|
[1] <台灣院內感染監視資訊系統2015年第2季監視報告.pdf>. [2] <台灣院內感染監視資訊系統(TNIS)2016年第2季監視報告.9672.PDF>. [3] D.I. Zonios, J.E. Bennett, Update on azole antifungals, Seminars in respiratory and critical care medicine, 29 (2008) 198-210. [4] T. Roemer, D.J. Krysan, Antifungal drug development: challenges, unmet clinical needs, and new approaches, Cold Spring Harbor Perspectives in Medicine, 4 (2014). [5] J. Tanwar, S. Das, Z. Fatima, S. Hameed, Multidrug resistance: an emerging crisis, Interdiscip Perspect Infect Dis, 2014 (2014) 541340, 541341-541347. [6] K. Gulshan, W.S. Moye-Rowley, Multidrug resistance in fungi, Eukaryotic cell, 6 (2007) 1933-1942. [7] A.J. Brown, S. Budge, D. Kaloriti, A. Tillmann, M.D. Jacobsen, Z. Yin, I.V. Ene, I. Bohovych, D. Sandai, S. Kastora, J. Potrykus, E.R. Ballou, D.S. Childers, S. Shahana, M.D. Leach, Stress adaptation in a pathogenic fungus, J Exp Biol, 217 (2014) 144-155. [8] P.-W. Tsai, Y.-T. Chen, P.-C. Hsu, C.-Y. Lan, Study of Candida albicans and its interactions with the host: A mini review, BioMedicine, 3 (2013) 51-64. [9] P.E. Sudbery, Growth of Candida albicans hyphae, Nat Rev Microbiol, 9 (2011) 737-748. [10] I.D. Jacobsen, B. Hube, Candida albicans morphology: still in focus, Expert review of anti-infective therapy, 15 (2017) 327-330. [11] S.G. Nadeem, A. Shafiq, S.T. Hakim, Y. Anjum, S.U. Kazm, Effect of Growth Media, pH and Temperature on Yeast to Hyphal Transition in Candida albicans, Open Journal of Medical Microbiology, 3 (2013) 185-192. [12] Q.T. Phan, C.L. Myers, Y. Fu, D.C. Sheppard, M.R. Yeaman, W.H. Welch, A.S. Ibrahim, J.E. Edwards, Jr., S.G. Filler, Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells, PLoS biology, 5 (2007) e64. [13] V. Vidotto, J. Ponton, S. Aoki, G. Quindos, B. Mantoan, A. Pugliese, S. Ito-Kuwa, K. Nakamura, Differences in extracellular enzymatic activity between Candida dubliniensis and Candida albicans isolates, Rev Iberoam Micol, 21 (2004) 70-74. [14] F.d. Bernardis, P.A. Sullivan, A. Cassone, Aspartyl proteinases ofCandida albicansand their role in pathogenicity, Medical Mycology, 39 (2001) 303-313. [15] B. Hube, Candida albicans secreted aspartyl proteinases, Curr Top Med Mycol, 7 (1996) 55-69. [16] J.R. Naglik, S.J. Challacombe, B. Hube, Candida albicans secreted aspartyl proteinases in virulence and pathogenesis, Microbiology and molecular biology reviews : MMBR, 67 (2003) 400-428, table of contents. [17] T.C. White, N. Agabian, Candida-Albicans Secreted Aspartyl Proteinases - Isoenzyme Pattern Is Determined by Cell-Type, and Levels Are Determined by Environmental-Factors, Journal of Bacteriology, 177 (1995) 5215-5221. [18] M. Schaller, H.C. Korting, W. Schafer, J. Bastert, W. Chen, B. Hube, Secreted aspartic proteinase (Sap) activity contributes to tissue damage in a model of human oral candidosis, Mol Microbiol, 34 (1999) 169-180. [19] F.L. Mayer, D. Wilson, B. Hube, Candida albicans pathogenicity mechanisms, Virulence, 4 (2013) 119-128. [20] C. Michiels, M. Raes, O. Toussaint, J. Remacle, Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress, Free radical biology & medicine, 17 (1994) 