帳號:guest(3.144.105.36)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林孜怡
作者(外文):Lin, Tzu-Yi
論文名稱(中文):利用CRISPR/Cas9技術孕育DNA-PKcs3A/3A小鼠
論文名稱(外文):Generation of DNA-PKcs 3A/3A mutant mice by a CRISPR/Cas9 approach
指導教授(中文):劉鴻興
汪宏達
指導教授(外文):Liu, Hong-Hsing
Wang, Horng-Dar
口試委員(中文):莊景凱
蔡玉真
口試委員(外文):Chuang, Ching-kai
Tsai, Yu-Chen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:104080602
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:68
中文關鍵詞:人類化老鼠免疫缺陷鼠老鼠胚胎幹細胞
外文關鍵詞:CRISPR/Cas9DNA-PKcshumanized miceembryonic stem cellsimmunodeficient mice
相關次數:
  • 推薦推薦:0
  • 點閱點閱:68
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
DNA-dependent protein kinase (DNA-PKcs)主要的功能在調控DNA雙股螺旋斷裂(double-strand break , DSB)的修復機制,當DNA雙股螺旋斷裂時會引起DNA-PKcs的自我磷酸化反應(autophosphorylation)來調控其本身活性。根據研究發現,當exon 58上的三個Thr2605、Thr2634及Thr2643磷酸位被alanine所取代,並且形成 DNA-PKcs3A/3A時,老鼠體內會有先天性骨髓(bone marrow)衰竭的現象產生。我的研究主要是育出帶有DNA-PKcs3A/3A BALB/c小鼠,期待能具備較高的擬人化(humanization)效力。在這個研究之前,我們嘗試通過直接注射Cas9、引導RNA (guide RNA)及模板DNA (donor DNA)至BALB/c小鼠受精卵中,但未能拿到我們所期望DNA-PKcs3A/3A BALB/c小鼠。因此,這次我們利用CRISPR/Cas9及G-418篩選之技術,在BALB/c胚幹細胞上進行基因編輯,主要是藉由標定於exon 58上之引導RNA誘導BALB/c胚幹細胞的DNA斷裂,並同時送入帶有DNA-PKcs3A、PGK:Neo及兩段同源序列的基因載體進行同源重組(homologous recombination)。接著,將帶有 DNA-PKcs3A之BALB/c胚幹細胞藉由囊胚注射至代理孕母小鼠中,期望孕育出帶有生殖系統傳遞能力(germline transmission)的嵌合體(chimeric)小鼠,最後,藉由配種孕育出帶有DNA-PKcs3A/3A的子代。人類CD34+細胞是一種造血幹細胞,具有在免疫缺陷小鼠身上建立人類免疫系統之能力,我們期望具有先天性骨髓衰竭及免疫缺陷特性之DNA-PKcs3A/3A BALB/c小鼠,可以提升人類CD34+細胞建立擬人化老鼠(humanized mice)的能力並且作為人類免疫系統研究之平台。一旦成功,我的研究將對藥物測試和人類疾病這些研究領域產生極大的貢獻。
DNA-dependent protein kinase (DNA-PKcs) is essential for DNA repair pathways. The activity of DNA-PKcs is regulated by different phosphorylation sites in response to DNA double strand breaks (DSBs). It was reported that three alanine substitutions at the Thr2605 phosphorylation cluster, including Thr2605、Thr2634 and Thr2643, on exon 58 (DNA-PKcs3A/3A) would cause early bone marrow failure in homozygous mice. This study is aimed to generate DNA-PKcs3A/3A mutant mice in the BALB/c background and to evaluate its potential for humanization. A previous attempt by direct injection of Cas9 plasmid, guide RNA, and donor DNA into BLAB/c fertilised eggs failed to generate the desired mutant. Thus an alternative approach by combining CRISPR/Cas9 and neo-based screening on BALB/c embryonic stem cells is taken. Specifically, we use Cas9 and exon 58-targeting guide RNAs to induce DNA breaks in BALB/c embryonic stem cells. At the same time we supply a mutant template of DNA-PKcs3A within a cassette that has the PGK:Neo selectable marker for positive selection and two flanking arms for homologous recombination. In the future, the selected DNA-PKcs3A mutant knock-in ES cells will be injected into blastocysts to produce chimeric mice by foster mothers. Hopefully these mutant mice will have the ability of germline transmission to generate a line of homozygous DNA-PKcs3A/3A offsprings after further breeding. These mice will be evaluated whether they can serve as a better platform for humanization by human CD34+ cells. Human CD34+ cells are hematopoietic stem cells that have been known to be able to establish the human immune system in immune compromised mice. With expected early bone marrow failure and immune deficiency in homozygous DNA-PKcs3A/3A mice, we hope these properties could augment the performance of CD34+ cell-based humanization and serve the need of an excellent platform for establishing the human immune system. Once succeeded, my work will have great contributions to drug testing and disease research that require faithfulness to bona fide human immunity.
