帳號:guest(3.138.102.202)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝承展
作者(外文):Hsieh, Chen-Chan
論文名稱(中文):Wnt拮抗作用透過增強細胞黏著連接及限縮分化方向促進間質幹細胞快速軟骨分化
論文名稱(外文):Wnt Antagonism without TGFβ Induces Rapid MSC Chondrogenesis via Increasing AJ Interactions and Restricting Lineage Commitment
指導教授(中文):陳令儀
顏伶汝
指導教授(外文):Chen, Linyi
Yen, B. Linju
口試委員(中文):林秀芳
黃玠誠
張至宏
口試委員(外文):Yet, Shaw Fang
Huang, Chieh-Cheng
Chang, Chih-Hung
學位類別:博士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學號:104080821
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:75
中文關鍵詞:人類間質幹細胞誘導性多能幹細胞軟骨分化Wnt/β-catenin訊息傳遞路徑細胞黏著連接N-鈣黏蛋白
外文關鍵詞:Human mesenchymal stem cells (hMSCs)induced pluripotent stem cells (iPSCs)chondrogenic differentiationWnt/β-catenin signalingadherens junctionN-cadherin
相關次數:
  • 推薦推薦:0
  • 點閱點閱:27
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
間質幹細胞 (mesenchymal stem cells, MSCs) 被期待作為軟骨疾病新世代細胞治療的良好細胞來源,但由於不佳的分化效率以及會產生非軟骨組織分化,使得在臨床應用上仍然無法獲得進一步突破,如何改進MSCs軟骨分化便是突破此瓶頸的關鍵。傳統上以TGFβ作為MSCs體外培養軟骨分化之標準誘導劑,然而TGFβ為多能誘導因子,可促使多種類型細胞分化而並不限於軟骨,且實驗發現於軟骨誘導條件下仍會產生脫靶效應而降低軟骨分化效率及移植副作用。
本研究證實運用Wnt/β-catenin拮抗劑,可以在不施加TGFβ情況下更有效率地誘導多種來源MSCs (分離自成體組織或分化自多能幹細胞) 的軟骨分化,並減少細胞分化往非目標軟骨細胞,如平滑肌細胞或肥大化軟骨細胞等。Wnt/β-catenin拮抗劑除了透過增強N-cadherin表現量與N-cadherin-β-catenin交互作用強化黏著連接 (adherens junctions, AJs) ,增進細胞骨架驅使之凝縮作用(condensation) 加快軟骨分化進程,也透過降低細胞核內β-catenin表現量而降低成骨分化或軟骨細胞肥大化之作用。除了體外細胞培養與動物實驗驗證外,我們也透過轉錄體分析證實Wnt/β-catenin拮抗劑對比傳統TGFβ方式降低脫靶分化;於人類初代細胞 (primacy cells) 比較中更發現軟骨細胞比起MSCs或成骨細胞具有更低之TGFβ與Wnt/β-catenin訊息表現,而具有更高之α-catenin/AJ表現,顯示我們提出以Wnt/β-catenin拮抗劑取代TGFβ進行軟骨分化更貼近真實軟骨組織細胞之生理情況。
此研究揭示了透過對發育學上的基礎訊息表現背景的了解以及調控細胞結構互動作用能夠達成更有效的軟骨分化,並具有更高之轉譯與臨床應用潛力。
Mesenchymal stem cells (MSCs) are expected as superior cell source for new generation of cell therapy treating cartilage diseases. However, the poor chondrogenic efficiency and the non-chondrogenic lineage differentiation limits its progress in application. Improvement of MSC chondrogenic differentiation is urgently needed to break through the bottleneck. However, MSC chondrogenesis is commonly induced through TGFβ, a pleomorphic growth factor without specificity for this lineage. In this study, utilizing tissue- and induced pluripotent stem cell-derived MSCs, we demonstrate an efficient and precise approach to induce chondrogenesis through Wnt/β-catenin antagonism alone without TGFβ. Compared to TGFβ, Wnt/β-catenin antagonism more rapidly induced MSC chondrogenesis without eliciting off-target lineage specification towards smooth muscle or hypertrophy; this was mediated through increasing N-cadherin levels and β-catenin interactions—key components of the adherens junctions (AJ)—and increasing cytoskeleton-mediated condensation. Downregulation of off-target lineage commitment was confirmed by mRNA expression profiles of chondrogenic MSCs treated by Wnt antagonist. Validation with transcriptomic analysis of human chondrocytes compared to MSCs and osteoblasts showed significant downregulation of Wnt/β-catenin and TGFβ signaling along with upregulation of α-catenin- and AJ-related processes. Our findings underscore the importance of understanding developmental pathways and structural modifications in achieving efficient MSC chondrogenesis for translational application.
