帳號:guest(18.225.57.228)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):莊雨璇
作者(外文):Cuang, Yu-Hsuan
論文名稱(中文):以H5N1禽流感神經胺酸酶重組蛋白免疫誘導交叉性神經胺酸酶抑制性抗體之研究
論文名稱(外文):Mapping cross-reactive epitopes for NA inhibiting antibodies elicited by H5N1 NA protein immunizations
指導教授(中文):吳夙欽
指導教授(外文):Wu, Suh-Chin
口試委員(中文):馬徹
鄭金松
口試委員(外文):Ma, Che Alex
Jeng, King- Song
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:104080599
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:44
中文關鍵詞:H5N1禽流感神經胺酸酶流感病毒
外文關鍵詞:NA inhibiting antibodiesH5N1 NA protein immunizations
相關次數:
  • 推薦推薦:0
  • 點閱點閱:189
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
神經胺酸酶(neuraminidase [NA] )是A型流感病毒膜上的醣蛋白,可切割宿主細胞醣蛋白受器上與病毒血清凝集素 (hemagglutinin [HA] ) 連接的唾液酸 (sialic acid),協助新複製出的病毒脫離宿主細胞,始之散播感染新細胞,先前文獻指出,流感疫苗誘發的NA抑制抗體能抑制病毒傳播並減緩症狀。在我們先前研究指出,pH1N1重組神經胺酸酶突變蛋白I365T/S366N疫苗誘發之抗體能抑制多種NA亞型,說明誘發廣效型抗體之抗原位點可能在活性位點周圍,因此本研究以此概念搭配pandemic H1N1 (pH1N1)(A/Texas/05/2009)、H3N2 (A/Udorn/307/1972)、H5N1 (A/Vietnam/1203/2004)和H7N9 (A/Shanghai/02/2013) NA亞型序列比對結果,在H5N1重組神經胺酸酶蛋白活性位點344、365、366和369胺基酸位置設計突變,利用點突變產生H5N1重組神經胺酸酶突變蛋白,其突變蛋白為Y344N、Y344H、T365I/N366S、T365E/N366D、N366A以及S369N,進一步探討H5N1重組神經胺酸酶突變蛋白是否能誘發廣效型神經胺酸酶抑制性抗體。結果顯示,H5N1重組神經胺酸酶突變蛋白無法誘發神經胺酸酶廣效型抑制性抗體抑制H5N1病毒株,我們希望這個發現能夠對於未來之廣效性神經胺酸酶疫苗發展提供有用的資訊。
Neuraminidase (NA) is an influenza virus envelope glycoprotein that cleaves sialic acids from cellular receptors and facilitates the virus release and spread from infected cells. NA-inhibiting (NI) antibodies are known to limit virus spreading and to mitigate clinical symptoms caused by influenza A virus infection. Previous report showed that cross reactive NI antibodies can be elicited by immunizations with pH1N1 NA proteins with I365T/S366N mutations (Liu et al., 2015). In this study, mutant H5N1 NA with mutations around the active site (344、365、366 and 369 NA residues) were examined according to sequence analyses. Cross-reactive NI antibodies elicited by the immunizations of mutant H5N1 NA proteins (Y344N、Y344H、T365I/N366S、T365E/N366D、N366A以及S369N). Our result shows that these six mutant H5N1 NA proteins did not elicit more cross-reactive NI antibodies against different NA subtypes (H1N1 NA, H5N1 NA, H3N2 NA and H7N9 NA). It is our hope that these findings provide useful information for the development of more cross-reactive NA-based influenza vaccines.
