon supercapacitor derived from biomass waste protein foam
指導教授(中文):蘇雲良
詹丁山
指導教授(外文):Soo, Yun-Liang
Chan, Ting-Shan
口試委員(中文):張石麟
翁世璋
口試委員(外文):CHANG, SHIH-LIN
Weng, Shih-Chang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:105001504
出版年(民國):107
畢業學年度:107
語文別:中文
論文頁數:56
中文關鍵詞:超級電容高孔洞活性碳生質廢棄蛋白泡沫電子結構凝態物理
外文關鍵詞:supercapacitorhigh-porosity carbonbiomass waste proteinfoamelectronic structureCondensed matter physics
相關次數:
  • 推薦推薦:0
  • 點閱點閱:38
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究利用蛋白質前驅物在無需使用模板輔助下,發展出一套全新的低成本製程;此製程可以大幅提升電解液中離子的傳遞效率,製作出高孔洞、富含官能基之高效能超級電容電極。本研究在燒製時,分別以650℃、700℃、750℃和850℃ 四個溫度燒製,並分別通入氮氣與氬氣進行探討。由TEM結果顯示,碳材形成了許多半徑約10nm的孔洞。在電化學的量測中,當燒製的溫度在700-750℃時電容值達到了最大值,為商用活性碳電容的2-3倍。並且在循環伏安圖中觀察到氧化還原峰的出現,證實了碳材表面富含了碳-氮(C-N)官能基。拉曼光譜圖譜顯示當燒製的溫度越高時,碳材的結晶性也會跟著上升,擁有更好的導電性,更容易將電子傳導到孔洞中儲存,因此也有助於電容值的提升。Fe K-edge吸收光譜發現當燒製溫度達到700℃時,鐵會開始與氮鍵結並且形成三價鐵。N K-edge吸收光譜顯示了氮在高溫下會嵌入碳材中形成吡啶(pyridine)與吡咯(pyrrole)結構。再結合C K-edge吸收光譜,可以得之當溫度超過700℃時,碳材中的鐵、氮、碳會結合形成Fe-N-C結構。另外不論是從循環伏安圖變化的趨勢、拉曼光譜圖譜、吸收光譜中,燒製時通入氬氣與氮氣的結果相同,因此未來可以使用較便宜的氮氣代替氬氣,進一步降低製作成本。
In this research project, we use protein precursor to develop a new low-cost process for fabricating high-porosity carbon supercapacitors without applying any template support. This process can greatly improve the transfer efficiency, producing high-capacity, functional group-rich and high-efficiency supercapacitor electrodes. In this study, the firing was carried out at four temperatures of 650 ℃, 700 ℃, 750 ℃, and 850 ℃, and nitrogen and argon gas were separately aerated. The TEM image shows that the carbon material forms a plurality of holes of radius around 10 nm. In CV measurements, the capacitance reaches a maximum value when the firing temperature is 700-750 ℃, which is 2-3 times of the commercial activated carbon capacitor. And the redox peak could be found in the CV graph, confirming the rich C-N functional groups on the surface of the carbon material. The Raman spectrum shows that the higher the temperature of the firing, the higher the crystallinity of the carbon material, the better the conductivity, and the easier it is to conduct electrons into the holes for storage, thus contributing to the increase in capacitance. In the Fe K-edge absorption spectrum, we found that when the firing temperature reached 700 ℃, iron begins to bond with nitrogen and form ferric iron. Nitrogen K-edge absorption spectroscopy shows that N atoms are embedded in the carbon material at high temperatures to form pyridine and pyrrole structures. With additional structural information obtained from the C K-edge absorption spectrum, it appears that iron, nitrogen and carbon in the carbon material combine to form an Fe-N-C structure when the temperature exceeds 700 ℃. In addition, aerating argon gas and nitrogen gas in the firing process result in the same trends of CV graph, Raman spectrum, and X-ray absorption spectrum. Therefore, cheaper nitrogen can be used to replace argon gas in the firing process to further reduce the production cost.
生質廢棄蛋白泡沫做為前驅物製作高孔洞活性碳超級電容之應用與電子結構探討
第一章 緒論 1
第一節 前言 1
第二節 超級電容的分類 3
第一項 電雙層電容 5
第二項 擬電容 8
第三節 超級電容的發展 10
第一項 電雙層電容發展 10
第二項 多孔碳電雙層電容近年發展 11
第三項 活性碳電容的製備與近年的發展 12
第四項 擬電容發展 15
第二章 實驗步驟與方法 18
第一節 樣品合成 18
第一項 多孔洞碳材粉末的製備 18
第二項 多孔活性碳材粉末的製備 19
第三項 活性碳材電極的製備 20
第二節 TEM量測 21
第三節 循環伏安法量測 23
第四節 拉曼光譜儀量測 25
第五節 X光吸收光譜量測 27
第一項 XAS分析介紹 27
第二項 XAS分析量測原理 29
第三章 實驗結果與討論 33
第一節 TEM分析 33
第二節 循環伏安法量測 34
第三節 拉曼光譜儀分析 38
第四節 X光吸收光譜分析 41
第一項 Fe K-edge 41
第二項 N K-edge 44
第三項 C K-edge 47
第五節 EXAFS分析 49
第四章 結論 53
第五章 參考資料 54
1. 台灣再生能源生產量與目標. https://m.energytrend.com.tw/interview/view/14308375.html.