摘要----------------------------ii
ABSTRACT---------------------iii
致謝 ---------------------------iv
INTRODUCTION----------------1
MATERIALS AND METHODS----8
RESULTS----------------------14
DISCUSSION------------------25
FIGURES AND TABLES-------- 34
REFERENCES------------------71
1. Roughley PJ. The structure and function of cartilage proteoglycans. Eur Cell Mater. 2006;12:92-101.
2. Eyre DR, Weis MA, Wu JJ. Articular cartilage collagen: an irreplaceable framework? Eur Cell Mater. 2006;12:57-63.
3. Pacifici M, Golden EB, Oshima O, Shapiro IM, Leboy PS, Adams SL. Hypertrophic chondrocytes. The terminal stage of differentiation in the chondrogenic cell lineage? Ann N Y Acad Sci. 1990;599:45-57.
4. Jafarzadeh SR, Felson DT. Updated Estimates Suggest a Much Higher Prevalence of Arthritis in United States Adults Than Previous Ones. Arthritis Rheumatol. 2018;70(2):185-92.
5. Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. Lancet. 2019;393(10182):1745-59.
6. Sun AX, Numpaisal P-o, Gottardi R, Shen H, Yang G, Tuan RS. Cell and Biomimetic Scaffold-Based Approaches for Cartilage Regeneration. Operative Techniques in Orthopaedics. 2016;26(3):135-46.
7. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143-7.
8. Barberi T, Willis LM, Socci ND, Studer L. Derivation of multipotent mesenchymal precursors from human embryonic stem cells. PLoS Med. 2005;2(6):e161.
9. Yen BL, Chang CJ, Liu KJ, Chen YC, Hu HI, Bai CH, et al. Brief report--human embryonic stem cell-derived mesenchymal progenitors possess strong immunosuppressive effects toward natural killer cells as well as T lymphocytes. Stem Cells. 2009;27(2):451-6.
10. Kimbrel EA, Kouris NA, Yavanian GJ, Chu J, Qin Y, Chan A, et al. Mesenchymal stem cell population derived from human pluripotent stem cells displays potent immunomodulatory and therapeutic properties. Stem Cells Dev. 2014;23(14):1611-24.
11. Wang LT, Jiang SS, Ting CH, Hsu PJ, Chang CC, Sytwu HK, et al. Differentiation of Mesenchymal Stem Cells from Human Induced Pluripotent Stem Cells Results in Downregulation of c-Myc and DNA Replication Pathways with Immunomodulation Toward CD4 and CD8 Cells. Stem Cells. 2018;36(6):903-14.
12. Yen BL, Liu KJ, Sytwu HK, Yen ML. Clinical implications of differential functional capacity between tissue-specific human mesenchymal stromal/stem cells. FEBS J. 2022.
13. Wang L, Tran I, Seshareddy K, Weiss ML, Detamore MS. A comparison of human bone marrow-derived mesenchymal stem cells and human umbilical cord-derived mesenchymal stromal cells for cartilage tissue engineering. Tissue Eng Part A. 2009;15(8):2259-66.
14. Wang W, Rigueur D, Lyons KM. TGFbeta signaling in cartilage development and maintenance. Birth Defects Res C Embryo Today. 2014;102(1):37-51.