中文摘要………………………………………………………………………………………i
英文摘要……………………………………………………………………………………ii
目錄……………………………………………………………………………………………iv
圖目錄………………………………………………………………………………………viii
第一章、緒論…………………………………………………………………………………1
1.1、前言…………………………………………………………………………………1
1.2、擬人化老鼠(humanized mice)………………………………………………………2
1.3、免疫缺陷鼠(immunodeficient mice)………………………………………………3
1.3.1、SCID mice………………………………………………………………………3
1.3.2、NOD mice………………………………………………………………………4
1.3.3、NSG (NOD/SCID/IL2Rγnull) mice………………………………………………5
1.4、interleukin-2受體(IL-2R ) …………………………………………………………5
1.5、DNA-dependent protein kinase catalytic subunit (DNA–PKcs) ……………………6
1.6、胚幹細胞(embryonic stem cells)…………………………………………………7
1.7、小鼠胚幹細胞之體外建立…………………………………………………………7
1.8、基因组编輯(genome editing) ………………………………………………………8
1.9、CRISPR-Cas…………………………………………………………………………9
1.9.1、CRISPR-Cas9之起源…………………………………………………………9
1.9.2、CRISPR- Cas9之防禦機制……………………………………………………10
1.9.3、第二型CRISPR/Cas -CRISPR-Cas9…………………………………………10
1.9.4、CRISPR-Cas9基因工程應用…………………………………………………11
1.10、轉染(Transfection) ………………………………………………………………12
1.10.1、脂質體介導(lipofection) ……………………………………………………12
1.10.2、Fugene………………………………………………………………………13
1.10.3、電穿孔法(electroporation) …………………………………………………13
1.11、G-418篩選(G-418 selection)……………………………………………………13
1.12、Cre/loxP重組(Cre-LoxP recombination) ………………………………………14
1.13、囊胚注射(blastocyst injection) …………………………………………………14
1.14、研究方向…………………………………………………………………………16
第二章、材料與方法…………………………………………………………………………17
2.1、BALB/cJ line I胚幹細胞之建立…………………………………………………17
2.1.1、纖維母細胞培養液之置備……………………………………………………17
2.1.2、Primary MEFs之製備…………………………………………………………17
2.1.3、MEFs飼養層細胞(feeder layer)之製備………………………………………18
2.1.4、細胞株來源……………………………………………………………………18
2.1.5、幹細胞培養液之製備…………………………………………………………18
2.1.6、細胞繼代之步驟………………………………………………………………19
2.1.7、細胞冷凍之步驟………………………………………………………………19
2.1.8、細胞解凍之步驟………………………………………………………………19
2.1.9、細胞冷凍液之製備……………………………………………………………20
2.2、細胞計數之步驟……………………………………………………………………20
2.3、源基因轉染之步驟…………………………………………………………………20
2.3.1、Lipofectoamine® 3000 Transfection Reagent…………………………………20
2.3.2、FuGENE® HD Transfection Reagent…………………………………………21
2.3.3、Neon® Transfection system……………………………………………………21
2.4、G-418篩選之步驟…………………………………………………………………22
2.5、細胞stable colones挑選之步驟…………………………………………………22
2.6、細胞DNA之萃取之步驟…………………………………………………………23
2.7、洋菜凝膠電泳(agarose gel electrophoresis) 之步驟………………………………23
2.8、聚合酶連鎖反應(Polymerase chain reaction,PCR)之步驟………………………24
2.9、Prkdc-loxPneo BALB/c mESCs基因之PCR分析設計…………………………24
2.10、TA cloning之步驟………………………………………………………………25
2.11、質體DNA萃取之步驟…………………………………………………………27
2.12、Probe標定DIG-dUTP之步驟…………………………………………………27
2.13、南方墨點法(Southern blot)之步驟………………………………………………28
2.14、DNA定序(DNA sequencing)之步驟……………………………………………31
2.15、黴漿菌檢測(mycoplasma detection)之步驟……………………………………31
