帳號:guest(18.191.150.192)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):汪宏諺
作者(外文):Wang, Hung-Yen
論文名稱(中文):Aro1影響白色念珠菌抗氧化能力之研究
論文名稱(外文):Aro1 involves in the antioxidative ability of Candida albicans
指導教授(中文):藍忠昱
指導教授(外文):Lan, Chung-Yu
口試委員(中文):高茂傑
張壯榮
口試委員(外文):Kao, Mou-Chieh
Chang, Chuang-Rung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:104080596
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:54
中文關鍵詞:白色念珠菌Aro1氧化壓力
外文關鍵詞:Candida albicansAro1oxidative stress
相關次數:
  • 推薦推薦:0
  • 點閱點閱:64
  • 評分評分:*****
  • 下載下載:15
  • 收藏收藏:0
白色念珠菌是人體的共生性真菌,然而它同時也是一種伺機性感染病原菌。在免疫缺失的患者身上,它會造成各種不同感染包括致命的系統性感染。再者,白色念珠菌在近年的院內感染報告中感染率也是名列前茅。在疾病進程中,白色念珠菌時常需要面對來自人體先天性免疫系統及抗真菌藥物治療的多種壓力。舉例來說,先天免疫系統中的巨噬細胞及嗜中性白血球等會對白色念珠菌進行吞噬作用,並產生活性氧化物質(ROS)來殺死真菌細胞。另外,許多的抗真菌藥物的作用機制已證實包含誘導產生活性氧化物質進而達成殺菌。因此,抗氧化能力對於白色念珠菌而言,可說是其生存及致病的關鍵。在這篇研究中,我們主要探討在白色念珠菌中參與胺基酸生合成的一個酵素Aro1的功能。當ARO1的表現受到抑制時,我們發現白色念珠菌會提高在面對氧化壓力時的生存比率。本研究結果連結細胞的生理代謝與其抗氧化能力之間的關係,並進一步提供對於白色念珠菌的受壓反應的新觀點。
Candida albicans is a commensal fungus of humans. However, it is also an opportunistic pathogen and can cause severe life-threatening systemic infection in immunosuppressed patients. Moreover, C. albicans is one of the most prevalent causes of nosocomial infection. In the disease progress, C. albicans commonly faces diverse challenges such as human innate immunity and antifungal therapy. For example, both macrophages and polymorphonuclear leukocytes (PMNs) can engulf the pathogen and generate reactive oxygen species (ROS) to destroy the fungal cells. Moreover, induction of ROS is a mechanism of action for many antifungal drugs. Therefore, antioxidative activity is critical for C. albicans survival and pathogenesis. In this work, we studied the functions of C. albicans Aro1, an enzyme involves in amino acid biosynthesis. A knockdown of the ARO1 gene affected cell susceptibility to oxidative stress. Our findings correlate cell metabolism with antioxidative activity, and provide a new insight for cell stress response in C. albicans.
Abstract I
中文摘要 II
Contents III
List of Tables V
List of Figures VI
1. Introduction 1
1.1 Candida albicans and its threat to human health 1
1.2 Virulence and pathogenicity of Candida albicans 2
1.3 Antioxidants and their role in C. albicans virulence 3
1.3.1 Superoxide dismutases (Sods) 3
1.3.2 Catalases 4
1.3.3 The glutathione system 5
1.4 Nutrient availability and stress response 7
1.4.1 Nutrient availability affects virulence factors and fitness attributes in C. albicans 7
1.4.2 Possible connections between amino acid starvation, reactive oxygen species (ROS) and C. albicans virulence 8
(1) C. albicans encounters phagocytes. 8
(2) C. albicans encounters ROS-generating antifungal drugs. 9
1.5 The shikimate pathway, aromatic amino acids and the pentafunctional AROM enzyme Aro1 10
1.6 Aim of this study 10
2. Materials and Methods 12
2.1 Yeast strains and growth media 12
2.2 Growth conditions 12
2.3 C. albicans DNA microarray analysis 12
2.4 RNA preparation and reverse transcription (RT) real-time quantitative PCR (qPCR) 13
2.5 Flow cytometry 14
2.5.2 Dichlorodihydrofluorescein diacetate (H2DCFDA) staining 14
2.6 Cell susceptibility assays 15
2.7 Total protein extraction and quantification 15
2.8 Total antioxidative capacity toward H2O2 15
2.9 Catalase enzyme activity assay 16
2.10 Sod activity assay by a colorimetric method 16
2.11 Spot assay 17
2.12 Glutathione assay by a colorimetric method 17
2.12.1 Total glutathione (GSH) content 17
2.12.2 The oxidized form of glutathione (GSSG) 18
2.13 Glutathione peroxidase activity assay by a colorimetric method 18
2.14 Glutathione S-transferase activity assay by a colorimetric method 19
2.15 Lipid peroxidation assay 19
2.16 Scanning Electron Microscopy (SEM) 19
2.17 Assay for C. albicans killing by macrophage 20
2.18 Statistical analysis 21
3. Results 22
3.1 DNA microarray analysis revealed the potential role of Aro1 in regulation of oxidative stress response. 22
3.2 Knockdown of ARO1 led to cell resistance to oxidative stress 23
3.3 The ARO1-knockdown strain had a lower ROS level and exhibited a higher total antioxidant capacity 23
3.4 ARO1 influenced multiple antioxidative mechanisms in C. albicans 24
3.4.1 Antioxidants to detoxify hydrogen peroxide 24
3.4.2 Antioxidants to detoxify superoxide 27