15. Grafe I, Alexander S, Peterson JR, Snider TN, Levi B, Lee B, et al. TGF-beta Family Signaling in Mesenchymal Differentiation. Cold Spring Harb Perspect Biol. 2018;10(5).
16. Chen G, Deng C, Li YP. TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci. 2012;8(2):272-88.
17. Wu M, Chen G, Li YP. TGF-beta and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 2016;4:16009.
18. Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell. 2001;107(4):513-23.
19. Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA, et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med. 2002;346(20):1513-21.
20. Day TF, Guo X, Garrett-Beal L, Yang Y. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell. 2005;8(5):739-50.
21. Gaur T, Lengner CJ, Hovhannisyan H, Bhat RA, Bodine PV, Komm BS, et al. Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem. 2005;280(39):33132-40.
22. Yap AS, Brieher WM, Gumbiner BM. Molecular and functional analysis of cadherin-based adherens junctions. Annu Rev Cell Dev Biol. 1997;13:119-46.
23. Caron MM, Emans PJ, Coolsen MM, Voss L, Surtel DA, Cremers A, et al. Redifferentiation of dedifferentiated human articular chondrocytes: comparison of 2D and 3D cultures. Osteoarthritis Cartilage. 2012;20(10):1170-8.
24. DeLise AM, Fischer L, Tuan RS. Cellular interactions and signaling in cartilage development. Osteoarthritis Cartilage. 2000;8(5):309-34.
25. Kardash E, Reichman-Fried M, Maitre JL, Boldajipour B, Papusheva E, Messerschmidt EM, et al. A role for Rho GTPases and cell-cell adhesion in single-cell motility in vivo. Nat Cell Biol. 2010;12(1):47-53; sup pp 1-11.
26. Passanha FR, Geuens T, Konig S, van Blitterswijk CA, LaPointe VL. Cell culture dimensionality influences mesenchymal stem cell fate through cadherin-2 and cadherin-11. Biomaterials. 2020;254:120127.
27. Bosveld F, Bonnet I, Guirao B, Tlili S, Wang Z, Petitalot A, et al. Mechanical control of morphogenesis by Fat/Dachsous/Four-jointed planar cell polarity pathway. Science. 2012;336(6082):724-7.
28. Kim NG, Koh E, Chen X, Gumbiner BM. E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proc Natl Acad Sci U S A. 2011;108(29):11930-5.
29. Oberlender SA, Tuan RS. Expression and functional involvement of N-cadherin in embryonic limb chondrogenesis. Development. 1994;120(1):177-87.
30. Bian LM, Guvendiren M, Mauck RL, Burdick JA. Hydrogels that mimic developmentally relevant matrix and N-cadherin interactions enhance MSC chondrogenesis. P Natl Acad Sci USA. 2013;110(25):10117-22.
31. Ho PJ, Yen ML, Lin JD, Chen LS, Hu HI, Yeh CK, et al. Endogenous KLF4 expression in human fetal endothelial cells allows for reprogramming to pluripotency with just OCT3/4 and SOX2--brief report. Arterioscler Thromb Vasc Biol. 2010;30(10):1905-7.
32. Peng KY, Lee YW, Hsu PJ, Wang HH, Wang Y, Liou JY, et al. Human pluripotent stem cell (PSC)-derived mesenchymal stem cells (MSCs) show potent neurogenic capacity which is enhanced with cytoskeletal rearrangement. Oncotarget. 2016;7(28):43949-59.
33. Yen BL, Huang HI, Chien CC, Jui HY, Ko BS, Yao M, et al. Isolation of multipotent cells from human term placenta. Stem Cells. 2005;23(1):3-9.
34. Huang S, Xu L, Sun Y, Wu T, Wang K, Li G. An improved protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. J Orthop Translat. 2015;3(1):26-33.
35. Nadri S, Soleimani M, Hosseni RH, Massumi M, Atashi A, Izadpanah R. An efficient method for isolation of murine bone marrow mesenchymal stem cells. Int J Dev Biol. 2007;51(8):723-9.
