帳號:guest(3.145.48.72)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):賴嘉俊
作者(外文):Lai, chia-chun
論文名稱(中文):桿狀病毒表現系統生產流感大流行疫苗之產程開發
論文名稱(外文):Process development for production of pandemic influenza vaccines using baculovirus expression system
指導教授(中文):胡勇誌
詹鴻霖
宋旺洲
指導教授(外文):Alan, Yung-Chih Hu
Chan, Hong-Lin
Sung, Wang-Chou
口試委員(中文):張明富
李敏西
宋旺洲
口試委員(外文):Chang, Ming-Fu
Lee, Min-Shi
Sung, Wang-Chou
學位類別:博士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:104080822
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:98
中文關鍵詞:流感病毒類病毒顆粒流感疫苗流感疫苗生產平台
外文關鍵詞:Influenza vaccinesVirus-like particleChromatography-based purification processVaccination
相關次數:
  • 推薦推薦:0
  • 點閱點閱:92
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
流行性感冒病毒每年都造成全世界千萬的人口受到感染。而接種流感病毒疫苗是目前最有效預防病毒流行的方式。從1950年起,主要以雞胚胎蛋作為生產季節性流感疫苗的方法。但是這種方法受限於需要大量雞胚胎蛋 (Vaccine-quality eggs)作為生產疫苗使用。當流感大規模爆發時,流感疫苗製程所需的雞胚胎將不敷生產使用。因此,我們需要具能快速及大規模量產的策略來解決緊急的需求。目前,非雞胚胎的疫苗已被視為是做為流感病毒大流行時所採用的替代方法之一。其中,類病毒顆粒 (Virus-like particle, VLP)製程的流感疫苗比Protein Science Corporation製備的重組蛋白流感疫苗更具免疫效果。本研究計畫是要改善並找到最佳化的製程條件來建立可因應流感大流行時的類病毒顆粒流感疫苗生產平台。目前為止我們已經建立H7N9流感病毒類病毒顆粒的表達系統與生產平台,並發現維持氧氣含量是昆蟲細胞生產類病毒顆粒的重要參數,實驗結果顯示將此策略應用於5 L的培養系統中其HA titer可達1024 HAU/ 50 μl。另外,我們也建立類病毒顆粒的下游純化方法,為了簡化純化步驟及提高純化速度,我們不使用類病毒顆粒捕獲方式進行純化,而是以微量過濾、管柱層析、切向流過濾濃縮及透析和無菌過濾的順序將雜質去除並濃縮以達到純化的目標。以1.7 L的收穫液 (harvest)純化後的結果顯示,最終產物 (bulk) 的HA蛋白回收率約為58%,且總蛋白和DNA的去除率高,以電子顯微鏡及高效液相層析儀分析最終產物並未發現桿狀病毒殘留,純化後的VLP仍保留很好的抗原性。將純化後的VLP抗原搭配佐劑施打於小鼠測試此疫苗的免疫保護力,發現搭配AddaVax佐劑可引發高效價中和抗體(NT >1024)。H7N9-TW VLPs當做模板,製作H7N9第五波流感病毒及H3N2流感病毒的VLP並進行各項測試,期待本研究的結果有助於未來因應流感病毒大流行(pandemic)的準備。
Influenza viruses cause hundreds of thousands of respiratory diseases worldwide each year. Vaccination is considered the most effective way to prevent influenza annual epidemics or pandemic. Since 1950, chicken embryo eggs have been used as the main method for producing seasonal influenza vaccines. The main drawback of this platform is the lack of flexibility for scale-up. Thus, egg-based vaccine manufacturers cannot supply sufficient doses for pandemic use. As a result, strategies to decrease the response time and expand production capacity are urgently needed. Untraditional vaccine type (non-virion vaccine) methods have been considered as an alternative strategy against an influenza pandemic. In particular, virus-like particle (VLP) vaccines maintain the virus capsule structure and are non-infectious. In this study, an H7N9 influenza VLP production platform using insect cells was established, and the dissolved oxygen concentration was found to be the key factor affecting VLP production. The hemagglutinin (HA) titer was improved substantially (up 512 units/50 µl) in the 2 L culture system with well-control dissolvent oxygen condition. In addition, a downstream rapid purification method for the VLP platform utilizing microfiltration, chromatography, diafiltration, and sterile filtration steps with no VLP capture step was employed. The process is a fast and efficient chromatography-based purification strategy for purifying influenza VLPs. The overall recovery yield of HA protein was approximately 58%, and high removal rates of total protein and DNA residues were found, with no baculovirus observed in the final purification step. The vaccination formula for an immunity study, which involved purified VLP and Al(OH)3, was shown to be highly protective against H7N9 influenza with a low dose of antigen (0.2 g). This rapid bioprocess provides an effective VLP vaccine production system for preparation for an influenza pandemic.