3.5 Measurement of the oxidative damage 28
3.6 The ARO1-knockdown strain showed a higher ability to survive in macrophages 28
4. Discussion 29
5.Future Perspectives 32
6.References 33
List of Tables
Table 1. Strains used in this study. 42
Table 2. Oligonucleotides used in this study. 43
Table 3. Fold changes of antioxidant related genes from DNA microarray analysis. 44
Abstract I
中文摘要 II
Contents III
List of Tables V
List of Figures VI
1. Introduction 1
1.1 Candida albicans and its threat to human health 1
1.2 Virulence and pathogenicity of Candida albicans 2
1.3 Antioxidants and their role in C. albicans virulence 3
1.3.1 Superoxide dismutases (Sods) 3
1.3.2 Catalases 4
1.3.3 The glutathione system 5
1.4 Nutrient availability and stress response 7
1.4.1 Nutrient availability affects virulence factors and fitness attributes in C. albicans 7
1.4.2 Possible connections between amino acid starvation, reactive oxygen species (ROS) and C. albicans virulence 8
(1) C. albicans encounters phagocytes. 8
(2) C. albicans encounters ROS-generating antifungal drugs. 9
1.5 The shikimate pathway, aromatic amino acids and the pentafunctional AROM enzyme Aro1 10
1.6 Aim of this study 10
2. Materials and Methods 12
2.1 Yeast strains and growth media 12
2.2 Growth conditions 12
2.3 C. albicans DNA microarray analysis 12
2.4 RNA preparation and reverse transcription (RT) real-time quantitative PCR (qPCR) 13
2.5 Flow cytometry 14
2.5.2 Dichlorodihydrofluorescein diacetate (H2DCFDA) staining 14
2.6 Cell susceptibility assays 15
2.7 Total protein extraction and quantification 15
2.8 Total antioxidative capacity toward H2O2 15
2.9 Catalase enzyme activity assay 16
2.10 Sod activity assay by a colorimetric method 16
2.11 Spot assay 17
2.12 Glutathione assay by a colorimetric method 17
2.12.1 Total glutathione (GSH) content 17
2.12.2 The oxidized form of glutathione (GSSG) 18
2.13 Glutathione peroxidase activity assay by a colorimetric method 18
2.14 Glutathione S-transferase activity assay by a colorimetric method 19
2.15 Lipid peroxidation assay 19
2.16 Scanning Electron Microscopy (SEM) 19
2.17 Assay for C. albicans killing by macrophage 20
2.18 Statistical analysis 21
3. Results 22
3.1 DNA microarray analysis revealed the potential role of Aro1 in regulation of oxidative stress response. 22
3.2 Knockdown of ARO1 led to cell resistance to oxidative stress 23
3.3 The ARO1-knockdown strain had a lower ROS level and exhibited a higher total antioxidant capacity 23
3.4 ARO1 influenced multiple antioxidative mechanisms in C. albicans 24
3.4.1 Antioxidants to detoxify hydrogen peroxide 24
3.4.2 Antioxidants to detoxify superoxide 27
3.5 Measurement of the oxidative damage 28
3.6 The ARO1-knockdown strain showed a higher ability to survive in macrophages 28
4. Discussion 29
5.Future Perspectives 32
6.References 33






List of Tables
Table 1. Strains used in this study. 42
Table 2. Oligonucleotides used in this study. 43
Table 3. Fold changes of antioxidant related genes from DNA microarray analysis. 44
















List of Figures
Fig 1. The ARO1-knockdown strain exhibits higher viability with the treatment of H2O2. 45
Fig 2. The ARO1-knockdown strain demonstrated lower intracellular ROS level and higher antioxidative capacity with and without H2O2 treatment. 46
Fig 3. The ARO1 knockdown strain demonstrated higher catalase gene expression and enzyme activity. 47
Fig 4. The ARO1-knockdown strain showed higher expression level in glutathione-related gene expression level. 48
Fig 5. The ARO1-knockdown strain exhibits a difference in the glutathione content compared to the wild type strain. 49
Fig 6. The ARO1-knockdown strain had lower glutathione content and GSH/GSSG ratio compared to the wild type strain. 50
Fig 7. The ARO1-knockdown strain exhibited lower glutathione peroxidase and glutathione S-transferase activity. 51
Fig 8. The ARO1-knockdown strain demonstrated higher superoxide dismutase gene expression and enzyme activity. 52
Fig 9. The ARO1-knockdown strain demonstrated higher superoxide dismutase gene expression and enzyme activity. 53
Fig 10. The ARO1-knockdown strain demonstrated lower oxidative damage and higher viability in macrophage killing assay. 54
[1] <台灣院內感染監視資訊系統2015年第2季監視報告.pdf>.