36. Liu KJ, Wang CJ, Chang CJ, Hu HI, Hsu PJ, Wu YC, et al. Surface expression of HLA-G is involved in mediating immunomodulatory effects of placenta-derived multipotent cells (PDMCs) towards natural killer lymphocytes. Cell Transplant. 2011;20(11-12):1721-30.
37. Yen BL, Yen ML, Hsu PJ, Liu KJ, Wang CJ, Bai CH, et al. Multipotent human mesenchymal stromal cells mediate expansion of myeloid-derived suppressor cells via hepatocyte growth factor/c-met and STAT3. Stem Cell Reports. 2013;1(2):139-51.
38. Greco KV, Iqbal AJ, Rattazzi L, Nalesso G, Moradi-Bidhendi N, Moore AR, et al. High density micromass cultures of a human chondrocyte cell line: a reliable assay system to reveal the modulatory functions of pharmacological agents. Biochem Pharmacol. 2011;82(12):1919-29.
39. Craft AM, Rockel JS, Nartiss Y, Kandel RA, Alman BA, Keller GM. Generation of articular chondrocytes from human pluripotent stem cells. Nat Biotechnol. 2015;33(6):638-45.
40. Lev R, Spicer SS. Specific Staining of Sulphate Groups with Alcian Blue at Low Ph. J Histochem Cytochem. 1964;12:309.
41. Song J, Baek IJ, Chun CH, Jin EJ. Dysregulation of the NUDT7-PGAM1 axis is responsible for chondrocyte death during osteoarthritis pathogenesis. Nat Commun. 2018;9(1):3427.
42. Wang CH, Wu CC, Hsu SH, Liou JY, Li YW, Wu KK, et al. The role of RhoA kinase inhibition in human placenta-derived multipotent cells on neural phenotype and cell survival. Biomaterials. 2013;34(13):3223-30.
43. Zhao J, Li S, Trilok S, Tanaka M, Jokubaitis-Jameson V, Wang B, et al. Small molecule-directed specification of sclerotome-like chondroprogenitors and induction of a somitic chondrogenesis program from embryonic stem cells. Development. 2014;141(20):3848-58.
44. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545-50.
45. Yoshida M, Horiguchi H, Kikuchi S, Iyama S, Ikeda H, Goto A, et al. miR-7977 inhibits the Hippo-YAP signaling pathway in bone marrow mesenchymal stromal cells. Plos One. 2019;14(3):e0213220.
46. Stradner MH, Dreu M, Angerer H, Gruber G, Wagner K, Peischler D, et al. Chondrocyte cultures from human proximal interphalangeal finger joints. J Orthop Res. 2016;34(9):1569-75.
47. De-Ugarte L, Serra-Vinardell J, Nonell L, Balcells S, Arnal M, Nogues X, et al. Expression profiling of microRNAs in human bone tissue from postmenopausal women. Hum Cell. 2018;31(1):33-41.
48. Puetzer JL, Petitte JN, Loboa EG. Comparative review of growth factors for induction of three-dimensional in vitro chondrogenesis in human mesenchymal stem cells isolated from bone marrow and adipose tissue. Tissue Eng Part B Rev. 2010;16(4):435-44.
49. Kurpinski K, Lam H, Chu J, Wang A, Kim A, Tsay E, et al. Transforming growth factor-beta and notch signaling mediate stem cell differentiation into smooth muscle cells. Stem Cells. 2010;28(4):734-42.
50. Li Y, Jiang D, Liang J, Meltzer EB, Gray A, Miura R, et al. Severe lung fibrosis requires an invasive fibroblast phenotype regulated by hyaluronan and CD44. J Exp Med. 2011;208(7):1459-71.
51. Narcisi R, Arikan OH, Lehmann J, Ten Berge D, van Osch GJ. Differential Effects of Small Molecule WNT Agonists on the Multilineage Differentiation Capacity of Human Mesenchymal Stem Cells. Tissue Eng Part A. 2016;22(21-22):1264-73.
52. Alimperti S, Andreadis ST. CDH2 and CDH11 act as regulators of stem cell fate decisions. Stem Cell Res. 2015;14(3):270-82.