Index
中文摘要 2
Abstract 3
List of Tables 9
List of Figures 11
Acknowledgments 13
Chapter 1. Introduction 14
1.1 Influenza 14
1.2 Influenza virus vaccine 15
1.3 Vaccine production type 16
1.3.1 Live-attune influenza virus vaccine (LAIVs) 16
1.3.2 Inactivated influenza virus (whole and split) vaccine 17
1.3.3 Recombinant HA vaccine 18
1.3.4 Universal influenza virus vaccine 18
1.3.5 Virus-like particles influenza virus vaccine 19
1.4 Upstream bioprocess for influenza vaccine 19
1.4.1 Common host cell Line 19
1.4.2 Inactivated influenza production system from egg platform. 20
1.4.3 Inactivated influenza production system from MDCK and Vero cells 21
1.4.4 VLP and HA protein production system from insect cells 21
1.5 Downstream purification process 22
1.6 The use of adjuvant 24
Chapter 2. Specific aims of this study 26
Chapter 3. Materials and Methods 27
3.1 Cell culture and media 27
3.2 Preparation of recombinant baculoviruses 27
3.3 Shake and spinner flask cultures of High FiveTM cells 28
3.4 Densitometric and western blot analysis 29
3.5 Assay of NA activity 29
3.6 Virological assays 30
3.7 Production of H7N9-TW VLPs in the bioreactor 30
3.8 Microfiltration of the H7N9-TW VLPs harvest 31
3.9 Design of experiment (DoE) for different chromatographic resins 31
3.10 Flow-through mode of chromatography 32
3.11 Concentration and diafiltration steps 33
3.12 Trypsin digestion and protein identification by LC-MS/MS 33
3.13 Negative-staining electron microscopy (EM) of influenza H7N9-TW VLPs 34
3.14 Mice study 34
3.15 Hemagglutination inhibition (HAI) titers 35
3.16 Neutralization titer (NT) assay 36
3.17 IgG assays using ELISPOT 36
Chapter 4. Results and discussion 37
4.1 upstream bioprocess 37
4.1.1 Evaluation of Influenza virus-like particle was produced by different expression promoter by the baculovirus expression system 37
4.1.2 Protein composition and functional analysis of influenza H7N9-TW VLPs 38
4.1.3 Establishment of influenza H7N9-TW VLPs production conditions 39
4.1.4 Optimization of H7N9-TW VLPs production conditions 40
4.1.5 Evaluation of the scale-up feasibility of the upstream bioprocess. 41
4.1.6 Brief summary 43
4.2 Downstream bioprocess 43
4.2.1 The influenza H7N9-TW VLPs harvested be removed cell debris by a microfiltration purification step 43
4.2.2 Optimization of H7N9-TW VLPs purification conditions by the DoE 45
4.2.3 Evaluation of the flow-through mode of anion-exchange chromatography 46
4.2.4 Evaluation of the scale-up feasibility of the downstream bioprocess. 48
4.2.5 brief summary 49
4.3 Vaccination 50
4.3.1 Quantification analysis of the H7N9-TW VLPs 50
4.3.2 Vaccination of mice study using H7N9-TW VLPs vaccine 51
4.3.3 Compare of adjuvant effect in mice study. 51
Chapter 5. Conclusions 54
Tables 56
Figures 72
Publication during my PhD study 85
1. Journal papers 85
2. Conference paper: 86
References 87
References
[1] (WHO) WHO. Influenza (Seasonal). 2014.