中文摘要 I
Abstract II
致謝 III
1. 簡介 1
1.1. 流感病毒 1
1.2. A型流感病毒 2
1.3. 人類與禽類A型流感病毒 3
1.4. A型流感神經胺酸酶 4
1.5. 神經胺酸酶抑制性抗體(Neuraminidase-inhibiting (NI) antibodies) 6
1.6. 研究目標 7
2. 材料與方法 9
2.1. 細胞株 9
2.2. Bac-to-Bac® Baculovirus 表現系統 9
2.2.1. 構築與表現流感病毒重組神經胺酸酶 (rNA) 9
2.2.2. 點突變聚合酶連鎖反應 (site-direct mutagenesis PCR)........................10
2.2.3. 構築以及生產Bacmids 12
2.2.4. 生產重組Baculovirus 14
2.3. 生產與純化重組神經胺酸酶 14
2.3.1. 可溶性神經胺酸酶之生產 14
2.3.2. 重組神經胺酸酶之純化...........................................................................15
2.4. 重組神經胺酸酶之特性測定…...………………………………………………………………...16
2.4.1. 十二烷基硫酸鈉聚丙烯醯胺凝膠(Sodium dodecyl sulfate polyacrylamide(SDS-PAGE))之準備及電泳 16
2.4.2. 西方墨點法(Western blotting) 17
2.5. 老鼠之免疫時程設計 17
2.6. 利用Fetuin-based酵素結合免疫吸附分析法(ELISA)測定神經胺酸酶抑制抗體(Neuraminidase-inhibiting (NI) antibodies)分析 18
2.7. 酵素結合免疫吸附分析法(Enzyme-linked immunosorbent assay (ELISA)...............................................................................................................19
2.8. 螢光素酶定量細胞融合測定………………………………………..……….......................19
2.9. 統計學分析 21
3. 結果 22
3.1. 表現和純化野生型pH1N1, H5N1, H3N2和H7N9病毒重組神經胺酸酶蛋白 22
3.2. 比對分析pH1N1, H5N1, H3N2和H7N9病毒神經胺酸酶序列......................23
3.3. H5N1 NA,pH1N1 NA, H3N2 NA和H7N9 NA蛋白結構 24
3.4. 生產以及純化H5N1重組神經胺酸酶突變蛋白(Y344N, Y344H, T365I/N366S, T365E/N366D, N366A,S369N)…..…………………………................................….....24
3.5. 分析各H5N1-rNA突變蛋白誘發的anti-NA IgG抗體效價 25
3.6. 分析各H5N1-rNA突變蛋白誘發的NI抗體效價.............................................25
3.7. 分析各H5N1-rNA突變蛋白誘發的抗體是否有anti-HA fusion的能力…...26
4. 討論…………………………………………..………………………………………………………..…..….…27
5. 圖表 30
Fig. 1表現重組水溶性神經胺酸酶蛋白(rNA) 30
Fig. 2 pH1N1, H5N1, H3N2和H7N9神經胺酸酶蛋白胺基酸序列比對….……..31
Fig. 3 pH1N1, H5N1, H3N2和H7N9神經胺酸酶的3D蛋白結構. 32
Fig. 4表現H5N1突變重組神經胺酸酶蛋白(Y344N, Y344H, T365I/N366S, T365E/N366D, N366A,S369N). 33
Fig. 5 H5N1突變重組神經胺酸酶蛋白疫苗誘發之IgG抗體效價(Y344N, Y344H, T365I/N366S, T365E/N366D, N366A,S369N)…………………………………..……..…34
Fig. 6由野生型或是突變型重組神經胺酸酶蛋白所誘導的N1神經胺酸酶抑制性抗體抑制病毒神經胺酸酶活性(Y344N, Y344H, T365I/N366S, T365E/N366D, N366A,S369N) 35
Fig. 7 測試H5N1重組神經胺酸酶蛋白誘發抗體之Anti-HA fusion活性(Y344N,Y344H, T365I/N366S, T365E/N366D, N366A,S369N)………………..… 36
Table. 1比對H5N1 rNA、pH1N1 rNA、H3N2 rNA和H7N9 rNA序列上344、365、366以及369胺基酸位點………………………………………………………………...…..37
Fig. S1描述H5N1突變重組神經胺酸酶蛋白(T365I/N366S/369A, T365I/N366S/S369K, T365I/N366S/S369N) 38
Fig. S2 H5N1 NA突變蛋白疫苗誘發之IgG抗體效價( T365I/N366S/369A, T365I/N366S/S369K, T365I/N366S/S369N) 39
Fig. S3由野生型或是突變型重組神經胺酸酶蛋白所誘導的N1神經胺酸酶抑制性抗體抑制病毒神經胺酸酶活性( T365I/N366S/369A, T365I/N366S/S369K, T365I/N366S/S369N) 40
6. 參考文獻 41
Belshe, R.B., 2005. The origins of pandemic influenza--lessons from the 1918 virus. N Engl J Med 353, 2209-2211.
Bosch, B.J., Bodewes, R., de Vries, R.P., Kreijtz, J.H., Bartelink, W., van Amerongen, G., Rimmelzwaan, G.F., de Haan, C.A., Osterhaus, A.D., Rottier, P.J., 2010. Recombinant soluble, multimeric HA and NA exhibit distinctive types of protection against pandemic swine-origin 2009 A(H1N1) influenza virus infection in ferrets. Journal of virology 84, 10366-10374.