53. Perrimon N, Pitsouli C, Shilo BZ. Signaling mechanisms controlling cell fate and embryonic patterning. Cold Spring Harb Perspect Biol. 2012;4(8):a005975.
54. Kramer A, Green J, Pollard J, Jr., Tugendreich S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics. 2014;30(4):523-30.
55. Ferguson GB, Van Handel B, Bay M, Fiziev P, Org T, Lee S, et al. Mapping molecular landmarks of human skeletal ontogeny and pluripotent stem cell-derived articular chondrocytes. Nat Commun. 2018;9(1):3634.
56. Tacchetti C, Tavella S, Dozin B, Quarto R, Robino G, Cancedda R. Cell condensation in chondrogenic differentiation. Exp Cell Res. 1992;200(1):26-33.
57. Hall BK, Miyake T. All for one and one for all: condensations and the initiation of skeletal development. Bioessays. 2000;22(2):138-47.
58. Pelttari K, Winter A, Steck E, Goetzke K, Hennig T, Ochs BG, et al. Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum. 2006;54(10):3254-66.
59. Vinardell T, Sheehy EJ, Buckley CT, Kelly DJ. A comparison of the functionality and in vivo phenotypic stability of cartilaginous tissues engineered from different stem cell sources. Tissue Eng Part A. 2012;18(11-12):1161-70.
60. Peterson L, Vasiliadis HS, Brittberg M, Lindahl A. Autologous chondrocyte implantation: a long-term follow-up. Am J Sports Med. 2010;38(6):1117-24.
61. Guo X, Day TF, Jiang X, Garrett-Beal L, Topol L, Yang Y. Wnt/beta-catenin signaling is sufficient and necessary for synovial joint formation. Genes Dev. 2004;18(19):2404-17.
62. Westendorf JJ, Kahler RA, Schroeder TM. Wnt signaling in osteoblasts and bone diseases. Gene. 2004;341:19-39.
63. Yano F, Kugimiya F, Ohba S, Ikeda T, Chikuda H, Ogasawara T, et al. The canonical Wnt signaling pathway promotes chondrocyte differentiation in a Sox9-dependent manner. Biochem Biophys Res Commun. 2005;333(4):1300-8.
64. Im GI, Quan Z. The effects of Wnt inhibitors on the chondrogenesis of human mesenchymal stem cells. Tissue Eng Part A. 2010;16(7):2405-13.
65. Mobasheri A, Kalamegam G, Musumeci G, Batt ME. Chondrocyte and mesenchymal stem cell-based therapies for cartilage repair in osteoarthritis and related orthopaedic conditions. Maturitas. 2014;78(3):188-98.
66. Sart S, Tsai AC, Li Y, Ma T. Three-Dimensional Aggregates of Mesenchymal Stem Cells: Cellular Mechanisms, Biological Properties, and Applications. Tissue Eng Part B-Re. 2014;20(5):365-80.
67. Bian L, Guvendiren M, Mauck RL, Burdick JA. Hydrogels that mimic developmentally relevant matrix and N-cadherin interactions enhance MSC chondrogenesis. Proc Natl Acad Sci U S A. 2013;110(25):10117-22.
68. Ray P, Chapman SC. Cytoskeletal Reorganization Drives Mesenchymal Condensation and Regulates Downstream Molecular Signaling. Plos One. 2015;10(8):e0134702.
69. Mueller MB, Fischer M, Zellner J, Berner A, Dienstknecht T, Prantl L, et al. Hypertrophy in mesenchymal stem cell chondrogenesis: effect of TGF-beta isoforms and chondrogenic conditioning. Cells Tissues Organs. 2010;192(3):158-66.
70. Lee WY, Wang B. Cartilage repair by mesenchymal stem cells: Clinical trial update and perspectives. J Orthop Translat. 2017;9:76-88.
71. Deng Y, Lei G, Lin Z, Yang Y, Lin H, Tuan RS. Engineering hyaline cartilage from mesenchymal stem cells with low hypertrophy potential via modulation of culture conditions and Wnt/beta-catenin pathway. Biomaterials. 2019;192:569-78.