[2] <台灣院內感染監視資訊系統(TNIS)2016年第2季監視報告.9672.PDF>.
[3] D.I. Zonios, J.E. Bennett, Update on azole antifungals, Seminars in respiratory and critical care medicine, 29 (2008) 198-210.
[4] T. Roemer, D.J. Krysan, Antifungal drug development: challenges, unmet clinical needs, and new approaches, Cold Spring Harbor Perspectives in Medicine, 4 (2014).
[5] J. Tanwar, S. Das, Z. Fatima, S. Hameed, Multidrug resistance: an emerging crisis, Interdiscip Perspect Infect Dis, 2014 (2014) 541340, 541341-541347.
[6] K. Gulshan, W.S. Moye-Rowley, Multidrug resistance in fungi, Eukaryotic cell, 6 (2007) 1933-1942.
[7] A.J. Brown, S. Budge, D. Kaloriti, A. Tillmann, M.D. Jacobsen, Z. Yin, I.V. Ene, I. Bohovych, D. Sandai, S. Kastora, J. Potrykus, E.R. Ballou, D.S. Childers, S. Shahana, M.D. Leach, Stress adaptation in a pathogenic fungus, J Exp Biol, 217 (2014) 144-155.
[8] P.-W. Tsai, Y.-T. Chen, P.-C. Hsu, C.-Y. Lan, Study of Candida albicans and its interactions with the host: A mini review, BioMedicine, 3 (2013) 51-64.
[9] P.E. Sudbery, Growth of Candida albicans hyphae, Nat Rev Microbiol, 9 (2011) 737-748.
[10] I.D. Jacobsen, B. Hube, Candida albicans morphology: still in focus, Expert review of anti-infective therapy, 15 (2017) 327-330.
[11] S.G. Nadeem, A. Shafiq, S.T. Hakim, Y. Anjum, S.U. Kazm, Effect of Growth Media, pH and Temperature on Yeast to Hyphal Transition in Candida albicans, Open Journal of Medical Microbiology, 3 (2013) 185-192.
[12] Q.T. Phan, C.L. Myers, Y. Fu, D.C. Sheppard, M.R. Yeaman, W.H. Welch, A.S. Ibrahim, J.E. Edwards, Jr., S.G. Filler, Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells, PLoS biology, 5 (2007) e64.
[13] V. Vidotto, J. Ponton, S. Aoki, G. Quindos, B. Mantoan, A. Pugliese, S. Ito-Kuwa, K. Nakamura, Differences in extracellular enzymatic activity between Candida dubliniensis and Candida albicans isolates, Rev Iberoam Micol, 21 (2004) 70-74.
[14] F.d. Bernardis, P.A. Sullivan, A. Cassone, Aspartyl proteinases ofCandida albicansand their role in pathogenicity, Medical Mycology, 39 (2001) 303-313.
[15] B. Hube, Candida albicans secreted aspartyl proteinases, Curr Top Med Mycol, 7 (1996) 55-69.
[16] J.R. Naglik, S.J. Challacombe, B. Hube, Candida albicans secreted aspartyl proteinases in virulence and pathogenesis, Microbiology and molecular biology reviews : MMBR, 67 (2003) 400-428, table of contents.
[17] T.C. White, N. Agabian, Candida-Albicans Secreted Aspartyl Proteinases - Isoenzyme Pattern Is Determined by Cell-Type, and Levels Are Determined by Environmental-Factors, Journal of Bacteriology, 177 (1995) 5215-5221.
[18] M. Schaller, H.C. Korting, W. Schafer, J. Bastert, W. Chen, B. Hube, Secreted aspartic proteinase (Sap) activity contributes to tissue damage in a model of human oral candidosis, Mol Microbiol, 34 (1999) 169-180.
[19] F.L. Mayer, D. Wilson, B. Hube, Candida albicans pathogenicity mechanisms, Virulence, 4 (2013) 119-128.