235-248. [21] A. da Silva Dantas, A. Day, M. Ikeh, I. Kos, B. Achan, J. Quinn, Oxidative Stress Responses in the Human Fungal Pathogen, Candida albicans, Biomolecules, 5 (2015) 142-165. [22] I. Fridovich, Superoxide dismutases, Adv Enzymol Relat Areas Mol Biol, 58 (1986) 61-97. [23] D. Zhu, J.G. Scandalios, Expression of the maize MnSod (Sod3) gene in MnSOD-deficient yeast rescues the mutant yeast under oxidative stress, Genetics, 131 (1992) 803-809. [24] I.E. Frohner, C. Bourgeois, K. Yatsyk, O. Majer, K. Kuchler, Candida albicans cell surface superoxide dismutases degrade host-derived reactive oxygen species to escape innate immune surveillance, Mol Microbiol, 71 (2009) 240-252. [25] C.N. Broxton, V.C. Culotta, SOD Enzymes and Microbial Pathogens: Surviving the Oxidative Storm of Infection, PLoS Pathog, 12 (2016) e1005295. [26] C.S. Hwang, G.E. Rhie, J.H. Oh, W.K. Huh, H.S. Yim, S.O. Kang, Copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) is required for the protection of Candida albicans against oxidative stresses and the expression of its full virulence, Microbiology, 148 (2002) 3705-3713. [27] G.R. Schonbaum, B. Chance, 7 Catalase, The Enzymes, 13 (1976) 363-408. [28] M. Breitenbach, M. Weber, M. Rinnerthaler, T. Karl, L. Breitenbach-Koller, Oxidative stress in fungi: its function in signal transduction, interaction with plant hosts, and lignocellulose degradation, Biomolecules, 5 (2015) 318-342. [29] D.R. Wysong, L. Christin, A.M. Sugar, P.W. Robbins, R.D. Diamond, Cloning and sequencing of a Candida albicans catalase gene and effects of disruption of this gene, Infect Immun, 66 (1998) 1953-1961. [30] Y. Nakagawa, K. Koide, K. Watanabe, Y. Morita, I. Mizuguchi, T. Akashi, The expression of the pathogenic yeast Candida albicans catalase gene in response to hydrogen peroxide, Microbiology and immunology, 43 (1999) 645-651. [31] V.M. Copping, C.J. Barelle, B. Hube, N.A. Gow, A.J. Brown, F.C. Odds, Exposure of Candida albicans to antifungal agents affects expression of SAP2 and SAP9 secreted proteinase genes, The Journal of antimicrobial chemotherapy, 55 (2005) 645-654. [32] J.D. Hayes, J.U. Flanagan, I.R. Jowsey, Glutathione transferases, Annual review of pharmacology and toxicology, 45 (2005) 51-88. [33] I. Pocsi, R.A. Prade, M.J. Penninckx, Glutathione, altruistic metabolite in fungi, Advances in Microbial Physiology, 49 (2004) 1-76. [34] Y. Yang, Y. Awasthi, Glutathione S-Transferases as Modulators of Signal Transduction, Toxicology of Glutathione Transferases, Informa Healthcare, Place Published, 2006, pp. 205-230. [35] S. Singhal, S. Awasthi, Glutathione-Conjugate Transport and Stress-Response Signaling, Toxicology of Glutathione Transferases, Informa Healthcare, Place Published, 2006, pp. 231-256. [36] P. Zimniak, Substrates and Reaction Mechanisms of Glutathione Transferases, Toxicology of Glutathione Transferases, Informa Healthcare, Place Published, 2006, pp. 71-101. [37] Y. Yang, P. Boor, Glutathione S-Transferases and Oxidative Injury of Cardiovascular Tissues, Toxicology of Glutathione Transferases, Informa Healthcare, Place Published, 2006, pp. 