第三章、實驗結果……………………………………………………………………………33
3.1、飼養層細胞(feeder layer)之製備…………………………………………………33
3.2、BALB/cJ line I胚幹細胞建立……………………………………………………33
3.3、比較外源基因轉染技術之轉染效率………………………………………………34
3.4、pPrkdc-loxPneo載體之設計………………………………………………………34
3.5、轉染pPrkdc-loxPneo載體至BALB/c mESCs……………………………………35
3.6、Prkdc-loxPneo BALB/c mESCs之基因型分析genotyping………………………35
3.7、Prkdc-loxPneo BALB/c mESCs之南方墨點法(Southern blot) …………………36
3.8、DNA定序(DNA sequencing) ……………………………………………………36
3.9、黴漿菌檢測(mycoplasma detection) ……………………………………………37
第四章、討論…………………………………………………………………………………38
第五章、參考文獻………………………………………………………………………41

Anderson, M. S., & Bluestone, J. A. (2005). The NOD mouse: a model of immune dysregulation. Annu Rev Immunol, 23, 447-485. doi:10.1146/annurev.immunol.23.021704.115643
Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., . . . Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315(5819), 1709-1712. doi:10.1126/science.1138140
Baxter, A. G., & Cooke, A. (1993). Complement lytic activity has no role in the pathogenesis of autoimmune diabetes in NOD mice. Diabetes, 42(11), 1574-1578.
Boglioli, E., & Richard, M. (2015). Rewriting the book of life: a new era in precision gene editing. Boston Consulting Group (BCG).
Bolotin, A., Quinquis, B., Sorokin, A., & Ehrlich, S. D. (2005). Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 151(Pt 8), 2551-2561. doi:10.1099/mic.0.28048-0
Bosma, G. C., Custer, R. P., & Bosma, M. J. (1983). A severe combined immunodeficiency mutation in the mouse. Nature, 301(5900), 527-530.
Bosma, M. J., & Carroll, A. M. (1991). The SCID mouse mutant: definition, characterization, and potential uses. Annu Rev Immunol, 9, 323-350. doi:10.1146/annurev.iy.09.040191.001543
Brehm, M. A., Cuthbert, A., Yang, C., Miller, D. M., DiIorio, P., Laning, J., . . . Greiner, D. L. (2010). Parameters for establishing humanized mouse models to study human immunity: analysis of human hematopoietic stem cell engraftment in three immunodeficient strains of mice bearing the IL2rgamma(null) mutation. Clin Immunol, 135(1), 84-98. doi:10.1016/j.clim.2009.12.008
Brouns, S. J., Jore, M. M., Lundgren, M., Westra, E. R., Slijkhuis, R. J., Snijders, A. P., . . . van der Oost, J. (2008). Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 321(5891), 960-964. doi:10.1126/science.1159689
Buehr, M., Meek, S., Blair, K., Yang, J., Ure, J., Silva, J., . . . Smith, A. (2008). Capture of authentic embryonic stem cells from rat blastocysts. Cell, 135(7), 1287-1298. doi:10.1016/j.cell.2008.12.007
Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., . . . Marraffini, L. A. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121), 819-823.