[2] Paul G. Engelkirk JLD-E, Gwendolyn R. Wilson Burton. Burton's Microbiology for the Health Sciences: Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins. ; 2011.
[3] Freidl GS, Binger T, Muller MA, de Bruin E, van Beek J, Corman VM, et al. Serological evidence of influenza A viruses in frugivorous bats from Africa. PLoS One. 2015;10:e0127035.
[4] Carrat F, Flahault A. Influenza vaccine: the challenge of antigenic drift. Vaccine. 2007;25:6852-62.
[5] Calisher CH. Swine flu. Croat Med J. 2009;50:412-5.
[6] Harvey R, Wheeler JX, Wallis CL, Robertson JS, Engelhardt OG. Quantitation of haemagglutinin in H5N1 influenza viruses reveals low haemagglutinin content of vaccine virus NIBRG-14 (H5N1). Vaccine. 2008;26:6550-4.
[7] (WHO) WHO. Human infection with influenza A(H7N9) virus in China. 2013.
[8] Yang JR, Kuo CY, Huang HY, Wu FT, Huang YL, Cheng CY, et al. Characterization of influenza A (H7N9) viruses isolated from human cases imported into Taiwan. PLoS One. 2015;10:e0119792.
[9] Grohskopf LA SL, Broder KR, Walter EB, Fry AM, Jernigan DB. Prevention and Control of Seasonal Influenza with Vaccines: Recommendations of the Advisory Committee on Immunization Practices-United States, 2018-19 Influenza Season. 24. 2018 67(3):1-20.
[10] Manceur AP, Kamen AA. Critical review of current and emerging quantification methods for the development of influenza vaccine candidates. Vaccine. 2015;33:5913-9.
[11] Badgett MR, Auer A, Carmichael LE, Parrish CR, Bull JJ. Evolutionary dynamics of viral attenuation. J Virol. 2002;76:10524-9.
[12] Pasetti MF, Simon JK, Sztein MB, Levine MM. Immunology of gut mucosal vaccines. Immunol Rev. 2011;239:125-48.
[13] Lee MS, Hu AY. A cell-based backup to speed up pandemic influenza vaccine production. Trends Microbiol. 2012;20:103-5.
[14] Milian E, Kamen AA. Current and emerging cell culture manufacturing technologies for influenza vaccines. Biomed Res Int. 2015;2015:504831.
[15] Medina J, Boukhebza H, De Saint Jean A, Sodoyer R, Legastelois I, Moste C. Optimization of influenza A vaccine virus by reverse genetic using chimeric HA and NA genes with an extended PR8 backbone. Vaccine. 2015;33:4221-7.
[16] Jung EJ, Lee KH, Seong BL. Reverse genetic platform for inactivated and live-attenuated influenza vaccine. Exp Mol Med. 2010;42:116-21.
[17] Wolff MW, Reichl U. Downstream Processing: From Egg to Cell Culture-Derived Influenza Virus Particles. Chemical Engineering & Technology. 2008;31:846-57.
[18] Manini I, Domnich A, Amicizia D, Rossi S, Pozzi T, Gasparini R, et al. Flucelvax (Optaflu) for seasonal influenza. Expert Rev Vaccines. 2015;14:789-804.
[19] Bardiya N, Bae JH. Influenza vaccines: recent advances in production technologies. Appl Microbiol Biotechnol. 2005;67:299-305.
[20] Cox MM, Patriarca PA, Treanor J. FluBlok, a recombinant hemagglutinin influenza vaccine. Influenza Other Respir Viruses. 2008;2:211-9.