72. Wu CL, Dicks A, Steward N, Tang R, Katz DB, Choi YR, et al. Single cell transcriptomic analysis of human pluripotent stem cell chondrogenesis. Nat Commun. 2021;12(1):362.
73. Takeda S, Bonnamy JP, Owen MJ, Ducy P, Karsenty G. Continuous expression of Cbfa1 in nonhypertrophic chondrocytes uncovers its ability to induce hypertrophic chondrocyte differentiation and partially rescues Cbfa1-deficient mice. Genes Dev. 2001;15(4):467-81.
74. Ding M, Lu Y, Abbassi S, Li F, Li X, Song Y, et al. Targeting Runx2 expression in hypertrophic chondrocytes impairs endochondral ossification during early skeletal development. J Cell Physiol. 2012;227(10):3446-56.
75. Cleary MA, van Osch GJ, Brama PA, Hellingman CA, Narcisi R. FGF, TGFbeta and Wnt crosstalk: embryonic to in vitro cartilage development from mesenchymal stem cells. J Tissue Eng Regen Med. 2015;9(4):332-42.
76. Bi W, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B. Sox9 is required for cartilage formation. Nat Genet. 1999;22(1):85-9.
77. Adkar SS, Wu CL, Willard VP, Dicks A, Ettyreddy A, Steward N, et al. Step-Wise Chondrogenesis of Human Induced Pluripotent Stem Cells and Purification Via a Reporter Allele Generated by CRISPR-Cas9 Genome Editing. Stem Cells. 2019;37(1):65-76.
78. Yang Z, Zou Y, Guo XM, Tan HS, Denslin V, Yeow CH, et al. Temporal activation of beta-catenin signaling in the chondrogenic process of mesenchymal stem cells affects the phenotype of the cartilage generated. Stem Cells Dev. 2012;21(11):1966-76.
79. Lorda-Diez CI, Montero JA, Martinez-Cue C, Garcia-Porrero JA, Hurle JM. Transforming growth factors beta coordinate cartilage and tendon differentiation in the developing limb mesenchyme. J Biol Chem. 2009;284(43):29988-96.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 開發新式磁性奈米材料進行人類幹細胞工程及其於癌症治療與軟骨分化之應用
2. SH2B1β 透過促進 FGF1 之訊息傳遞與增加 FGFR1 之表現進而增強 FGF1 所誘導之神經軸突生長
3. SH2B1beta經由PI3K-AKT-FoxO與MEK-ERK1/2-FoxO途徑降低由氧化壓力所誘導之細胞死亡現象
4. Differential Regulation of Neuronal Differentiation by SH2B1β and SH2B3
5. 訊息蛋白SH2B1β增進PC12細胞之神經修復能力
6. 訊息蛋白SH2B1β藉由影響細胞黏著調控神經生長因子在PC12細胞誘發之神經軸突生長
7. 新穎性奈米載體在生物醫學應用的發展:(1) 紅血球微囊在腦血管屏壁的藥物傳遞 (2) 紅血球微囊傳遞金奈米粒子以利光熱能治療
8. 研究肝癌細胞對於內皮前驅細胞及衍生內皮細胞分化、移動、入侵及管狀結構形成之影響
9. 致癌蛋白MCT-1在MCF-10A細胞中調控AKT訊息傳遞路徑
10. I. 以同源性紅血球微囊當作氧化鐵之奈米載體應用於幹細胞磁振造影 II. 以適體結合之 DNA 二十面體奈米粒子作為抗癌藥物之載體用於癌症治療
11. SH2B1β減少 PC12 細胞因氧化壓力所引起的細胞死亡
12. 轉錄因子RFX對纖維母細胞生長因子第一型的轉錄調控
13. 鑑定位在內質網上的具有RING-Finger的泛素連接酶
14. Role of SH2B1beta in neuronal regeneration
15. Characterizing the subcellular distribution of SH2B1beta-regulated N-cadherin-containing complexes
 
* *