Dalby, B., Cates, S., Harris, A., Ohki, E. C., Tilkins, M. L., Price, P. J., & Ciccarone, V. C. (2004). Advanced transfection with Lipofectamine 2000 reagent: primary neurons, siRNA, and high-throughput applications. Methods, 33(2), 95-103. doi:10.1016/j.ymeth.2003.11.023
Deltcheva, E., Chylinski, K., Sharma, C. M., Gonzales, K., Chao, Y., Pirzada, Z. A., . . . Charpentier, E. (2011). CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 471(7340), 602-607. doi:10.1038/nature09886
Doudna, J. A., & Charpentier, E. (2014). Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213), 1258096. doi:10.1126/science.1258096
Doudna, J. A., & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213), 1258096.
Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819), 154-156.
Gasiunas, G., Barrangou, R., Horvath, P., & Siksnys, V. (2012). Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A, 109(39), E2579-2586. doi:10.1073/pnas.1208507109
Gertsenstein, M., Nutter, L. M., Reid, T., Pereira, M., Stanford, W. L., Rossant, J., & Nagy, A. (2010). Efficient generation of germ line transmitting chimeras from C57BL/6N ES cells by aggregation with outbred host embryos. PLoS One, 5(6), e11260. doi:10.1371/journal.pone.0011260
Goldman, J. P., Blundell, M. P., Lopes, L., Kinnon, C., Di Santo, J. P., & Thrasher, A. J. (1998). Enhanced human cell engraftment in mice deficient in RAG2 and the common cytokine receptor gamma chain. Br J Haematol, 103(2), 335-342.
Habib, T., Senadheera, S., Weinberg, K., & Kaushansky, K. (2002). The common gamma chain (gamma c) is a required signaling component of the IL-21 receptor and supports IL-21-induced cell proliferation via JAK3. Biochemistry, 41(27), 8725-8731.
Haft, D. H., Selengut, J., Mongodin, E. F., & Nelson, K. E. (2005). A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol, 1(6), e60. doi:10.1371/journal.pcbi.0010060
Hamilton, D. L., & Abremski, K. (1984). Site-specific recombination by the bacteriophage P1 lox-Cre system. Cre-mediated synapsis of two lox sites. J Mol Biol, 178(2), 481-486.
Hanna, J. H., Saha, K., & Jaenisch, R. (2010). Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell, 143(4), 508-525. doi:10.1016/j.cell.2010.10.008
Hayakawa, J., Hsieh, M. M., Uchida, N., Phang, O., & Tisdale, J. F. (2009). Busulfan produces efficient human cell engraftment in NOD/LtSz-Scid IL2Rgamma(null) mice. Stem Cells, 27(1), 175-182. doi:10.1634/stemcells.2008-0583
Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., & Nakata, A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol, 169(12), 5429-5433.
Jacobsen, L. B., Calvin, S. A., Colvin, K. E., & Wright, M. (2004). FuGENE 6 Transfection Reagent: the gentle power. Methods, 33(2), 104-112. doi:10.1016/j.ymeth.2003.11.002
Jaenisch, R., & Mintz, B. (1974). Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA. Proc Natl Acad Sci U S A, 71(4), 1250-1254.