[21] Rhodes DG, Holtz K, Robinson P, Wang K, McPherson CE, Cox MM, et al. Improved stability of recombinant hemagglutinin using a formulation containing sodium thioglycolate. Vaccine. 2015;33:6011-6.
[22] Wang W, Suguitan AL, Jr., Zengel J, Chen Z, Jin H. Generation of recombinant pandemic H1N1 influenza virus with the HA cleavable by bromelain and identification of the residues influencing HA bromelain cleavage. Vaccine. 2012;30:872-8.
[23] Ikonomou L, Schneider YJ, Agathos SN. Insect cell culture for industrial production of recombinant proteins. Appl Microbiol Biotechnol. 2003;62:1-20.
[24] Graham BS. Universal Influenza Vaccines In: Vaccine Research Center N, NIH, editor.2015.
[25] Fiers W, De Filette M, El Bakkouri K, Schepens B, Roose K, Schotsaert M, et al. M2e-based universal influenza A vaccine. Vaccine. 2009;27:6280-3.
[26] Kim MC, Lee YN, Hwang HS, Lee YT, Ko EJ, Jung YJ, et al. Influenza M2 virus-like particles confer a broader range of cross protection to the strain-specific pre-existing immunity. Vaccine. 2014;32:5824-31.
[27] Oxford JS. Towards a universal influenza vaccine: volunteer virus challenge studies in quarantine to speed the development and subsequent licensing. Br J Clin Pharmacol. 2013;76:210-6.
[28] Gottlieb T, Ben-Yedidia T. Epitope-based approaches to a universal influenza vaccine. J Autoimmun. 2014;54:15-20.
[29] Liu F, Wu X, Li L, Liu Z, Wang Z. Use of baculovirus expression system for generation of virus-like particles: successes and challenges. Protein Expr Purif. 2013;90:104-16.
[30] Thompson CM, Aucoin MG, Kamen AA. Production of Virus-Like Particles for Vaccination. Methods Mol Biol. 2016;1350:299-315.
[31] Yamaji H, Konishi E. Production of Japanese encephalitis virus-like particles in insect cells. Bioengineered. 2013;4:438-42.
[32] Li X, Pushko P, Tretyakova I. Recombinant Hemagglutinin and Virus-Like Particle Vaccines for H7N9 Influenza Virus. J Vaccines Vaccin. 2015;6.
[33] Dai S, Zhang Y, Zhang T, Zhang B, Wang H, Deng F. Establishment of Baculovirus-Expressed VLPs Induced Syncytial Formation Assay for Flavivirus Antiviral Screening. Viruses. 2018;10.
[34] Mohsen MO, Zha L, Cabral-Miranda G, Bachmann MF. Major findings and recent advances in virus-like particle (VLP)-based vaccines. Semin Immunol. 2017;34:123-32.
[35] Lopez-Macias C. Virus-like particle (VLP)-based vaccines for pandemic influenza: performance of a VLP vaccine during the 2009 influenza pandemic. Hum Vaccin Immunother. 2012;8:411-4.
[36] Lua LH, Connors NK, Sainsbury F, Chuan YP, Wibowo N, Middelberg AP. Bioengineering virus-like particles as vaccines. Biotechnol Bioeng. 2014;111:425-40.
[37] Thompson CM, Petiot E, Mullick A, Aucoin MG, Henry O, Kamen AA. Critical assessment of influenza VLP production in Sf9 and HEK293 expression systems. BMC Biotechnol. 2015;15:31.
[38] Lua LHL, Connors NK, Sainsbury F, Chuan YP, Wibowo N, Middelberg APJ. Bioengineering virus-like particles as vaccines. Biotechnology and Bioengineering. 2014;111:425-40.
[39] Shin D, Park KJ, Lee H, Cho EY, Kim MS, Hwang MH, et al. Comparison of immunogenicity of cell-and egg-passaged viruses for manufacturing MDCK cell culture-based influenza vaccines. Virus Res. 2015;204:40-6.