Chen, Z., Kim, L., Subbarao, K., Jin, H., 2012. The 2009 pandemic H1N1 virus induces anti-neuraminidase (NA) antibodies that cross-react with the NA of H5N1 viruses in ferrets. Vaccine 30, 2516-2522.
Colman, P.M., Tulip, W.R., Varghese, J.N., Tulloch, P.A., Baker, A.T., Laver, W.G., Air, G.M., Webster, R.G., 1989. Three-dimensional structures of influenza virus neuraminidase-antibody complexes. Philos Trans R Soc Lond B Biol Sci 323, 511-518.
Colman, P.M., Varghese, J.N., Laver, W.G., 1983. Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature 303, 41-44.
Couch, R.B., Kasel, J.A., Gerin, J.L., Schulman, J.L., Kilbourne, E.D., 1974. Induction of partial immunity to influenza by a neuraminidase-specific vaccine. J Infect Dis 129, 411-420.
Cowling, B.J., Jin, L., Lau, E.H., Liao, Q., Wu, P., Jiang, H., Tsang, T.K., Zheng, J., Fang, V.J., Chang, Z., Ni, M.Y., Zhang, Q., Ip, D.K., Yu, J., Li, Y., Wang, L., Tu, W., Meng, L., Wu, J.T., Luo, H., Li, Q., Shu, Y., Li, Z., Feng, Z., Yang, W., Wang, Y., Leung, G.M., Yu, H., 2013. Comparative epidemiology of human infections with avian influenza A H7N9 and H5N1 viruses in China: a population-based study of laboratory-confirmed cases. Lancet 382, 129-137.
Eichelberger, M.C., Couzens, L., Gao, Y., Levine, M., Katz, J., Wagner, R., Thompson, C.I., Höschler, K., Laurie, K., Bai, T., Engelhardt, O.G., Wood, J., participants, E.s., 2016. Comparability of neuraminidase inhibition antibody titers measured by enzyme-linked lectin assay (ELLA) for the analysis of influenza vaccine immunogenicity. Vaccine 34, 458-465.
Ferraris, O., Lina, B., 2008. Mutations of neuraminidase implicated in neuraminidase inhibitors resistance. J Clin Virol 41, 13-19.
Fouchier, R.A., Munster, V., Wallensten, A., Bestebroer, T.M., Herfst, S., Smith, D., Rimmelzwaan, G.F., Olsen, B., Osterhaus, A.D., 2005. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol 79, 2814-2822.
Gamblin, S.J., Skehel, J.J., 2010. Influenza hemagglutinin and neuraminidase membrane glycoproteins. J Biol Chem 285, 28403-28409.
Gao, Q., Brydon, E.W., Palese, P., 2008. A seven-segmented influenza A virus expressing the influenza C virus glycoprotein HEF. J Virol 82, 6419-6426.
Gao, Q., Chou, Y.Y., Doğanay, S., Vafabakhsh, R., Ha, T., Palese, P., 2012. The influenza A virus PB2, PA, NP, and M segments play a pivotal role during genome packaging. J Virol 86, 7043-7051.
Gaur, A.H., Bagga, B., Barman, S., Hayden, R., Lamptey, A., Hoffman, J.M., Bhojwani, D., Flynn, P.M., Tuomanen, E., Webby, R., 2010. Intravenous zanamivir for oseltamivir-resistant 2009 H1N1 influenza. N Engl J Med 362, 88-89.
Gubareva, L.V., Kaiser, L., Hayden, F.G., 2000. Influenza virus neuraminidase inhibitors. Lancet 355, 827-835.
Hause, B.M., Collin, E.A., Liu, R., Huang, B., Sheng, Z., Lu, W., Wang, D., Nelson, E.A., Li, F., 2014. Characterization of a novel influenza virus in cattle and Swine: proposal for a new genus in the Orthomyxoviridae family. MBio 5, e00031-00014.
Heneghan, C.J., Onakpoya, I., Thompson, M., Spencer, E.A., Jones, M., Jefferson, T., 2014. Zanamivir for influenza in adults and children: systematic review of clinical study reports and summary of regulatory comments. BMJ 348, g2547.
Herfst, S., Schrauwen, E.J., Linster, M., Chutinimitkul, S., de Wit, E., Munster, V.J., Sorrell, E.M., Bestebroer, T.M., Burke, D.F., Smith, D.J., Rimmelzwaan, G.F., Osterhaus, A.D., Fouchier, R.A., 2012. Airborne transmission of influenza A/H5N1 virus between ferrets. Science 336, 1534-1541.
Hurt, A.C., Holien, J.K., Parker, M., Kelso, A., Barr, I.G., 2009. Zanamivir-resistant influenza viruses with a novel neuraminidase mutation. J Virol 83, 10366-10373.