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816-821. doi:10.1126/science.1225829
Jinek, M., East, A., Cheng, A., Lin, S., Ma, E., & Doudna, J. (2013). RNA-programmed genome editing in human cells. Elife, 2, e00471. doi:10.7554/eLife.00471
Lepus, C. M., Gibson, T. F., Gerber, S. A., Kawikova, I., Szczepanik, M., Hossain, J., . . . Harding, M. J. (2009). Comparison of human fetal liver, umbilical cord blood, and adult blood hematopoietic stem cell engraftment in NOD-scid/gammac-/-, Balb/c-Rag1-/-gammac-/-, and C.B-17-scid/bg immunodeficient mice. Hum Immunol, 70(10), 790-802. doi:10.1016/j.humimm.2009.06.005
Liao, W., Lin, J. X., & Leonard, W. J. (2011). IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. Curr Opin Immunol, 23(5), 598-604. doi:10.1016/j.coi.2011.08.003
Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D., & Darnell, J. (2000). Molecular cell biology 4th edition. National Center for Biotechnology InformationÕs Bookshelf.
Makarova, K. S., Haft, D. H., Barrangou, R., Brouns, S. J., Charpentier, E., Horvath, P., . . . Koonin, E. V. (2011). Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol, 9(6), 467-477. doi:10.1038/nrmicro2577
Makino, S., Kunimoto, K., Muraoka, Y., Mizushima, Y., Katagiri, K., & Tochino, Y. (1980). Breeding of a non-obese, diabetic strain of mice. Jikken Dobutsu, 29(1), 1-13.
Malek, T. R., & Castro, I. (2010). Interleukin-2 receptor signaling: at the interface between tolerance and immunity. Immunity, 33(2), 153-165. doi:10.1016/j.immuni.2010.08.004
Matsumura, T., Kametani, Y., Ando, K., Hirano, Y., Katano, I., Ito, R., . . . Habu, S. (2003). Functional CD5+ B cells develop predominantly in the spleen of NOD/SCID/gammac(null) (NOG) mice transplanted either with human umbilical cord blood, bone marrow, or mobilized peripheral blood CD34+ cells. Exp Hematol, 31(9), 789-797.
McCune, J. M., Namikawa, R., Kaneshima, H., Shultz, L. D., Lieberman, M., & Weissman, I. L. (1988). The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science, 241(4873), 1632-1639.
Mojica, F. J., Diez-Villasenor, C., Soria, E., & Juez, G. (2000). Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol, 36(1), 244-246.
Neumann, E., Schaefer-Ridder, M., Wang, Y., & Hofschneider, P. (1982). Gene transfer into mouse lyoma cells by electroporation in high electric fields. The EMBO journal, 1(7), 841.
Norman A., Maclnnes M. (2002) Genetic engineering of embryonic stem ceils via site directed DNA recombination. RUR International Journal of Excellence in Undergraduate Research. Issuel: l-16.
Pattanayak, V., Lin, S., Guilinger, J. P., Ma, E., Doudna, J. A., & Liu, D. R. (2013). High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol, 31(9), 839-843. doi:10.1038/nbt.2673
Pearson, T., Shultz, L. D., Miller, D., King, M., Laning, J., Fodor, W., . . . Greiner, D. L. (2008). Non-obese diabetic-recombination activating gene-1 (NOD-Rag1 null) interleukin (IL)-2 receptor common gamma chain (IL2r gamma null) null mice: a radioresistant model for human lymphohaematopoietic engraftment. Clin Exp Immunol, 154(2), 270-284. doi:10.1111/j.1365-2249.2008.03753.x
Pourcel, C., Salvignol, G., & Vergnaud, G. (2005). CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology, 151(Pt 3), 653-663. doi:10.1099/mic.0.27437-0
Rippon, H. J., & Bishop, A. E. (2004). Embryonic stem cells. Cell Proliferation, 37(1), 23-34. doi:10.1111/j.1365-2184.2004.00298.x
Rouillon, C., Zhou, M., Zhang, J., Politis, A., Beilsten-Edmands, V., Cannone, G., . . . White, M. F. (2013). Structure of the CRISPR interference complex CSM reveals key similarities with cascade. Mol Cell, 52(1), 124-134. doi:10.1016/j.molcel.2013.08.020
Sapranauskas, R., Gasiunas, G., Fremaux, C., Barrangou, R., Horvath, P., & Siksnys, V. (2011). The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res, 39(21), 9275-9282. doi:10.1093/nar/gkr606
Sato, T., Sakuma, T., Yokonishi, T., Katagiri, K., Kamimura, S., Ogonuki, N., . . . Ogawa, T. (2015). Genome editing in mouse spermatogonial stem cell lines using TALEN and double-nicking CRISPR/Cas9. Stem cell reports, 5(1), 75-82.
Saul, J. M., Linnes, M. P., Ratner, B. D., Giachelli, C. M., & Pun, S. H. (2007). Delivery of non-viral gene carriers from sphere-templated fibrin scaffolds for sustained transgene expression. Biomaterials, 28(31), 4705-4716. doi:10.1016/j.biomaterials.2007.07.026
Shah, S. A., Erdmann, S., Mojica, F. J., & Garrett, R. A. (2013). Protospacer recognition motifs: mixed identities and functional diversity. RNA Biol, 10(5), 891-899. doi:10.4161/rna.23764
Shinkai, Y., Rathbun, G., Lam, K. P., Oltz, E. M., Stewart, V., Mendelsohn, M., . . . et al. (1992). RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell, 68(5), 855-867.
Shultz, L. D., Ishikawa, F., & Greiner, D. L. (2007). Humanized mice in translational biomedical research. Nat Rev Immunol, 7(2), 118-130. doi:10.1038/nri2017
Shultz, L. D., Saito, Y., Najima, Y., Tanaka, S., Ochi, T., Tomizawa, M., . . . Ishikawa, F. (2010). Generation of functional human T-cell subsets with HLA-restricted immune responses in HLA class I expressing NOD/SCID/IL2r gamma(null) humanized mice. Proc Natl Acad Sci U S A, 107(29), 13022-13027. doi:10.1073/pnas.1000475107
Shultz, L. D., Schweitzer, P. A., Christianson, S. W., Gott, B., Schweitzer, I. B., Tennent, B., . . . et al. (1995). Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol, 154(1), 180-191.
Smith, G. C., & Jackson, S. P. (1999). The DNA-dependent protein kinase. Genes Dev, 13(8), 916-934.
Stewart, C. L., Kaspar, P., Brunet, L. J., Bhatt, H., Gadi, I., Kontgen, F., & Abbondanzo, S. J. (1992). Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature, 359(6390), 76-79. doi:10.1038/359076a0
Traggiai, E., Chicha, L., Mazzucchelli, L., Bronz, L., Piffaretti, J. C., Lanzavecchia, A., & Manz, M. G. (2004). Development of a human adaptive immune system in cord blood cell-transplanted mice. Science, 304(5667), 104-107. doi:10.1126/science.1093933
Tsai, S. Q., Wyvekens, N., Khayter, C., Foden, J. A., Thapar, V., Reyon, D., . . . Joung, J. K. (2014). Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol, 32(6), 569-576. doi:10.1038/nbt.2908
Ueda, S., Kawamata, M., Teratani, T., Shimizu, T., Tamai, Y., Ogawa, H., . . . Ochiya, T. (2008). Establishment of rat embryonic stem cells and making of chimera rats. PLoS One, 3(7), e2800. doi:10.1371/journal.pone.0002800
Walsh, N. C., Kenney, L. L., Jangalwe, S., Aryee, K. E., Greiner, D. L., Brehm, M. A., & Shultz, L. D. (2017). Humanized Mouse Models of Clinical Disease. Annu Rev Pathol, 12, 187-215. doi:10.1146/annurev-pathol-052016-100332
Zhang, S., Yajima, H., Huynh, H., Zheng, J., Callen, E., Chen, H. T., . . . Chen, B. P. (2011). Congenital bone marrow failure in DNA-PKcs mutant mice associated with deficiencies in DNA repair. J Cell Biol, 193(2), 295-305. doi:10.1083/jcb.201009074
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

無相關論文
 
* *