[40] Genzel Y, Behrendt I, Rodig J, Rapp E, Kueppers C, Kochanek S, et al. CAP, a new human suspension cell line for influenza virus production. Appl Microbiol Biotechnol. 2013;97:111-22.
[41] Jing X, Soto J, Gao Y, Phy K, Ye Z. Assessment of viral replication in eggs and HA protein yield of pre-pandemic H5N1 candidate vaccine viruses. Vaccine. 2013;31:4091-7.
[42] Frey S, Vesikari T, Szymczakiewicz-Multanowska A, Lattanzi M, Izu A, Groth N, et al. Clinical efficacy of cell culture-derived and egg-derived inactivated subunit influenza vaccines in healthy adults. Clin Infect Dis. 2010;51:997-1004.
[43] Guide to Baculovirus Expression Vector Systems (BEVS) and Insect Cell Culture Techniques. Instruction Manual 2002.
[44] Wickham TJDT GR, Shuler ML, Wood HA. Screening of insect cell lines for the production of recombinant proteins and infectious virus in the Baculovirus expression system. Biotechnol Prog. 1992;8:391-6.
[45] Corporation LT. Growth and maintenance of insect cell lines User Guide In: A IMR, editor.2017.
[46] Chung CY, Chen CY, Lin SY, Chung YC, Chiu HY, Chi WK, et al. Enterovirus 71 virus-like particle vaccine: improved production conditions for enhanced yield. Vaccine. 2010;28:6951-7.
[47] J. B. The HPV vaccine market: Cervarix™ competes with Gardasil ®. Therapy. 2010;7(1):75-5.
[48] Wang JW, Roden RB. Virus-like particles for the prevention of human papillomavirus-associated malignancies. Expert Rev Vaccines. 2013;12:129-41.
[49] Liu YV, Massare MJ, Pearce MB, Sun X, Belser JA, Maines TR, et al. Recombinant virus-like particles elicit protective immunity against avian influenza A(H7N9) virus infection in ferrets. Vaccine. 2015;33:2152-8.
[50] Kushnir N, Streatfield SJ, Yusibov V. Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development. Vaccine. 2012;31:58-83.
[51] Effio CL, Hubbuch J. Next generation vaccines and vectors: Designing downstream processes for recombinant protein-based virus-like particles. Biotechnol J. 2015;10:715-27.
[52] Novavax’ H7N9 avian influenza VLP vaccine positive in Phase 1/2. Hum Vaccin Immunother. 2014;10:3103.
[53] Pushko P, Kort T, Nathan M, Pearce MB, Smith G, Tumpey TM. Recombinant H1N1 virus-like particle vaccine elicits protective immunity in ferrets against the 2009 pandemic H1N1 influenza virus. Vaccine. 2010;28:4771-6.
[54] Bright RA, Carter DM, Daniluk S, Toapanta FR, Ahmad A, Gavrilov V, et al. Influenza virus-like particles elicit broader immune responses than whole virion inactivated influenza virus or recombinant hemagglutinin. Vaccine. 2007;25:3871-8.
[55] Cox MM IR, Post P, Dunkle L. Safety, efficacy, and immunogenicity of Flublok in the prevention of seasonal influenza in adults. Ther Adv Vaccines. 2015 3(4):97-108.
[56] Haynes JR, Dokken L, Wiley JA, Cawthon AG, Bigger J, Harmsen AG, et al. Influenza-pseudotyped Gag virus-like particle vaccines provide broad protection against highly pathogenic avian influenza challenge. Vaccine. 2009;27:530-41.
[57] Iyer G, Ramaswamy S, Asher D, Mehta U, Leahy A, Chung F, et al. Reduced surface area chromatography for flow-through purification of viruses and virus like particles. J Chromatogr A. 2011;1218:3973-81.
[58] P. Nestola CP, R.R.J.S. Silva, P.M. Alves, J.P.B. Mota, M.J.T. Carrondo. Improved virus purification processes for vaccines and gene therapy. Biotechnol Bioeng,. 112 (2015):843-57.