257-276. [38] A.K. Bachhawat, D. Ganguli, J. Kaur, N. Kasturia, A. Thakur, H. Kaur, A. Kumar, A. Yadav, Glutathione Production in Yeast, in: T. Satyanarayana, G. Kunze (Eds.) Yeast Biotechnology: Diversity and Applications, Springer Netherlands, Place Published, 2009, pp. 259-280. [39] M.J. Penninckx, An overview on glutathione in Saccharomyces versus non-conventional yeasts, FEMS Yeast Res, 2 (2002) 295-305. [40] M. Penninckx, A short review on the role of glutathione in the response of yeasts to nutritional, environmental, and oxidative stresses, Enzyme Microb Technol, 26 (2000) 737-742. [41] M.T. Elskens, C.J. Jaspers, M.J. Penninckx, Glutathione as an Endogenous Sulfur Source in the Yeast Saccharomyces-Cerevisiae, Journal of general microbiology, 137 (1991) 637-644. [42] D. Mendoza-Cozatl, H. Loza-Tavera, A. Hernandez-Navarro, R. Moreno-Sanchez, Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants, FEMS microbiology reviews, 29 (2005) 653-671. [43] P. Murphy M How mitochondria produce reactive oxygen species, Biochem J, 417 (2009) 1-13. [44] A.J. Kowaltowski, N.C. de Souza-Pinto, R.F. Castilho, A.E. Vercesi, Mitochondria and reactive oxygen species, Free radical biology & medicine, 47 (2009) 333-343. [45] Y. Qu, B. Jelicic, F. Pettolino, A. Perry, T.L. Lo, V.L. Hewitt, F. Bantun, T.H. Beilharz, A.Y. Peleg, T. Lithgow, J.T. Djordjevic, A. Traven, Mitochondrial Sorting and Assembly Machinery Subunit Sam37 in Candida albicans: Insight into the Roles of Mitochondria in Fitness, Cell Wall Integrity, and Virulence, Eukaryotic cell, 11 (2012) 532-544. [46] A.A. Petti, C.A. Crutchfield, J.D. Rabinowitz, D. Botstein, Survival of starving yeast is correlated with oxidative stress response and nonrespiratory mitochondrial function, Proceedings of the National Academy of Sciences of the United States of America, 108 (2011) E1089-1098. [47] Y.-T.T. Chen, C.-Y.Y. Lin, P.-W.W. Tsai, C.-Y.Y. Yang, W.-P.P. Hsieh, C.-Y.Y. Lan, Rhb1 regulates the expression of secreted aspartic protease 2 through the TOR signaling pathway in Candida albicans, Eukaryotic cell, 11 (2012) 168-182. [48] A.J. Brown, G.D. Brown, M.G. Netea, N.A. Gow, Metabolism impacts upon Candida immunogenicity and pathogenicity at multiple levels, Trends Microbiol, 22 (2014) 614-622. [49] T. Limjindaporn, R.A. Khalaf, W.A. Fonzi, Nitrogen metabolism and virulence of Candida albicans require the GATA-type transcriptional activator encoded by GAT1, Mol Microbiol, 50 (2003) 993-1004. [50] Y.T. Chen, C.Y. Lin, P.W. Tsai, C.Y. Yang, W.P. Hsieh, C.Y. Lan, Rhb1 regulates the expression of secreted aspartic protease 2 through the TOR signaling pathway in Candida albicans, Eukaryotic cell, 11 (2012) 168-182. [51] C.-C. Tsao, Y.-T. Chen, C.