[20] C. Michiels, M. Raes, O. Toussaint, J. Remacle, Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress, Free radical biology & medicine, 17 (1994) 235-248.
[21] A. da Silva Dantas, A. Day, M. Ikeh, I. Kos, B. Achan, J. Quinn, Oxidative Stress Responses in the Human Fungal Pathogen, Candida albicans, Biomolecules, 5 (2015) 142-165.
[22] I. Fridovich, Superoxide dismutases, Adv Enzymol Relat Areas Mol Biol, 58 (1986) 61-97.
[23] D. Zhu, J.G. Scandalios, Expression of the maize MnSod (Sod3) gene in MnSOD-deficient yeast rescues the mutant yeast under oxidative stress, Genetics, 131 (1992) 803-809.
[24] I.E. Frohner, C. Bourgeois, K. Yatsyk, O. Majer, K. Kuchler, Candida albicans cell surface superoxide dismutases degrade host-derived reactive oxygen species to escape innate immune surveillance, Mol Microbiol, 71 (2009) 240-252.
[25] C.N. Broxton, V.C. Culotta, SOD Enzymes and Microbial Pathogens: Surviving the Oxidative Storm of Infection, PLoS Pathog, 12 (2016) e1005295.
[26] C.S. Hwang, G.E. Rhie, J.H. Oh, W.K. Huh, H.S. Yim, S.O. Kang, Copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) is required for the protection of Candida albicans against oxidative stresses and the expression of its full virulence, Microbiology, 148 (2002) 3705-3713.
[27] G.R. Schonbaum, B. Chance, 7 Catalase, The Enzymes, 13 (1976) 363-408.
[28] M. Breitenbach, M. Weber, M. Rinnerthaler, T. Karl, L. Breitenbach-Koller, Oxidative stress in fungi: its function in signal transduction, interaction with plant hosts, and lignocellulose degradation, Biomolecules, 5 (2015) 318-342.
[29] D.R. Wysong, L. Christin, A.M. Sugar, P.W. Robbins, R.D. Diamond, Cloning and sequencing of a Candida albicans catalase gene and effects of disruption of this gene, Infect Immun, 66 (1998) 1953-1961.
[30] Y. Nakagawa, K. Koide, K. Watanabe, Y. Morita, I. Mizuguchi, T. Akashi, The expression of the pathogenic yeast Candida albicans catalase gene in response to hydrogen peroxide, Microbiology and immunology, 43 (1999) 645-651.
[31] V.M. Copping, C.J. Barelle, B. Hube, N.A. Gow, A.J. Brown, F.C. Odds, Exposure of Candida albicans to antifungal agents affects expression of SAP2 and SAP9 secreted proteinase genes, The Journal of antimicrobial chemotherapy, 55 (2005) 645-654.
[32] J.D. Hayes, J.U. Flanagan, I.R. Jowsey, Glutathione transferases, Annual review of pharmacology and toxicology, 45 (2005) 51-88.
[33] I. Pocsi, R.A. Prade, M.J. Penninckx, Glutathione, altruistic metabolite in fungi, Advances in Microbial Physiology, 49 (2004) 1-76.
[34] Y. Yang, Y. Awasthi, Glutathione S-Transferases as Modulators of Signal Transduction, Toxicology of Glutathione Transferases, Informa Healthcare, Place Published, 2006, pp. 205-230.
[35] S. Singhal, S. Awasthi, Glutathione-Conjugate Transport and Stress-Response Signaling, Toxicology of Glutathione Transferases, Informa Healthcare, Place Published, 2006, pp. 231-256.
[36] P. Zimniak, Substrates and Reaction Mechanisms of Glutathione Transferases, Toxicology of Glutathione Transferases, Informa Healthcare, Place Published, 2006, pp. 71-101.
[37] Y. Yang, P. Boor, Glutathione S-Transferases and Oxidative Injury of Cardiovascular Tissues, Toxicology of Glutathione Transferases, Informa Healthcare, Place Published, 2006, pp. 257-276.
[38] A.K. Bachhawat, D. Ganguli, J. Kaur, N. Kasturia, A. Thakur, H. Kaur, A. Kumar, A. Yadav, Glutathione Production in Yeast, in: T. Satyanarayana, G. Kunze (Eds.) Yeast Biotechnology: Diversity and Applications, Springer Netherlands, Place Published, 2009, pp. 259-280.
[39] M.J. Penninckx, An overview on glutathione in Saccharomyces versus non-conventional yeasts, FEMS Yeast Res, 2 (2002) 295-305.
[40] M. Penninckx, A short review on the role of glutathione in the response of yeasts to nutritional, environmental, and oxidative stresses, Enzyme Microb Technol, 26 (2000) 737-742.