Johansson, B.E., Brett, I.C., 2008. Recombinant influenza B virus HA and NA antigens administered in equivalent amounts are immunogenically equivalent and induce equivalent homotypic and broader heterovariant protection in mice than conventional and live influenza vaccines. Hum Vaccin 4, 420-424.
Kilbourne, E.D., 2006. Influenza pandemics of the 20th century. Emerg Infect Dis 12, 9-14.
Liu, W.C., Lin, C.Y., Tsou, Y.T., Jan, J.T., Wu, S.C., 2015. Cross-Reactive Neuraminidase-Inhibiting Antibodies Elicited by Immunization with Recombinant Neuraminidase Proteins of H5N1 and Pandemic H1N1 Influenza A Viruses. J Virol 89, 7224-7234.
Marcelin, G., Sandbulte, M.R., Webby, R.J., 2012. Contribution of antibody production against neuraminidase to the protection afforded by influenza vaccines. Rev Med Virol 22, 267-279.
Martinet, W., Saelens, X., Deroo, T., Neirynck, S., Contreras, R., Min Jou, W., Fiers, W., 1997. Protection of mice against a lethal influenza challenge by immunization with yeast-derived recombinant influenza neuraminidase. Eur J Biochem 247, 332-338.
Monod, A., Swale, C., Tarus, B., Tissot, A., Delmas, B., Ruigrok, R.W., Crépin, T., Slama-Schwok, A., 2015. Learning from structure-based drug design and new antivirals targeting the ribonucleoprotein complex for the treatment of influenza. Expert Opin Drug Discov 10, 345-371.
Muramoto, Y., Noda, T., Kawakami, E., Akkina, R., Kawaoka, Y., 2013. Identification of novel influenza A virus proteins translated from PA mRNA. J Virol 87, 2455-2462.
Osterhaus, A.D., Rimmelzwaan, G.F., Martina, B.E., Bestebroer, T.M., Fouchier, R.A., 2000. Influenza B virus in seals. Science 288, 1051-1053.
Park, J.K., Taubenberger, J.K., 2016. Universal Influenza Vaccines: To Dream the Possible Dream? ACS Infect Dis 2, 5-7.
Poovorawan, Y., Pyungporn, S., Prachayangprecha, S., Makkoch, J., 2013. Global alert to avian influenza virus infection: from H5N1 to H7N9. Pathog Glob Health 107, 217-223.
Reed, M.L., Yen, H.L., DuBois, R.M., Bridges, O.A., Salomon, R., Webster, R.G., Russell, C.J., 2009. Amino acid residues in the fusion peptide pocket regulate the pH of activation of the H5N1 influenza virus hemagglutinin protein. J Virol 83, 3568-3580.
Rockman, S., Brown, L.E., Barr, I.G., Gilbertson, B., Lowther, S., Kachurin, A., Kachurina, O., Klippel, J., Bodle, J., Pearse, M., Middleton, D., 2013. Neuraminidase-inhibiting antibody is a correlate of cross-protection against lethal H5N1 influenza virus in ferrets immunized with seasonal influenza vaccine. J Virol 87, 3053-3061.
Russell, R.J., Haire, L.F., Stevens, D.J., Collins, P.J., Lin, Y.P., Blackburn, G.M., Hay, A.J., Gamblin, S.J., Skehel, J.J., 2006. The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature 443, 45-49.
Sandbulte, M.R., Gauger, P.C., Kitikoon, P., Chen, H., Perez, D.R., Roth, J.A., Vincent, A.L., 2016. Neuraminidase inhibiting antibody responses in pigs differ between influenza A virus N2 lineages and by vaccine type. Vaccine 34, 3773-3779.
Stevens, J., Blixt, O., Paulson, J.C., Wilson, I.A., 2006. Glycan microarray technologies: tools to survey host specificity of influenza viruses. Nat Rev Microbiol 4, 857-864.
Su, B., Wurtzer, S., Rameix-Welti, M.A., Dwyer, D., van der Werf, S., Naffakh, N., Clavel, F., Labrosse, B., 2009. Enhancement of the influenza A hemagglutinin (HA)-mediated cell-cell fusion and virus entry by the viral neuraminidase (NA). PLoS One 4, e8495.
Tang, Q., Shao, M., Xu, L., 2017. China is closely monitoring an increase in infection with avian influenza A (H7N9) virus. Biosci Trends 11, 122-124.
Taubenberger, J.K., Morens, D.M., 2006. 1918 Influenza: the mother of all pandemics. Emerg Infect Dis 12, 15-22.
Tong, S., Li, Y., Rivailler, P., Conrardy, C., Castillo, D.A., Chen, L.M., Recuenco, S., Ellison, J.A., Davis, C.T., York, I.A., Turmelle, A.S., Moran, D., Rogers, S., Shi, M., Tao, Y., Weil, M.R., Tang, K., Rowe, L.A., Sammons, S., Xu, X., Frace, M., Lindblade, K.A., Cox, N.J., Anderson, L.J., Rupprecht, C.E., Donis, R.O., 2012. A distinct lineage of influenza A virus from bats. Proc Natl Acad Sci U S A 109, 4269-4274.
Vandegrift, K.J., Sokolow, S.H., Daszak, P., Kilpatrick, A.M., 2010. Ecology of avian influenza viruses in a changing world. Ann N Y Acad Sci 1195, 113-128.
Ward, P., Small, I., Smith, J., Suter, P., Dutkowski, R., 2005. Oseltamivir (Tamiflu) and its potential for use in the event of an influenza pandemic. J Antimicrob Chemother 55 Suppl 1, i5-i21.
White, J., Matlin, K., Helenius, A., 1981. Cell fusion by Semliki Forest, influenza, and vesicular stomatitis viruses. J Cell Biol 89, 674-679.
Wikramaratna, P.S., Sandeman, M., Recker, M., Gupta, S., 2013. The antigenic evolution of influenza: drift or thrift? Philos Trans R Soc Lond B Biol Sci 368, 20120200.
Wu, Y., Tefsen, B., Shi, Y., Gao, G.F., 2014. Bat-derived influenza-like viruses H17N10 and H18N11. Trends Microbiol 22, 183-191.
Xu, X., Zhu, X., Dwek, R.A., Stevens, J., Wilson, I.A., 2008. Structural characterization of the 1918 influenza virus H1N1 neuraminidase. J Virol 82, 10493-10501.
Zhu, H., Wang, D., Kelvin, D.J., Li, L., Zheng, Z., Yoon, S.W., Wong, S.S., Farooqui, A., Wang, J., Banner, D., Chen, R., Zheng, R., Zhou, J., Zhang, Y., Hong, W., Dong, W., Cai, Q., Roehrl, M.H., Huang, S.S., Kelvin, A.A., Yao, T., Zhou, B., Chen, X., Leung, G.M., Poon, L.L., Webster, R.G., Webby, R.J., Peiris, J.S., Guan, Y., Shu, Y., 2013. Infectivity, transmission, and pathology of human-isolated H7N9 influenza virus in ferrets and pigs. Science 341, 183-186.


(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. A型流感神經胺酸酶之唾液酸結合區與其誘發神經胺酸酶抑制性抗體之研究
2. 流感病毒神經胺酸酶370 loop突變對於其酵素活性、血凝素與神經胺酸酶平衡、小鼠毒性、以及其去活化病毒疫苗之免疫反應研究
3. 建構以重組腺相關病毒載體系統表現流感神經胺酸酶發展流感疫苗
4. 二氫葉酸還原脢之核酸干擾與未摺疊性蛋白反應對CHO與NS0細胞表現重組蛋白之研究
5. 利用哺乳動物細胞表現嚴重急性呼吸道症候群冠狀病毒之棘蛋白片段
6. 利用體外親和力成熟化及噬菌體表現系統選殖日本腦炎病毒高親和力抗體珠
7. 含醣胺素結合區及RGD序列之人工細胞外間質蛋白
8. 比較SV40驅動和IRES驅動二氫葉酸還原酶的載體在CHO細胞工程中基因放大的差異性
9. 日本腦炎病毒prM與E蛋白N-醣化作用之研究
10. 利用桿狀病毒表現流感病毒血球凝集素與似病毒顆粒之研究
11. 構築與表現人類流感與禽流感之嵌合性似病毒顆粒
12. Dihydrofolate Reductase-Mir-30 RNA based Interference for chimeric antibody expression in CHO cells
13. Interactions of Influenza Hemagglutinin Proteins with Mouse Bone Marrow-Derived Dendritic Cells
14. 感染性選殖株衍生之登革第四型疫苗病毒於MRC-5細胞產生適應性突變點Glu345Lys之研究
15. Producing Recombinant Hemagglutinin Protein of H5N1 Avian Influenza Viruses in Chinese Hamster Overy (CHO) Cells Using Dihydrofolate Reductase and Dihydrofolate Reductase-RNA Interference
 
* *