-Y. Lan, A small G protein Rhb1 and a GTPase-activating protein Tsc2 involved in nitrogen starvation-induced morphogenesis and cell wall integrity of Candida albicans, Fungal Genetics and Biology, 46 (2009) 126-136. [52] L. Kraidlova, S. Schrevens, H. Tournu, G. Van Zeebroeck, H. Sychrova, P. Van Dijck, Characterization of the Candida albicans Amino Acid Permease Family: Gap2 Is the Only General Amino Acid Permease and Gap4 Is an S-Adenosylmethionine (SAM) Transporter Required for SAM-Induced Morphogenesis, mSphere, 1 (2016) e00284-00216. [53] H. Eisler, K.U. Frohlich, E. Heidenreich, Starvation for an essential amino acid induces apoptosis and oxidative stress in yeast, Experimental cell research, 300 (2004) 345-353. [54] C.D. Georgiou, N. Patsoukis, I. Papapostolou, G. Zervoudakis, Sclerotial metamorphosis in filamentous fungi is induced by oxidative stress, Integr Comp Biol, 46 (2006) 691-712. [55] N.N. Gessler, A.A. Aver'yanov, T.A. Belozerskaya, Reactive oxygen species in regulation of fungal development, Biochemistry. Biokhimiia, 72 (2007) 1091-1109. [56] V.I. Lushchak, Oxidative stress in yeast, Biochemistry. Biokhimiia, 75 (2010) 281-296. [57] S. Duhring, S. Germerodt, C. Skerka, P.F. Zipfel, T. Dandekar, S. Schuster, Host-pathogen interactions between the human innate immune system and Candida albicans-understanding and modeling defense and evasion strategies, Front Microbiol, 6 (2015) 1-18. [58] A.P. Demasi, G.A. Pereira, L.E. Netto, Yeast oxidative stress response. Influences of cytosolic thioredoxin peroxidase I and of the mitochondrial functional state, FEBS J, 273 (2006) 805-816. [59] A.G. Vonk, C.W. Wieland, M.G. Netea, B.J. Kullberg, Phagocytosis and intracellular killing of Candida albicans blastoconidia by neutrophils and macrophages: a comparison of different microbiological test systems, J Microbiol Methods, 49 (2002) 55-62. [60] K.G. Destin, J.R. Linden, S.S. Laforce-Nesbitt, J.M. Bliss, Oxidative burst and phagocytosis of neonatal neutrophils confronting Candida albicans and Candida parapsilosis, Early Hum Dev, 85 (2009) 531-535. [61] F.C. Fang, Antimicrobial reactive oxygen and nitrogen species: concepts and controversies, Nat Rev Microbiol, 2 (2004) 820-832. [62] G.C. Brown, V. Borutaite, Interactions between nitric oxide, oxygen, reactive oxygen species and reactive nitrogen species, Biochem Soc Trans, 34 (2006) 953-956. [63] J.M. Cook-Mills, Reactive oxygen species regulation of immune function, Mol Immunol, 39 (2002) 497-498. [64] O.P. Dmytriiev, M. Kravchuk Zh, [Reactive oxygen species and plant immunity], TSitologiia i genetika, 39 (2005) 64-74. [65] M.B. Grisham, Reactive oxygen species in immune responses, Free radical biology & medicine, 36 (2004) 1479-1480. [66] Y. Yang, A.V. Bazhin, J. Werner, S. Karakhanova, Reactive Oxygen Species in the Immune System, International Reviews of Immunology, 32 (2013) 249-270. [67] I. Rubin-Bejerano, I. Fraser, P. Grisafi, G.R. Fink, Phagocytosis by neutrophils induces an amino acid deprivation response in Saccharomyces cerevisiae and Candida albicans, Proceedings of the National Academy of Sciences of the United States of America, 100 (2003) 11007-11012. [68] A.J.P. Brown, G.D. Brown, M.G. Netea, N.A.R. Gow, Metabolism impacts upon Candida immunogenicity and pathogenicity at multiple levels, Trends Microbiol, 22 (2014) 614-622. [69] P. Belenky, D. Camacho, J.J. Collins, Fungicidal drugs induce a common oxidative-damage cellular death pathway, Cell Rep, 3 (2013) 