[41] M.T. Elskens, C.J. Jaspers, M.J. Penninckx, Glutathione as an Endogenous Sulfur Source in the Yeast Saccharomyces-Cerevisiae, Journal of general microbiology, 137 (1991) 637-644.
[42] D. Mendoza-Cozatl, H. Loza-Tavera, A. Hernandez-Navarro, R. Moreno-Sanchez, Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants, FEMS microbiology reviews, 29 (2005) 653-671.
[43] P. Murphy M How mitochondria produce reactive oxygen species, Biochem J, 417 (2009) 1-13.
[44] A.J. Kowaltowski, N.C. de Souza-Pinto, R.F. Castilho, A.E. Vercesi, Mitochondria and reactive oxygen species, Free radical biology & medicine, 47 (2009) 333-343.
[45] Y. Qu, B. Jelicic, F. Pettolino, A. Perry, T.L. Lo, V.L. Hewitt, F. Bantun, T.H. Beilharz, A.Y. Peleg, T. Lithgow, J.T. Djordjevic, A. Traven, Mitochondrial Sorting and Assembly Machinery Subunit Sam37 in Candida albicans: Insight into the Roles of Mitochondria in Fitness, Cell Wall Integrity, and Virulence, Eukaryotic cell, 11 (2012) 532-544.
[46] A.A. Petti, C.A. Crutchfield, J.D. Rabinowitz, D. Botstein, Survival of starving yeast is correlated with oxidative stress response and nonrespiratory mitochondrial function, Proceedings of the National Academy of Sciences of the United States of America, 108 (2011) E1089-1098.
[47] Y.-T.T. Chen, C.-Y.Y. Lin, P.-W.W. Tsai, C.-Y.Y. Yang, W.-P.P. Hsieh, C.-Y.Y. Lan, Rhb1 regulates the expression of secreted aspartic protease 2 through the TOR signaling pathway in Candida albicans, Eukaryotic cell, 11 (2012) 168-182.
[48] A.J. Brown, G.D. Brown, M.G. Netea, N.A. Gow, Metabolism impacts upon Candida immunogenicity and pathogenicity at multiple levels, Trends Microbiol, 22 (2014) 614-622.
[49] T. Limjindaporn, R.A. Khalaf, W.A. Fonzi, Nitrogen metabolism and virulence of Candida albicans require the GATA-type transcriptional activator encoded by GAT1, Mol Microbiol, 50 (2003) 993-1004.
[50] Y.T. Chen, C.Y. Lin, P.W. Tsai, C.Y. Yang, W.P. Hsieh, C.Y. Lan, Rhb1 regulates the expression of secreted aspartic protease 2 through the TOR signaling pathway in Candida albicans, Eukaryotic cell, 11 (2012) 168-182.
[51] C.-C. Tsao, Y.-T. Chen, C.-Y. Lan, A small G protein Rhb1 and a GTPase-activating protein Tsc2 involved in nitrogen starvation-induced morphogenesis and cell wall integrity of Candida albicans, Fungal Genetics and Biology, 46 (2009) 126-136.
[52] L. Kraidlova, S. Schrevens, H. Tournu, G. Van Zeebroeck, H. Sychrova, P. Van Dijck, Characterization of the Candida albicans Amino Acid Permease Family: Gap2 Is the Only General Amino Acid Permease and Gap4 Is an S-Adenosylmethionine (SAM) Transporter Required for SAM-Induced Morphogenesis, mSphere, 1 (2016) e00284-00216.
[53] H. Eisler, K.U. Frohlich, E. Heidenreich, Starvation for an essential amino acid induces apoptosis and oxidative stress in yeast, Experimental cell research, 300 (2004) 345-353.
[54] C.D. Georgiou, N. Patsoukis, I. Papapostolou, G. Zervoudakis, Sclerotial metamorphosis in filamentous fungi is induced by oxidative stress, Integr Comp Biol, 46 (2006) 691-712.
[55] N.N. Gessler, A.A. Aver'yanov, T.A. Belozerskaya, Reactive oxygen species in regulation of fungal development, Biochemistry. Biokhimiia, 72 (2007) 1091-1109.
[56] V.I. Lushchak, Oxidative stress in yeast, Biochemistry. Biokhimiia, 75 (2010) 281-296.
[57] S. Duhring, S. Germerodt, C. Skerka, P.F. Zipfel, T. Dandekar, S. Schuster, Host-pathogen interactions between the human innate immune system and Candida albicans-understanding and modeling defense and evasion strategies, Front Microbiol, 6 (2015) 1-18.
[58] A.P. Demasi, G.A. Pereira, L.E. Netto, Yeast oxidative stress response. Influences of cytosolic thioredoxin peroxidase I and of the mitochondrial functional state, FEBS J, 273 (2006) 805-816.