[59] Tseng YF, Weng TC, Lai CC, Chen PL, Lee MS, Hu AY. A fast and efficient purification platform for cell-based influenza viruses by flow-through chromatography. Vaccine. 2018;36:3146-52.
[60] Sakoda Y, Okamatsu M, Isoda N, Yamamoto N, Ozaki K, Umeda Y, et al. Purification of human and avian influenza viruses using cellulose sulfate ester (Cellufine Sulfate) in the process of vaccine production. Microbiol Immunol. 2012;56:490-5.
[61] Kalbfuss B, Wolff M, Geisler L, Tappe A, Wickramasinghe R, Thom V, et al. Direct capture of influenza A virus from cell culture supernatant with Sartobind anion-exchange membrane adsorbers. Journal of Membrane Science. 2007;299:251-60.
[62] Opitz L, Lehmann S, Reichl U, Wolff MW. Sulfated membrane adsorbers for economic pseudo-affinity capture of influenza virus particles. Biotechnol Bioeng. 2009;103:1144-54.
[63] Fischer LM, Wolff MW, Reichl U. Purification of cell culture-derived influenza A virus via continuous anion exchange chromatography on monoliths. Vaccine. 2018;36:3153-60.
[64] Opitz L, Lehmann S, Zimmermann A, Reichl U, Wolff MW. Impact of adsorbents selection on capture efficiency of cell culture derived human influenza viruses. J Biotechnol. 2007;131:309-17.
[65] Healthcare. G. GE Healthcare. Purification of influenza A/H1N1 using Capto TM Core 700. 2012.
[66] Blom H, Akerblom A, Kon T, Shaker S, van der Pol L, Lundgren M. Efficient chromatographic reduction of ovalbumin for egg-based influenza virus purification. Vaccine. 2014;32:3721-4.
[67] Mundle ST, Kishko M, Groppo R, DiNapoli J, Hamberger J, McNeil B, et al. Core bead chromatography for preparation of highly pure, infectious respiratory syncytial virus in the negative purification mode. Vaccine. 2016;34:3690-6.
[68] Hunter RL. Overview of vaccine adjuvants: present and future. Vaccine 2002;20.
[69] Lee S, Nguyen MT. Recent advances of vaccine adjuvants for infectious diseases. Immune Netw. 2015;15:51-7.
[70] Apostolico Jde S, Lunardelli VA, Coirada FC, Boscardin SB, Rosa DS. Adjuvants: Classification, Modus Operandi, and Licensing. J Immunol Res. 2016;2016:1459394.
[71] Temizoz B, Kuroda E, Ishii KJ. Vaccine adjuvants as potential cancer immunotherapeutics. Int Immunol. 2016;28:329-38.
[72] Di Pasquale A, Preiss S, Tavares Da Silva F, Garcon N. Vaccine Adjuvants: from 1920 to 2015 and Beyond. Vaccines (Basel). 2015;3:320-43.
[73] Li C, Xu K, Hashem A, Shao M, Liu S, Zou Y, et al. Collaborative studies on the development of national reference standards for potency determination of H7N9 influenza vaccine. Hum Vaccin Immunother. 2015;11:1351-6.
[74] Chia MY, Hu AY, Tseng YF, Weng TC, Lai CC, Lin JY, et al. Evaluation of MDCK cell-derived influenza H7N9 vaccine candidates in ferrets. PLoS One. 2015;10:e0120793.
[75] Leang SK, Hurt AC. Fluorescence-based Neuraminidase Inhibition Assay to Assess the Susceptibility of Influenza Viruses to The Neuraminidase Inhibitor Class of Antivirals. J Vis Exp. 2017.
[76] WHO. WHO manual on animal influenza diagnosis and surveillance. Geneva2002.
[77] Vmax test method Protocol. EMD Millipore Corporation. 2014.
[78] WH. O. WHO manual on animal influenza diagnosis and surveillance. . 2002.
[79] Wu CY, Chang CY, Ma HH, Wang CW, Chen YT, Hsiao PW, et al. Squalene-adjuvanted H7N9 virus vaccine induces robust humoral immune response against H7N9 and H7N7 viruses. Vaccine. 2014;32:4485-94.
[80] Fuenmayor J, Godia F, Cervera L. Production of virus-like particles for vaccines. N Biotechnol. 2017;39:174-80.
[81] Wu CY, Yeh YC, Yang YC, Chou C, Liu MT, Wu HS, et al. Mammalian expression of virus-like particles for advanced mimicry of authentic influenza virus. PLoS One. 2010;5:e9784.
[82] Smith GE, Flyer DC, Raghunandan R, Liu Y, Wei Z, Wu Y, et al. Development of influenza H7N9 virus like particle (VLP) vaccine: homologous A/Anhui/1/2013 (H7N9) protection and heterologous A/chicken/Jalisco/CPA1/2012 (H7N3) cross-protection in vaccinated mice challenged with H7N9 virus. Vaccine. 2013;31:4305-13.
[83] Krammer F, Schinko T, Palmberger D, Tauer C, Messner P, Grabherr R. Trichoplusia ni cells (High Five) are highly efficient for the production of influenza A virus-like particles: a comparison of two insect cell lines as production platforms for influenza vaccines. Mol Biotechnol. 2010;45:226-34.
[84] Zhang YH, Enden G, Merchuk JC. Insect cells–Baculovirus system: Factors affecting growth and low MOI infection. Biochemical Engineering Journal. 2005;27:8-16.
[85] Fernandes-Platzgummer A, Diogo MM, Baptista RP, da Silva CL, Cabral JM. Scale-up of mouse embryonic stem cell expansion in stirred bioreactors. Biotechnol Prog. 2011;27:1421-32.
[86] Hu AY, Tseng YF, Weng TC, Liao CC, Wu J, Chou AH, et al. Production of inactivated influenza H5N1 vaccines from MDCK cells in serum-free medium. PLoS One. 2011;6:e14578.
[87] Hidalgo D, Paz E, Palomares LA, Ramirez OT. Real-time imaging reveals unique heterogeneous population features in insect cell cultures. J Biotechnol. 2017;259:56-62.
[88] Zhang F SM, Itle LJ, Lang SC, Murhammer DW, Linhardt RJ. The effect of dissolved oxygen (DO) concentration on the glycosylation of recombinant protein produced by the insect cell-baculovirus expression system. Biotechnol Bioeng. 2002;2002:219-24.
[89] Roldao A, Mellado MC, Castilho LR, Carrondo MJ, Alves PM. Virus-like particles in vaccine development. Expert Rev Vaccines. 2010;9:1149-76.
[90] Quan FS, Lee YT, Kim KH, Kim MC, Kang SM. Progress in developing virus-like particle influenza vaccines. Expert Rev Vaccines. 2016;15:1281-93.
[91] Vicente T, Mota JP, Peixoto C, Alves PM, Carrondo MJ. Rational design and optimization of downstream processes of virus particles for biopharmaceutical applications: current advances. Biotechnol Adv. 2011;29:869-78.
[92] Millipore E. Application Note: Generic process of cell culture based influenza vaccine. 2014.
[93] Nestola P, Silva RJ, Peixoto C, Alves PM, Carrondo MJ, Mota JP. Adenovirus purification by two-column, size-exclusion, simulated countercurrent chromatography. J Chromatogr A. 2014;1347:111-21.
[94] Liu YV, Massare MJ, Barnard DL, Kort T, Nathan M, Wang L, et al. Chimeric severe acute respiratory syndrome coronavirus (SARS-CoV) S glycoprotein and influenza matrix 1 efficiently form virus-like particles (VLPs) that protect mice against challenge with SARS-CoV. Vaccine. 2011;29:6606-13.
[95] Chia-Chun Lai Y-CC, Pin-Wen Chen, Ting-Hui Lin, Tsai-Teng Tzeng, Chia-Chun Lu, Min-Shi Lee, and Alan Yung-Chih Hu. Process development for pandemic influenza VLP vaccine production using a baculovirus expression system. Journal of biological engineering. 2019;(Article in Press).
[96] Nestola P, Peixoto C, Villain L, Alves PM, Carrondo MJ, Mota JP. Rational development of two flowthrough purification strategies for adenovirus type 5 and retro virus-like particles. J Chromatogr A. 2015;1426:91-101.
[97] Weigel T, Solomaier T, Peuker A, Pathapati T, Wolff MW, Reichl U. A flow-through chromatography process for influenza A and B virus purification. J Virol Methods. 2014;207:45-53.
[98] Choi Y, Lee S, Kwon SY, Lee Y, Park YK, Ban SJ. Analysis of the proficiency of single radial immunodiffusion assays for quality control of influenza vaccines in Korea. Biologicals. 2017;50:137-40.
[99] Organization WH. Generic protocol for the calibration of seasonal and pandemic influenza antigen working reagents by WHO essential regulatory laboratories. WHO Technical Report Series.2011.
[100] WHO. Generic protocol for the calibration of seasonal and pandemic influenza antigen working reagents by WHO essential regulatory laboratories. Sixty‐second report of the Expert Committee on Biological Standardization, Annex 5 WHO Technical Report Series 979. 2013.
[101] Lai CC, Weng TC, Tseng YF, Chiang JR, Lee MS, Hu AY. Evaluation of novel disposable bioreactors on pandemic influenza virus production. PLoS One. 2019;14:e0220803.
[102] Tetsutani K, Ishii KJ. Adjuvants in influenza vaccines. Vaccine. 2012;30:7658-61.
[103] Bonam SR, Partidos CD, Halmuthur SKM, Muller S. An Overview of Novel Adjuvants Designed for Improving Vaccine Efficacy. Trends Pharmacol Sci. 2017;38:771-93.
[104] Cimica V, Galarza JM. Adjuvant formulations for virus-like particle (VLP) based vaccines. Clin Immunol. 2017;183:99-108.
[105] Chen TH, Liu YY, Jan JT, Huang MH, Spearman M, Butler M, et al. Recombinant hemagglutinin proteins formulated in a novel PELC/CpG adjuvant for H7N9 subunit vaccine development. Antiviral Res. 2017;146:213-20.
[106] Chang GR-L, Lai S-Y, Chang P-C, Wang M-Y. Production of immunogenic one-component avian H7-subtype influenza virus-like particles. Process Biochemistry. 2011;46:1292-8.
[107] Ren Z, Ji X, Meng L, Wei Y, Wang T, Feng N, et al. H5N1 influenza virus-like particle vaccine protects mice from heterologous virus challenge better than whole inactivated virus. Virus Res. 2015;200:9-18.
[108] Hu CJ, Chien CY, Liu MT, Fang ZS, Chang SY, Juang RH, et al. Multi-antigen avian influenza a (H7N9) virus-like particles: particulate characterizations and immunogenicity evaluation in murine and avian models. BMC Biotechnol. 2017;17:2.
[109] Wang Y, Wu J, Xue C, Wu Z, Lin Y, Wei Y, et al. A recombinant H7N9 influenza vaccine with the H7 hemagglutinin transmembrane domain replaced by the H3 domain induces increased cross-reactive antibodies and improved interclade protection in mice. Antiviral Res. 2017;143:97-105.
[110] Pushko P, Pujanauski LM, Sun X, Pearce M, Hidajat R, Kort T, et al. Recombinant H7 hemagglutinin forms subviral particles that protect mice and ferrets from challenge with H7N9 influenza virus. Vaccine. 2015;33:4975-82.
[111] Pillet S, Racine T, Nfon C, Di Lenardo TZ, Babiuk S, Ward BJ, et al. Plant-derived H7 VLP vaccine elicits protective immune response against H7N9 influenza virus in mice and ferrets. Vaccine. 2015;33:6282-9.
(此全文20250223後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

無相關論文
 
* *