350-358. [70] B. Hao, S. Cheng, C.J. Clancy, M.H. Nguyen, Caspofungin kills Candida albicans by causing both cellular apoptosis and necrosis, Antimicrob Agents Chemother, 57 (2013) 326-332. [71] G.Y. Lin, H.F. Chen, Y.P. Xue, Y.C. Yeh, C.L. Chen, M.S. Liu, W.C. Cheng, C.Y. Lan, The Antimicrobial Peptides P-113Du and P-113Tri Function against Candida albicans, Antimicrob Agents Chemother, 60 (2016) 6369-6373. [72] D. Vandenbosch, K. Braeckmans, H.J. Nelis, T. Coenye, Fungicidal activity of miconazole against Candida spp. biofilms, The Journal of antimicrobial chemotherapy, 65 (2010) 694-700. [73] A.C. Mesa-Arango, N. Trevijano-Contador, E. Roman, R. Sanchez-Fresneda, C. Casas, E. Herrero, J.C. Arguelles, J. Pla, M. Cuenca-Estrella, O. Zaragoza, The production of reactive oxygen species is a universal action mechanism of Amphotericin B against pathogenic yeasts and contributes to the fungicidal effect of this drug, Antimicrob Agents Chemother, 58 (2014) 6627-6638. [74] H.G. Floss, The Shikimate Pathway — An Overview, in: E.E. Conn (Ed.) The Shikimic Acid Pathway, Springer US, Place Published, 1986, pp. 13-55. [75] R.A. Jensen, Tyrosine and Phenylalanine Biosynthesis: Relationship between Alternative Pathways, Regulation and Subcellular Location, in: E.E. Conn (Ed.) The Shikimic Acid Pathway, Springer US, Place Published, 1986, pp. 57-81. [76] I. GIENTKA, W. DUSZKIEWICZ-REINHARD, SHIKIMATE PATHWAY IN YEAST CELLS: ENZYMES, FUNCTIONING, REGULATION-A REVIEW, Polish journal of food and nutrition sciences, 59 (2009) 113-118. [77] D.G. Gilchrist, T. Kosuge, 13 - Aromatic Amino Acid Biosynthesis and Its Regulation A2 - Miflin, B.J, Amino Acids and Derivatives, Academic Press, Place Published, 1980, pp. 507-531. [78] F. Roberts, C.W. Roberts, J.J. Johnson, D.E. Kyle, T. Krell, J.R. Coggins, G.H. Coombs, W.K. Milhous, S. Tzipori, D.J.P. Ferguson, D. Chakrabarti, R. McLeod, Evidence for the shikimate pathway in apicomplexan parasites, Nature, 393 (1998) 801-805. [79] X. Chen, M. Li, L. Zhou, W. Shen, G. Algasan, Y. Fan, Z. Wang, Metabolic engineering of Escherichia coli for improving shikimate synthesis from glucose, Bioresour Technol, 166 (2014) 64-71. [80] K.M. Herrmann, L.M. Weaver, The Shikimate Pathway, Annu Rev Plant Physiol Plant Mol Biol, 50 (1999) 473-503. [81] L.P. Maréchal, R. Azerad, The shikimate pathway III. - 3-dehydroquinate synthetase of E. coli. mechanistic studies by kinetic isotope effect, Biochimie, 58 (1976) 1123-1128. [82] P.C. Hsu, C.Y. Yang, C.Y. Lan, Candida albicans Hap43 is a repressor induced under low-iron conditions and is essential for iron-responsive transcriptional regulation and virulence, Eukaryotic cell, 10 (2011) 207-225. [83] H. Nailis, T. Coenye, F. Van Nieuwerburgh, D. Deforce, H.J. Nelis, Development and evaluation of different normalization strategies for gene expression studies in Candida albicans biofilms by real-time PCR, BMC molecular biology, 7 (2006) 1-9. [84] P.C. Hsu, C.C. Chao, C.Y. Yang, Y.L. Ye, F.C. Liu, Y.J. Chuang, C.Y. Lan, Diverse Hap43-independent functions of the Candida albicans CCAAT-binding complex, Eukaryotic cell, 12 (2013) 804-815. [85] M. Mentges, J. Bormann, Highly Accurate Real-time Measurement of Rapid Hydrogen-peroxide Dynamics in Fungi, BIO-PROTOCOL, 6 (2016) e2080. [86] E.J. Collinson, S. Wimmer-Kleikamp, S.K. Gerega, Y.H. Yang, C.R. Parish, I.W. Dawes, R. Stocker, The yeast homolog of heme oxygenase-1 affords cellular antioxidant protection via the transcriptional regulation of known antioxidant genes, The Journal of biological chemistry, 286 (2011) 2205-2214. [87] I. Rahman, A. Kode, S.K. Biswas, Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method, Nature Protocols, 1 (2007) 3159-3165. [88] I. Rahman, A. Kode, S.K. Biswas, Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method, Nat Protoc, 1 (2006) 3159-3165. [89] B. Mannervik, The isoenzymes of glutathione transferase, Adv Enzymol Relat Areas Mol Biol, 57 (1985) 357-417. [90] P.W. Tsai, Y.T. Chen, C.Y. Yang, H.F. Chen, T.S. Tan, T.W. Lin, W.P. Hsieh, C.Y. Lan, The role of Mss11 in Candida albicans biofilm formation, Molecular genetics and genomics : MGG, 289 (2014) 807-819. [91] C. Komalapriya, D. Kaloriti, A.T. Tillmann, Z. Yin, C. Herrero-de-Dios, M.D. Jacobsen, R.C. Belmonte, G. Cameron, K. Haynes, C. Grebogi, A.P.S. de Moura, N.A.R. Gow, M. Thiel, J. Quinn, A.J.P. Brown, M.C. Romano, Integrative Model of Oxidative Stress Adaptation in the Fungal Pathogen Candida albicans, PLOS ONE, 10 (2015) e0137750. [92] Y. Lin, J.E. Spallholz, Generation of reactive oxygen species from the reaction of selenium compounds with thiols and mammary tumor cells, Biochemical Pharmacology, 45 (1993) 429-437. [93] Y. Okamoto, S. Aoki, I. Mataga, Enhancement of Amphotericin B Activity Against Candida albicans by Superoxide Radical, Mycopathologia, 158 (2004) 9-15. [94] M.L. Sokol-Anderson, J. Brajtburg, G. Medoff, Amphotericin B-induced oxidative damage and killing of Candida albicans, J Infect Dis, 154 (1986) 76-83. [95] T. Bilinski, J. Litwinska, M. Blaszczynski, A. Bajus, Superoxide dismutase deficiency and the toxicity of the products of autooxidation of polyunsaturated fatty acids in yeast, Biochimica et biophysica acta, 1001 (1989) 102-106. [96] E. Cabiscol, E. Piulats, P. Echave, E. Herrero, J. Ros, Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae, The Journal of biological chemistry, 275 (2000) 27393-27398. [97] G.F. Ribeiro, M. Côrte-Real, B. Johansson, Characterization of DNA Damage in Yeast Apoptosis Induced by Hydrogen Peroxide, Acetic Acid, and Hyperosmotic Shock, Mol Biol Cell, 17 (2006) 4584-4591. [98] M.D. Ramírez-Quijas, R. Zazueta-Sandoval, A. Obregón-Herrera, E. López-Romero, M. Cuéllar-Cruz, Effect of oxidative stress on cell wall morphology in four pathogenic Candida species, Mycological Progress, 14 (2015) 1-15. [99] N. Robbins, C. Collins, J. Morhayim, L.E. Cowen, Metabolic control of antifungal drug resistance, Fungal Genetics and Biology, 47 (2010) 81-93. [100] I.V. Ene, S. Brunke, A.J. Brown, B. Hube, Metabolism in fungal pathogenesis, Cold Spring Harbor Perspectives in Medicine, 4 (2014) a019695. [101] S. Ramachandra, J. Linde, M. Brock, R. Guthke, B. Hube, S. Brunke, Regulatory networks controlling nitrogen sensing and uptake in Candida albicans, PLoS One, 9 (2014) e92734. [102] N. Delattin, B.P.A. Cammue, K. Thevissen, Reactive oxygen species-inducing antifungal agents and their activity against fungal biofilms, Future Medicinal Chemistry, 6 (2014) 77-90. [103] G. Ferreira, L. de Baltazar, J. Santos, A. Monteiro, L. de Fraga, M. Resende-Stoianoff, D. Santos, The role of oxidative and nitrosative bursts caused by azoles and amphotericin B against the fungal pathogen Cryptococcus gattii, Journal of Antimicrobial Chemotherapy, 68 (2013) 1801-1811. [104] C.F. Hoehamer, E.D. Cummings, G.M. Hilliard, D.P. Rogers, Changes in the Proteome of Candida albicans in Response to Azole, Polyene, and Echinocandin Antifungal Agents, Antimicrobial Agents and Chemotherapy, 54 (2010) 1655-1664. [105] T. Peter, R. Bissinger, F. Lang, Stimulation of Eryptosis by Caspofungin, Cellular Physiology and Biochemistry, 39 (2016) 939-949. [106] Q. Shen, W. Zhou, H. Li, L. Hu, H. Mo, ROS Involves the Fungicidal Actions of Thymol against Spores of Aspergillus flavus via the Induction of Nitric Oxide, PLOS ONE, 11 (2016) e0155647. [107] D. Vandenbosch, K. Braeckmans, H.J. Nelis, T. Coenye, Fungicidal activity of miconazole against Candida spp. biofilms, Journal of Antimicrobial Chemotherapy, 65 (2010) 694-700. [108] C.M. Grant, G. Perrone, I.W. Dawes, Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae, Biochemical and biophysical research communications, 253 (1998) 893-898. [109] S. Gunasekaran, M. Imbayagwo, L. McDonald, M. Gunasekaran, E. Manavathu, Influence of carbon and nitrogen sources on glutathione catabolic enzymes inCandida albicans during dimorphism, Mycopathologia, 131 (1995) 93-97. [110] C. Kumar, R. Sharma, A. Bachhawat, Utilization of glutathione as an exogenous sulfur source is independent of γ‐glutamyl transpeptidase in the yeast Saccharomyces cerevisiae: evidence for an alternative gluathione degradation pathway, FEMS Microbiology Letters, 219 (2003) 187-194. [111] G.G. Perrone, C.M. Grant, I.W. Dawes, Genetic and Environmental Factors Influencing Glutathione Homeostasis in Saccharomyces cerevisiae, Molecular Biology of the Cell, 16 (2005) 218-230. [112] C. Fischer, O. Valerius, H. Rupprecht, M. Dumkow, S. Krappmann, G.H. Braus, Posttranscriptional regulation of FLO11 upon amino acid starvation in Saccharomyces cerevisiae, FEMS Yeast Research, 8 (2008) 225-236. [113] Y. Teranishi, A. Tanaka, M. Osumi, S. Fukui, Studies on Physiology and Metabolism of Hydrocarbon-Utilizing Microorganisms .6. Catalase Activities of Hydrocarbon-Utilizing Candida Yeasts, Agricultural and Biological Chemistry, 38 (1974) 1213-1220. [114] C. Michan, C. Pueyo, Growth phase-dependent variations in transcript profiles for thioredoxin- and glutathione-dependent redox systems followed by budding and hyphal Candida albicans cultures, FEMS Yeast Res, 9 (2009) 1078-1090. [115] S.M. Bernardo, Z. Khalique, J. Kot, J.K. Jones, S.A. Lee, Candida albicans VPS1 contributes to protease secretion, filamentation, and biofilm formation, Fungal genetics and biology : FG & B, 45 (2008) 861-877.
|