[59] A.G. Vonk, C.W. Wieland, M.G. Netea, B.J. Kullberg, Phagocytosis and intracellular killing of Candida albicans blastoconidia by neutrophils and macrophages: a comparison of different microbiological test systems, J Microbiol Methods, 49 (2002) 55-62.
[60] K.G. Destin, J.R. Linden, S.S. Laforce-Nesbitt, J.M. Bliss, Oxidative burst and phagocytosis of neonatal neutrophils confronting Candida albicans and Candida parapsilosis, Early Hum Dev, 85 (2009) 531-535.
[61] F.C. Fang, Antimicrobial reactive oxygen and nitrogen species: concepts and controversies, Nat Rev Microbiol, 2 (2004) 820-832.
[62] G.C. Brown, V. Borutaite, Interactions between nitric oxide, oxygen, reactive oxygen species and reactive nitrogen species, Biochem Soc Trans, 34 (2006) 953-956.
[63] J.M. Cook-Mills, Reactive oxygen species regulation of immune function, Mol Immunol, 39 (2002) 497-498.
[64] O.P. Dmytriiev, M. Kravchuk Zh, [Reactive oxygen species and plant immunity], TSitologiia i genetika, 39 (2005) 64-74.
[65] M.B. Grisham, Reactive oxygen species in immune responses, Free radical biology & medicine, 36 (2004) 1479-1480.
[66] Y. Yang, A.V. Bazhin, J. Werner, S. Karakhanova, Reactive Oxygen Species in the Immune System, International Reviews of Immunology, 32 (2013) 249-270.
[67] I. Rubin-Bejerano, I. Fraser, P. Grisafi, G.R. Fink, Phagocytosis by neutrophils induces an amino acid deprivation response in Saccharomyces cerevisiae and Candida albicans, Proceedings of the National Academy of Sciences of the United States of America, 100 (2003) 11007-11012.
[68] A.J.P. Brown, G.D. Brown, M.G. Netea, N.A.R. Gow, Metabolism impacts upon Candida immunogenicity and pathogenicity at multiple levels, Trends Microbiol, 22 (2014) 614-622.
[69] P. Belenky, D. Camacho, J.J. Collins, Fungicidal drugs induce a common oxidative-damage cellular death pathway, Cell Rep, 3 (2013) 350-358.
[70] B. Hao, S. Cheng, C.J. Clancy, M.H. Nguyen, Caspofungin kills Candida albicans by causing both cellular apoptosis and necrosis, Antimicrob Agents Chemother, 57 (2013) 326-332.
[71] G.Y. Lin, H.F. Chen, Y.P. Xue, Y.C. Yeh, C.L. Chen, M.S. Liu, W.C. Cheng, C.Y. Lan, The Antimicrobial Peptides P-113Du and P-113Tri Function against Candida albicans, Antimicrob Agents Chemother, 60 (2016) 6369-6373.
[72] D. Vandenbosch, K. Braeckmans, H.J. Nelis, T. Coenye, Fungicidal activity of miconazole against Candida spp. biofilms, The Journal of antimicrobial chemotherapy, 65 (2010) 694-700.
[73] A.C. Mesa-Arango, N. Trevijano-Contador, E. Roman, R. Sanchez-Fresneda, C. Casas, E. Herrero, J.C. Arguelles, J. Pla, M. Cuenca-Estrella, O. Zaragoza, The production of reactive oxygen species is a universal action mechanism of Amphotericin B against pathogenic yeasts and contributes to the fungicidal effect of this drug, Antimicrob Agents Chemother, 58 (2014) 6627-6638.
[74] H.G. Floss, The Shikimate Pathway — An Overview, in: E.E. Conn (Ed.) The Shikimic Acid Pathway, Springer US, Place Published, 1986, pp. 13-55.
[75] R.A. Jensen, Tyrosine and Phenylalanine Biosynthesis: Relationship between Alternative Pathways, Regulation and Subcellular Location, in: E.E. Conn (Ed.) The Shikimic Acid Pathway, Springer US, Place Published, 1986, pp. 57-81.
[76] I. GIENTKA, W. DUSZKIEWICZ-REINHARD, SHIKIMATE PATHWAY IN YEAST CELLS: ENZYMES, FUNCTIONING, REGULATION-A REVIEW, Polish journal of food and nutrition sciences, 59 (2009) 113-118.
[77] D.G. Gilchrist, T. Kosuge, 13 - Aromatic Amino Acid Biosynthesis and Its Regulation A2 - Miflin, B.J, Amino Acids and Derivatives, Academic Press, Place Published, 1980, pp. 507-531.
[78] F. Roberts, C.W. Roberts, J.J. Johnson, D.E. Kyle, T. Krell, J.R. Coggins, G.H. Coombs, W.K. Milhous, S. Tzipori, D.J.P. Ferguson, D. Chakrabarti, R. McLeod, Evidence for the shikimate pathway in apicomplexan parasites, Nature, 393 (1998) 801-805.
[79] X. Chen, M. Li, L. Zhou, W. Shen, G. Algasan, Y. Fan, Z. Wang, Metabolic engineering of Escherichia coli for improving shikimate synthesis from glucose, Bioresour Technol, 166 (2014) 64-71.
[80] K.M. Herrmann, L.M. Weaver, The Shikimate Pathway, Annu Rev Plant Physiol Plant Mol Biol, 50 (1999) 473-503.
[81] L.P. Maréchal, R. Azerad, The shikimate pathway III. - 3-dehydroquinate synthetase of E. coli. mechanistic studies by kinetic isotope effect, Biochimie, 58 (1976) 1123-1128.
[82] P.C. Hsu, C.Y. Yang, C.Y. Lan, Candida albicans Hap43 is a repressor induced under low-iron conditions and is essential for iron-responsive transcriptional regulation and virulence, Eukaryotic cell, 10 (2011) 207-225.
[83] H. Nailis, T. Coenye, F. Van Nieuwerburgh, D. Deforce, H.J. Nelis, Development and evaluation of different normalization strategies for gene expression studies in Candida albicans biofilms by real-time PCR, BMC molecular biology, 7 (2006) 1-9.
[84] P.C. Hsu, C.C. Chao, C.Y. Yang, Y.L. Ye, F.C. Liu, Y.J. Chuang, C.Y. Lan, Diverse Hap43-independent functions of the Candida albicans CCAAT-binding complex, Eukaryotic cell, 12 (2013) 804-815.
[85] M. Mentges, J. Bormann, Highly Accurate Real-time Measurement of Rapid Hydrogen-peroxide Dynamics in Fungi, BIO-PROTOCOL, 6 (2016) e2080.
[86] E.J. Collinson, S. Wimmer-Kleikamp, S.K. Gerega, Y.H. Yang, C.R. Parish, I.W. Dawes, R. Stocker, The yeast homolog of heme oxygenase-1 affords cellular antioxidant protection via the transcriptional regulation of known antioxidant genes, The Journal of biological chemistry, 286 (2011) 2205-2214.
[87] I. Rahman, A. Kode, S.K. Biswas, Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method, Nature Protocols, 1 (2007) 3159-3165.
[88] I. Rahman, A. Kode, S.K. Biswas, Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method, Nat Protoc, 1 (2006) 3159-3165.
[89] B. Mannervik, The isoenzymes of glutathione transferase, Adv Enzymol Relat Areas Mol Biol, 57 (1985) 357-417.
[90] P.W. Tsai, Y.T. Chen, C.Y. Yang, H.F. Chen, T.S. Tan, T.W. Lin, W.P. Hsieh, C.Y. Lan, The role of Mss11 in Candida albicans biofilm formation, Molecular genetics and genomics : MGG, 289 (2014) 807-819.
[91] C. Komalapriya, D. Kaloriti, A.T. Tillmann, Z. Yin, C. Herrero-de-Dios, M.D. Jacobsen, R.C. Belmonte, G. Cameron, K. Haynes, C. Grebogi, A.P.S. de Moura, N.A.R. Gow, M. Thiel, J. Quinn, A.J.P. Brown, M.C. Romano, Integrative Model of Oxidative Stress Adaptation in the Fungal Pathogen Candida albicans, PLOS ONE, 10 (2015) e0137750.
[92] Y. Lin, J.E. Spallholz, Generation of reactive oxygen species from the reaction of selenium compounds with thiols and mammary tumor cells, Biochemical Pharmacology, 45 (1993) 429-437.
[93] Y. Okamoto, S. Aoki, I. Mataga, Enhancement of Amphotericin B Activity Against Candida albicans by Superoxide Radical, Mycopathologia, 158 (2004) 9-15.
[94] M.L. Sokol-Anderson, J. Brajtburg, G. Medoff, Amphotericin B-induced oxidative damage and killing of Candida albicans, J Infect Dis, 154 (1986) 76-83.
[95] T. Bilinski, J. Litwinska, M. Blaszczynski, A. Bajus, Superoxide dismutase deficiency and the toxicity of the products of autooxidation of polyunsaturated fatty acids in yeast, Biochimica et biophysica acta, 1001 (1989) 102-106.
[96] E. Cabiscol, E. Piulats, P. Echave, E. Herrero, J. Ros, Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae, The Journal of biological chemistry, 275 (2000) 27393-27398.
[97] G.F. Ribeiro, M. Côrte-Real, B. Johansson, Characterization of DNA Damage in Yeast Apoptosis Induced by Hydrogen Peroxide, Acetic Acid, and Hyperosmotic Shock, Mol Biol Cell, 17 (2006) 4584-4591.