2. Simon, P. and Y. Gogotsi, Materials for electrochemical capacitors, in Nanoscience And Technology: A Collection of Reviews from Nature Journals. 2010, World Scientific. p. 320-329.
3. Wu, Z.-S., X. Feng, and H.-M. Cheng, Recent advances in graphene-based planar micro-supercapacitors for on-chip energy storage. National Science Review, 2014. 1(2): p. 277-292.
4. Zhang, Y., et al., Progress of electrochemical capacitor electrode materials: A review. International journal of hydrogen energy, 2009. 34(11): p. 4889-4899.
5. Zhai, Y., et al., Carbon materials for chemical capacitive energy storage. Advanced materials, 2011. 23(42): p. 4828-4850.
6. Zhang, L.L. and X. Zhao, Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 2009. 38(9): p. 2520-2531.
7. Conway, B.E., Electrochemical supercapacitors: scientific fundamentals and technological applications. 2013: Springer Science & Business Media.
8. Huang, J., B.G. Sumpter, and V. Meunier, A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes. Chemistry–A European Journal, 2008. 14(22): p. 6614-6626.
9. Liang, Y., et al., Construction of a hierarchical architecture in a wormhole-like mesostructure for enhanced mass transport. Physical Chemistry Chemical Physics, 2011. 13(19): p. 8852-8856.
10. Quan, L.N., et al., Soft-template-carbonization route to highly textured mesoporous carbon–TiO 2 inverse opals for efficient photocatalytic and photoelectrochemical applications. Physical Chemistry Chemical Physics, 2014. 16(19): p. 9023-9030.
11. Raymundo‐Piñero, E., M. Cadek, and F. Béguin, Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds. Advanced Functional Materials, 2009. 19(7): p. 1032-1039.
12. Puthusseri, D., et al., 3D micro-porous conducting carbon beehive by single step polymer carbonization for high performance supercapacitors: the magic of in situ porogen formation. Energy & Environmental Science, 2014. 7(2): p. 728-735.
13. Zhu, H., et al., Promising carbons for supercapacitors derived from fungi. Advanced materials, 2011. 23(24): p. 2745-2748.
14. Li, Z., et al., Carbonized chicken eggshell membranes with 3D architectures as high‐performance electrode materials for supercapacitors. Advanced Energy Materials, 2012. 2(4): p. 431-437.
15. Wang, H., et al., Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS nano, 2013. 7(6): p. 5131-5141.
16. Hou, J., et al., Popcorn-derived porous carbon flakes with an ultrahigh specific surface area for superior performance supercapacitors. ACS applied materials & interfaces, 2017. 9(36): p. 30626-30634.
17. Hadz, S., et al., Reversibility and growth behavior of surface oxide films at ruthenium electrodes. Journal of The Electrochemical Society, 1978. 125(9): p. 1471-1480.
18. Lee, H.Y. and J.B. Goodenough, Supercapacitor behavior with KCl electrolyte. Journal of Solid State Chemistry, 1999. 144(1): p. 220-223.
19. Yuan, C., et al., Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. Journal of Materials Chemistry, 2009. 19(32): p. 5772-5777.
20. Chen, S., et al., Graphene oxide− MnO2 nanocomposites for supercapacitors. ACS nano, 2010. 4(5): p. 2822-2830.
21. Lin, Y.-P. and N.-L. Wu, Characterization of MnFe2O4/LiMn2O4 aqueous asymmetric supercapacitor. Journal of Power Sources, 2011. 196(2): p. 851-854.
22. Xia, X.-h., et al., Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance. Journal of Materials Chemistry, 2011. 21(25): p. 9319-9325.
23. Chen, Z., et al., High‐performance supercapacitors based on intertwined CNT/V2O5 nanowire nanocomposites. Advanced Materials, 2011. 23(6): p. 791-795.
24. Yang, X.-h., et al., Interfacial synthesis of porous MnO2 and its application in electrochemical capacitor. Electrochimica Acta, 2007. 53(2): p. 752-757.
25. Li, L., et al., Anchoring alpha-manganese oxide nanocrystallites on multi-walled carbon nanotubes as electrode materials for supercapacitor. Journal of Nanoparticle Research, 2010. 12(7): p. 2349-2353.
26. Wei, D., et al., A nanostructured electrochromic supercapacitor. Nano letters, 2012. 12(4): p. 1857-1862.
27. 三電極系統示意圖. https://www.als-japan.com/1042.html.
28. Li, Z., et al., Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energy & Environmental Science, 2013. 6(3): p. 871-878.
29. Chen, J., et al., Nitrogen-enriched carbon sheets derived from egg white by using expanded perlite template and its high-performance supercapacitors. Nanotechnology, 2015. 26(34): p. 345401.
30. Wang, Q., et al., Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors. Carbon, 2014. 67: p. 119-127.
31. Sun, M., et al., Highly efficient and sustainable non-precious-metal Fe–N–C electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2018. 6(6): p. 2527-2539.
32. Zhou, J., et al., Fe–N bonding in a carbon nanotube–graphene complex for oxygen reduction: an XAS study. Physical Chemistry Chemical Physics, 2014. 16(30): p. 15787-15791.
33. Yuan, K., et al., Synergetic Contribution of Boron and Fe–N x Species in Porous Carbons toward Efficient Electrocatalysts for Oxygen Reduction Reaction. ACS Energy Letters, 2018. 3(1): p. 252-260.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *