|
References [1] (WHO) WHO. Influenza (Seasonal). 2014. [2] Paul G. Engelkirk JLD-E, Gwendolyn R. Wilson Burton. Burton's Microbiology for the Health Sciences: Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins. ; 2011. [3] Freidl GS, Binger T, Muller MA, de Bruin E, van Beek J, Corman VM, et al. Serological evidence of influenza A viruses in frugivorous bats from Africa. PLoS One. 2015;10:e0127035. [4] Carrat F, Flahault A. Influenza vaccine: the challenge of antigenic drift. Vaccine. 2007;25:6852-62. [5] Calisher CH. Swine flu. Croat Med J. 2009;50:412-5. [6] Harvey R, Wheeler JX, Wallis CL, Robertson JS, Engelhardt OG. Quantitation of haemagglutinin in H5N1 influenza viruses reveals low haemagglutinin content of vaccine virus NIBRG-14 (H5N1). Vaccine. 2008;26:6550-4. [7] (WHO) WHO. Human infection with influenza A(H7N9) virus in China. 2013. [8] Yang JR, Kuo CY, Huang HY, Wu FT, Huang YL, Cheng CY, et al. Characterization of influenza A (H7N9) viruses isolated from human cases imported into Taiwan. PLoS One. 2015;10:e0119792. [9] Grohskopf LA SL, Broder KR, Walter EB, Fry AM, Jernigan DB. Prevention and Control of Seasonal Influenza with Vaccines: Recommendations of the Advisory Committee on Immunization Practices-United States, 2018-19 Influenza Season. 24. 2018 67(3):1-20. [10] Manceur AP, Kamen AA. Critical review of current and emerging quantification methods for the development of influenza vaccine candidates. Vaccine. 2015;33:5913-9. [11] Badgett MR, Auer A, Carmichael LE, Parrish CR, Bull JJ. Evolutionary dynamics of viral attenuation. J Virol. 2002;76:10524-9. [12] Pasetti MF, Simon JK, Sztein MB, Levine MM. Immunology of gut mucosal vaccines. Immunol Rev. 2011;239:125-48. [13] Lee MS, Hu AY. A cell-based backup to speed up pandemic influenza vaccine production. Trends Microbiol. 2012;20:103-5. [14] Milian E, Kamen AA. Current and emerging cell culture manufacturing technologies for influenza vaccines. Biomed Res Int. 2015;2015:504831. [15] Medina J, Boukhebza H, De Saint Jean A, Sodoyer R, Legastelois I, Moste C. Optimization of influenza A vaccine virus by reverse genetic using chimeric HA and NA genes with an extended PR8 backbone. Vaccine. 2015;33:4221-7. [16] Jung EJ, Lee KH, Seong BL. Reverse genetic platform for inactivated and live-attenuated influenza vaccine. Exp Mol Med. 2010;42:116-21. [17] Wolff MW, Reichl U. Downstream Processing: From Egg to Cell Culture-Derived Influenza Virus Particles. Chemical Engineering & Technology. 2008;31:846-57. [18] Manini I, Domnich A, Amicizia D, Rossi S, Pozzi T, Gasparini R, et al. Flucelvax (Optaflu) for seasonal influenza. Expert Rev Vaccines. 2015;14:789-804. [19] Bardiya N, Bae JH. Influenza vaccines: recent advances in production technologies. Appl Microbiol Biotechnol. 2005;67:299-305. [20] Cox MM, Patriarca PA, Treanor J. FluBlok, a recombinant hemagglutinin influenza vaccine. Influenza Other Respir Viruses. 2008;2:211-9. [21] Rhodes DG, Holtz K, Robinson P, Wang K, McPherson CE, Cox MM, et al. Improved stability of recombinant hemagglutinin using a formulation containing sodium thioglycolate. Vaccine. 2015;33:6011-6. [22] Wang W, Suguitan AL, Jr., Zengel J, Chen Z, Jin H. Generation of recombinant pandemic H1N1 influenza virus with the HA cleavable by bromelain and identification of the residues influencing HA bromelain cleavage. Vaccine. 2012;30:872-8. [23] Ikonomou L, Schneider YJ, Agathos SN. Insect cell culture for industrial production of recombinant proteins. Appl Microbiol Biotechnol. 2003;62:1-20. [24] Graham BS. Universal Influenza Vaccines In: Vaccine Research Center N, NIH, editor.2015. [25] Fiers W, De Filette M, El Bakkouri K, Schepens B, Roose K, Schotsaert M, et al. M2e-based universal influenza A vaccine. Vaccine. 2009;27:6280-3. [26] Kim MC, Lee YN, Hwang HS, Lee YT, Ko EJ, Jung YJ, et al. Influenza M2 virus-like particles confer a broader range of cross protection to the strain-specific pre-existing immunity. Vaccine. 2014;32:5824-31. [27] Oxford JS. Towards a universal influenza vaccine: volunteer virus challenge studies in quarantine to speed the development and subsequent licensing. Br J Clin Pharmacol. 2013;76:210-6. [28] Gottlieb T, Ben-Yedidia T. Epitope-based approaches to a universal influenza vaccine. J Autoimmun. 2014;54:15-20. [29] Liu F, Wu X, Li L, Liu Z, Wang Z. Use of baculovirus expression system for generation of virus-like particles: successes and challenges. Protein Expr Purif. 2013;90:104-16. [30] Thompson CM, Aucoin MG, Kamen AA. Production of Virus-Like Particles for Vaccination. Methods Mol Biol. 2016;1350:299-315. [31] Yamaji H, Konishi E. Production of Japanese encephalitis virus-like particles in insect cells. Bioengineered. 2013;4:438-42. [32] Li X, Pushko P, Tretyakova I. Recombinant Hemagglutinin and Virus-Like Particle Vaccines for H7N9 Influenza Virus. J Vaccines Vaccin. 2015;6. [33] Dai S, Zhang Y, Zhang T, Zhang B, Wang H, Deng F. Establishment of Baculovirus-Expressed VLPs Induced Syncytial Formation Assay for Flavivirus Antiviral Screening. Viruses. 2018;10. [34] Mohsen MO, Zha L, Cabral-Miranda G, Bachmann MF. Major findings and recent advances in virus-like particle (VLP)-based vaccines. Semin Immunol. 2017;34:123-32. [35] Lopez-Macias C. Virus-like particle (VLP)-based vaccines for pandemic influenza: performance of a VLP vaccine during the 2009 influenza pandemic. Hum Vaccin Immunother. 2012;8:411-4. [36] Lua LH, Connors NK, Sainsbury F, Chuan YP, Wibowo N, Middelberg AP. Bioengineering virus-like particles as vaccines. Biotechnol Bioeng. 2014;111:425-40. [37] Thompson CM, Petiot E, Mullick A, Aucoin MG, Henry O, Kamen AA. Critical assessment of influenza VLP production in Sf9 and HEK293 expression systems. BMC Biotechnol. 2015;15:31. [38] Lua LHL, Connors NK, Sainsbury F, Chuan YP, Wibowo N, Middelberg APJ. Bioengineering virus-like particles as vaccines. Biotechnology and Bioengineering. 2014;111:425-40. [39] Shin D, Park KJ, Lee H, Cho EY, Kim MS, Hwang MH, et al. Comparison of immunogenicity of cell-and egg-passaged viruses for manufacturing MDCK cell culture-based influenza vaccines. Virus Res. 2015;204:40-6. [40] Genzel Y, Behrendt I, Rodig J, Rapp E, Kueppers C, Kochanek S, et al. CAP, a new human suspension cell line for influenza virus production. Appl Microbiol Biotechnol. 2013;97:111-22. [41] Jing X, Soto J, Gao Y, Phy K, Ye Z. Assessment of viral replication in eggs and HA protein yield of pre-pandemic H5N1 candidate vaccine viruses. Vaccine. 2013;31:4091-7. [42] Frey S, Vesikari T, Szymczakiewicz-Multanowska A, Lattanzi M, Izu A, Groth N, et al. Clinical efficacy of cell culture-derived and egg-derived inactivated subunit influenza vaccines in healthy adults. Clin Infect Dis. 2010;51:997-1004. [43] Guide to Baculovirus Expression Vector Systems (BEVS) and Insect Cell Culture Techniques. Instruction Manual 2002. [44] Wickham TJDT GR, Shuler ML, Wood HA. Screening of insect cell lines for the production of recombinant proteins and infectious virus in the Baculovirus expression system. Biotechnol Prog. 1992;8:391-6. [45] Corporation LT. Growth and maintenance of insect cell lines User Guide In: A IMR, editor.2017. [46] Chung CY, Chen CY, Lin SY, Chung YC, Chiu HY, Chi WK, et al. Enterovirus 71 virus-like particle vaccine: improved production conditions for enhanced yield. Vaccine. 2010;28:6951-7. [47] J. B. The HPV vaccine market: Cervarix™ competes with Gardasil ®. Therapy. 2010;7(1):75-5. [48] Wang JW, Roden RB. Virus-like particles for the prevention of human papillomavirus-associated malignancies. Expert Rev Vaccines. 2013;12:129-41. [49] Liu YV, Massare MJ, Pearce MB, Sun X, Belser JA, Maines TR, et al. Recombinant virus-like particles elicit protective immunity against avian influenza A(H7N9) virus infection in ferrets. Vaccine. 2015;33:2152-8. [50] Kushnir N, Streatfield SJ, Yusibov V. Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development. Vaccine. 2012;31:58-83. [51] Effio CL, Hubbuch J. Next generation vaccines and vectors: Designing downstream processes for recombinant protein-based virus-like particles. Biotechnol J. 2015;10:715-27. [52] Novavax’ H7N9 avian influenza VLP vaccine positive in Phase 1/2. Hum Vaccin Immunother. 2014;10:3103. [53] Pushko P, Kort T, Nathan M, Pearce MB, Smith G, Tumpey TM. Recombinant H1N1 virus-like particle vaccine elicits protective immunity in ferrets against the 2009 pandemic H1N1 influenza virus. Vaccine. 2010;28:4771-6. [54] Bright RA, Carter DM, Daniluk S, Toapanta FR, Ahmad A, Gavrilov V, et al. Influenza virus-like particles elicit broader immune responses than whole virion inactivated influenza virus or recombinant hemagglutinin. Vaccine. 2007;25:3871-8. [55] Cox MM IR, Post P, Dunkle L. Safety, efficacy, and immunogenicity of Flublok in the prevention of seasonal influenza in adults. Ther Adv Vaccines. 2015 3(4):97-108. [56] Haynes JR, Dokken L, Wiley JA, Cawthon AG, Bigger J, Harmsen AG, et al. Influenza-pseudotyped Gag virus-like particle vaccines provide broad protection against highly pathogenic avian influenza challenge. Vaccine. 2009;27:530-41. [57] Iyer G, Ramaswamy S, Asher D, Mehta U, Leahy A, Chung F, et al. Reduced surface area chromatography for flow-through purification of viruses and virus like particles. J Chromatogr A. 2011;1218:3973-81. [58] P. Nestola CP, R.R.J.S. Silva, P.M. Alves, J.P.B. Mota, M.J.T. Carrondo. Improved virus purification processes for vaccines and gene therapy. Biotechnol Bioeng,. 112 (2015):843-57. [59] Tseng YF, Weng TC, Lai CC, Chen PL, Lee MS, Hu AY. A fast and efficient purification platform for cell-based influenza viruses by flow-through chromatography. Vaccine. 2018;36:3146-52. [60] Sakoda Y, Okamatsu M, Isoda N, Yamamoto N, Ozaki K, Umeda Y, et al. Purification of human and avian influenza viruses using cellulose sulfate ester (Cellufine Sulfate) in the process of vaccine production. Microbiol Immunol. 2012;56:490-5. [61] Kalbfuss B, Wolff M, Geisler L, Tappe A, Wickramasinghe R, Thom V, et al. Direct capture of influenza A virus from cell culture supernatant with Sartobind anion-exchange membrane adsorbers. Journal of Membrane Science. 2007;299:251-60. [62] Opitz L, Lehmann S, Reichl U, Wolff MW. Sulfated membrane adsorbers for economic pseudo-affinity capture of influenza virus particles. Biotechnol Bioeng. 2009;103:1144-54. [63] Fischer LM, Wolff MW, Reichl U. Purification of cell culture-derived influenza A virus via continuous anion exchange chromatography on monoliths. Vaccine. 2018;36:3153-60. [64] Opitz L, Lehmann S, Zimmermann A, Reichl U, Wolff MW. Impact of adsorbents selection on capture efficiency of cell culture derived human influenza viruses. J Biotechnol. 2007;131:309-17. [65] Healthcare. G. GE Healthcare. Purification of influenza A/H1N1 using Capto TM Core 700. 2012. [66] Blom H, Akerblom A, Kon T, Shaker S, van der Pol L, Lundgren M. Efficient chromatographic reduction of ovalbumin for egg-based influenza virus purification. Vaccine. 2014;32:3721-4. [67] Mundle ST, Kishko M, Groppo R, DiNapoli J, Hamberger J, McNeil B, et al. Core bead chromatography for preparation of highly pure, infectious respiratory syncytial virus in the negative purification mode. Vaccine. 2016;34:3690-6. [68] Hunter RL. Overview of vaccine adjuvants: present and future. Vaccine 2002;20. [69] Lee S, Nguyen MT. Recent advances of vaccine adjuvants for infectious diseases. Immune Netw. 2015;15:51-7. [70] Apostolico Jde S, Lunardelli VA, Coirada FC, Boscardin SB, Rosa DS. Adjuvants: Classification, Modus Operandi, and Licensing. J Immunol Res. 2016;2016:1459394. [71] Temizoz B, Kuroda E, Ishii KJ. Vaccine adjuvants as potential cancer immunotherapeutics. Int Immunol. 2016;28:329-38. [72] Di Pasquale A, Preiss S, Tavares Da Silva F, Garcon N. Vaccine Adjuvants: from 1920 to 2015 and Beyond. Vaccines (Basel). 2015;3:320-43. [73] Li C, Xu K, Hashem A, Shao M, Liu S, Zou Y, et al. Collaborative studies on the development of national reference standards for potency determination of H7N9 influenza vaccine. Hum Vaccin Immunother. 2015;11:1351-6. [74] Chia MY, Hu AY, Tseng YF, Weng TC, Lai CC, Lin JY, et al. Evaluation of MDCK cell-derived influenza H7N9 vaccine candidates in ferrets. PLoS One. 2015;10:e0120793. [75] Leang SK, Hurt AC. Fluorescence-based Neuraminidase Inhibition Assay to Assess the Susceptibility of Influenza Viruses to The Neuraminidase Inhibitor Class of Antivirals. J Vis Exp. 2017. [76] WHO. WHO manual on animal influenza diagnosis and surveillance. Geneva2002. [77] Vmax test method Protocol. EMD Millipore Corporation. 2014. [78] WH. O. WHO manual on animal influenza diagnosis and surveillance. . 2002. [79] Wu CY, Chang CY, Ma HH, Wang CW, Chen YT, Hsiao PW, et al. Squalene-adjuvanted H7N9 virus vaccine induces robust humoral immune response against H7N9 and H7N7 viruses. Vaccine. 2014;32:4485-94. [80] Fuenmayor J, Godia F, Cervera L. Production of virus-like particles for vaccines. N Biotechnol. 2017;39:174-80. [81] Wu CY, Yeh YC, Yang YC, Chou C, Liu MT, Wu HS, et al. Mammalian expression of virus-like particles for advanced mimicry of authentic influenza virus. PLoS One. 2010;5:e9784. [82] Smith GE, Flyer DC, Raghunandan R, Liu Y, Wei Z, Wu Y, et al. Development of influenza H7N9 virus like particle (VLP) vaccine: homologous A/Anhui/1/2013 (H7N9) protection and heterologous A/chicken/Jalisco/CPA1/2012 (H7N3) cross-protection in vaccinated mice challenged with H7N9 virus. Vaccine. 2013;31:4305-13. [83] Krammer F, Schinko T, Palmberger D, Tauer C, Messner P, Grabherr R. Trichoplusia ni cells (High Five) are highly efficient for the production of influenza A virus-like particles: a comparison of two insect cell lines as production platforms for influenza vaccines. Mol Biotechnol. 2010;45:226-34. [84] Zhang YH, Enden G, Merchuk JC. Insect cells–Baculovirus system: Factors affecting growth and low MOI infection. Biochemical Engineering Journal. 2005;27:8-16. [85] Fernandes-Platzgummer A, Diogo MM, Baptista RP, da Silva CL, Cabral JM. Scale-up of mouse embryonic stem cell expansion in stirred bioreactors. Biotechnol Prog. 2011;27:1421-32. [86] Hu AY, Tseng YF, Weng TC, Liao CC, Wu J, Chou AH, et al. Production of inactivated influenza H5N1 vaccines from MDCK cells in serum-free medium. PLoS One. 2011;6:e14578. [87] Hidalgo D, Paz E, Palomares LA, Ramirez OT. Real-time imaging reveals unique heterogeneous population features in insect cell cultures. J Biotechnol. 2017;259:56-62. [88] Zhang F SM, Itle LJ, Lang SC, Murhammer DW, Linhardt RJ. The effect of dissolved oxygen (DO) concentration on the glycosylation of recombinant protein produced by the insect cell-baculovirus expression system. Biotechnol Bioeng. 2002;2002:219-24. [89] Roldao A, Mellado MC, Castilho LR, Carrondo MJ, Alves PM. Virus-like particles in vaccine development. Expert Rev Vaccines. 2010;9:1149-76. [90] Quan FS, Lee YT, Kim KH, Kim MC, Kang SM. Progress in developing virus-like particle influenza vaccines. Expert Rev Vaccines. 2016;15:1281-93. [91] Vicente T, Mota JP, Peixoto C, Alves PM, Carrondo MJ. Rational design and optimization of downstream processes of virus particles for biopharmaceutical applications: current advances. Biotechnol Adv. 2011;29:869-78. [92] Millipore E. Application Note: Generic process of cell culture based influenza vaccine. 2014. [93] Nestola P, Silva RJ, Peixoto C, Alves PM, Carrondo MJ, Mota JP. Adenovirus purification by two-column, size-exclusion, simulated countercurrent chromatography. J Chromatogr A. 2014;1347:111-21. [94] Liu YV, Massare MJ, Barnard DL, Kort T, Nathan M, Wang L, et al. Chimeric severe acute respiratory syndrome coronavirus (SARS-CoV) S glycoprotein and influenza matrix 1 efficiently form virus-like particles (VLPs) that protect mice against challenge with SARS-CoV. Vaccine. 2011;29:6606-13. [95] Chia-Chun Lai Y-CC, Pin-Wen Chen, Ting-Hui Lin, Tsai-Teng Tzeng, Chia-Chun Lu, Min-Shi Lee, and Alan Yung-Chih Hu. Process development for pandemic influenza VLP vaccine production using a baculovirus expression system. Journal of biological engineering. 2019;(Article in Press). [96] Nestola P, Peixoto C, Villain L, Alves PM, Carrondo MJ, Mota JP. Rational development of two flowthrough purification strategies for adenovirus type 5 and retro virus-like particles. J Chromatogr A. 2015;1426:91-101. [97] Weigel T, Solomaier T, Peuker A, Pathapati T, Wolff MW, Reichl U. A flow-through chromatography process for influenza A and B virus purification. J Virol Methods. 2014;207:45-53. [98] Choi Y, Lee S, Kwon SY, Lee Y, Park YK, Ban SJ. Analysis of the proficiency of single radial immunodiffusion assays for quality control of influenza vaccines in Korea. Biologicals. 2017;50:137-40. [99] Organization WH. Generic protocol for the calibration of seasonal and pandemic influenza antigen working reagents by WHO essential regulatory laboratories. WHO Technical Report Series.2011. [100] WHO. Generic protocol for the calibration of seasonal and pandemic influenza antigen working reagents by WHO essential regulatory laboratories. Sixty‐second report of the Expert Committee on Biological Standardization, Annex 5 WHO Technical Report Series 979. 2013. [101] Lai CC, Weng TC, Tseng YF, Chiang JR, Lee MS, Hu AY. Evaluation of novel disposable bioreactors on pandemic influenza virus production. PLoS One. 2019;14:e0220803. [102] Tetsutani K, Ishii KJ. Adjuvants in influenza vaccines. Vaccine. 2012;30:7658-61. [103] Bonam SR, Partidos CD, Halmuthur SKM, Muller S. An Overview of Novel Adjuvants Designed for Improving Vaccine Efficacy. Trends Pharmacol Sci. 2017;38:771-93. [104] Cimica V, Galarza JM. Adjuvant formulations for virus-like particle (VLP) based vaccines. Clin Immunol. 2017;183:99-108. [105] Chen TH, Liu YY, Jan JT, Huang MH, Spearman M, Butler M, et al. Recombinant hemagglutinin proteins formulated in a novel PELC/CpG adjuvant for H7N9 subunit vaccine development. Antiviral Res. 2017;146:213-20. [106] Chang GR-L, Lai S-Y, Chang P-C, Wang M-Y. Production of immunogenic one-component avian H7-subtype influenza virus-like particles. Process Biochemistry. 2011;46:1292-8. [107] Ren Z, Ji X, Meng L, Wei Y, Wang T, Feng N, et al. H5N1 influenza virus-like particle vaccine protects mice from heterologous virus challenge better than whole inactivated virus. Virus Res. 2015;200:9-18. [108] Hu CJ, Chien CY, Liu MT, Fang ZS, Chang SY, Juang RH, et al. Multi-antigen avian influenza a (H7N9) virus-like particles: particulate characterizations and immunogenicity evaluation in murine and avian models. BMC Biotechnol. 2017;17:2. [109] Wang Y, Wu J, Xue C, Wu Z, Lin Y, Wei Y, et al. A recombinant H7N9 influenza vaccine with the H7 hemagglutinin transmembrane domain replaced by the H3 domain induces increased cross-reactive antibodies and improved interclade protection in mice. Antiviral Res. 2017;143:97-105. [110] Pushko P, Pujanauski LM, Sun X, Pearce M, Hidajat R, Kort T, et al. Recombinant H7 hemagglutinin forms subviral particles that protect mice and ferrets from challenge with H7N9 influenza virus. Vaccine. 2015;33:4975-82. [111] Pillet S, Racine T, Nfon C, Di Lenardo TZ, Babiuk S, Ward BJ, et al. Plant-derived H7 VLP vaccine elicits protective immune response against H7N9 influenza virus in mice and ferrets. Vaccine. 2015;33:6282-9.
|