[98] M.D. Ramírez-Quijas, R. Zazueta-Sandoval, A. Obregón-Herrera, E. López-Romero, M. Cuéllar-Cruz, Effect of oxidative stress on cell wall morphology in four pathogenic Candida species, Mycological Progress, 14 (2015) 1-15.
[99] N. Robbins, C. Collins, J. Morhayim, L.E. Cowen, Metabolic control of antifungal drug resistance, Fungal Genetics and Biology, 47 (2010) 81-93.
[100] I.V. Ene, S. Brunke, A.J. Brown, B. Hube, Metabolism in fungal pathogenesis, Cold Spring Harbor Perspectives in Medicine, 4 (2014) a019695.
[101] S. Ramachandra, J. Linde, M. Brock, R. Guthke, B. Hube, S. Brunke, Regulatory networks controlling nitrogen sensing and uptake in Candida albicans, PLoS One, 9 (2014) e92734.
[102] N. Delattin, B.P.A. Cammue, K. Thevissen, Reactive oxygen species-inducing antifungal agents and their activity against fungal biofilms, Future Medicinal Chemistry, 6 (2014) 77-90.
[103] G. Ferreira, L. de Baltazar, J. Santos, A. Monteiro, L. de Fraga, M. Resende-Stoianoff, D. Santos, The role of oxidative and nitrosative bursts caused by azoles and amphotericin B against the fungal pathogen Cryptococcus gattii, Journal of Antimicrobial Chemotherapy, 68 (2013) 1801-1811.
[104] C.F. Hoehamer, E.D. Cummings, G.M. Hilliard, D.P. Rogers, Changes in the Proteome of Candida albicans in Response to Azole, Polyene, and Echinocandin Antifungal Agents, Antimicrobial Agents and Chemotherapy, 54 (2010) 1655-1664.
[105] T. Peter, R. Bissinger, F. Lang, Stimulation of Eryptosis by Caspofungin, Cellular Physiology and Biochemistry, 39 (2016) 939-949.
[106] Q. Shen, W. Zhou, H. Li, L. Hu, H. Mo, ROS Involves the Fungicidal Actions of Thymol against Spores of Aspergillus flavus via the Induction of Nitric Oxide, PLOS ONE, 11 (2016) e0155647.
[107] D. Vandenbosch, K. Braeckmans, H.J. Nelis, T. Coenye, Fungicidal activity of miconazole against Candida spp. biofilms, Journal of Antimicrobial Chemotherapy, 65 (2010) 694-700.
[108] C.M. Grant, G. Perrone, I.W. Dawes, Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae, Biochemical and biophysical research communications, 253 (1998) 893-898.
[109] S. Gunasekaran, M. Imbayagwo, L. McDonald, M. Gunasekaran, E. Manavathu, Influence of carbon and nitrogen sources on glutathione catabolic enzymes inCandida albicans during dimorphism, Mycopathologia, 131 (1995) 93-97.
[110] C. Kumar, R. Sharma, A. Bachhawat, Utilization of glutathione as an exogenous sulfur source is independent of γ‐glutamyl transpeptidase in the yeast Saccharomyces cerevisiae: evidence for an alternative gluathione degradation pathway, FEMS Microbiology Letters, 219 (2003) 187-194.
[111] G.G. Perrone, C.M. Grant, I.W. Dawes, Genetic and Environmental Factors Influencing Glutathione Homeostasis in Saccharomyces cerevisiae, Molecular Biology of the Cell, 16 (2005) 218-230.
[112] C. Fischer, O. Valerius, H. Rupprecht, M. Dumkow, S. Krappmann, G.H. Braus, Posttranscriptional regulation of FLO11 upon amino acid starvation in Saccharomyces cerevisiae, FEMS Yeast Research, 8 (2008) 225-236.
[113] Y. Teranishi, A. Tanaka, M. Osumi, S. Fukui, Studies on Physiology and Metabolism of Hydrocarbon-Utilizing Microorganisms .6. Catalase Activities of Hydrocarbon-Utilizing Candida Yeasts, Agricultural and Biological Chemistry, 38 (1974) 1213-1220.
[114] C. Michan, C. Pueyo, Growth phase-dependent variations in transcript profiles for thioredoxin- and glutathione-dependent redox systems followed by budding and hyphal Candida albicans cultures, FEMS Yeast Res, 9 (2009) 1078-1090.
[115] S.M. Bernardo, Z. Khalique, J. Kot, J.K. Jones, S.A. Lee, Candida albicans VPS1 contributes to protease secretion, filamentation, and biofilm formation, Fungal genetics and biology : FG & B, 45 (2008) 861-877.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *