帳號:guest(3.139.67.78)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王翠翎
作者(外文):Wang, Cuei-Ling
論文名稱(中文):纖毛軸絲上的谷氨酰化正向調控纖毛內運送系統與Hedgehog訊息路徑
論文名稱(外文):Glutamylation of ciliary axoneme positively regulates intraciliary trafficking and Hedgehog signaling
指導教授(中文):林玉俊
指導教授(外文):Lin, Yu-Chun
口試委員(中文):廖仲麒
鄭惠春
口試委員(外文):Liao, Jung-Chi
Cheng, Hui-Chun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學號:104080584
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:87
中文關鍵詞:初級纖毛谷氨酰化運輸Hedgehog訊息路徑
外文關鍵詞:primary ciliapolyglutamylationtraffickingHedgehog signaling
相關次數:
  • 推薦推薦:0
  • 點閱點閱:69
  • 評分評分:*****
  • 下載下載:8
  • 收藏收藏:0
細胞藉由調控微管蛋白的轉譯後修飾去控制不同的生理機制,而這些微管蛋白轉譯後修飾在細胞中的動態分佈及組成變化增加了研究其在特定細胞區域所扮演角色的困難度。為了解決此長久以來的研究困境,我們發展了一套新的技術,STRIP (Spatiotemporally Rewriting Intraciliary PTMs),其可以快速地改寫在活細胞中初級纖毛上微管蛋白的轉譯後修飾。我們誘導一個改造過的去谷氨酰化酵素CCP5快速地移動到初級纖毛上,其可消除在初級纖毛軸絲上谷氨酰化的轉譯後修飾。藉此技術我們進一步發現去除微管上的谷氨酰化會在初級纖毛新生時期抑制微管的增長,但不影響到初級纖毛的長度或在微管上其他的轉譯後修飾。我們並發現去除微管上的谷氨酰化會抑制由Kinesin-2運動蛋白介導的順向鞭毛内運輸和Hedgehog信號。我們的研究直接證實了谷氨酰化在初級纖毛的結構及功能上所扮演的角色,未來也可以藉由這項技術來研究細胞中其他區域的微管蛋白轉譯後修飾。
Tubulin Post-Translational Modifications (PTMs) occur spatiotemporally in cells and has been suggested to be involved in a wide range of cellular activities. The complexity and dynamic distribution of tubulin PTMs have hampered people from understanding their physiological roles in specific subcellular regions. Here we developed a new method termed STRIP (SpatioTemporally Rewriting Intraciliary PTMs) enabling us to rapidly and locally rewrite tubulin PTMs in living cells. More specifically, we rapidly deplete one tubulin PTM, polyglutamylation, inside cilia by inducibly recruiting an engineered deglutamylase onto ciliary axonemes. The resulting de novo deglutamylation negatively impacted axoneme elongation during ciliogenesis without noticeably affecting cilia length or other tubulin PTMs in the steady state. In addition, axonemal deglutamylation inhibits kinesin-2- mediated anterograde intraflagellar transport and Hedgehog signaling. Our study demonstrates direct evidence of the causal relationship between the polyglutamylation of ciliary axonemes and ciliary functions. By extending the repertoire of de novo PTM modifiers in the future, a thorough cracking of their pleiotropic roles may become possible.
Abstract……………………………………………………………………………………………………ii
中文摘要……………………………………………………………………………………………………iii
CONTENTS……………………………………………………………………………………………………iv
Chapter 1 Introduction…………………………………………………………………1
Chapter 2 Methods……………………………………………………………………………10
Chapter 3 Result………………………………………………………………………………16
Chapter 4 Discussion and Conclusion……………………………28
REFERENCE…………………………………………………………………………………………………33
Berezniuk, I., Lyons, P.J., Sironi, J.J., Xiao, H., Setou, M., Angeletti, R.H., Ikegami, K., andFricker, L.D. (2013). Cytosolic carboxypeptidase 5 removes α- And γ-linked glutamates from tubulin. J. Biol. Chem. 288, 30445–30453.
Besschetnova, T.Y., Roy, B., andShah, J.V. (2009). Imaging intraflagellar transport in mammalian primary cilia. Methods Cell Biol. 93, 331–346.
Bhogaraju, S., Engel, B.D., andLorentzen, E. (2013). Intraflagellar transport complex structure and cargo interactions. Cilia 2, 10.
Bré, M.H., deNéchaud, B., Wolff, A., andFleury, A. (1994). Glutamylated tubulin probed in ciliates with the monoclonal antibody GT335. Cell Motil. Cytoskeleton 27, 337–349.
Carpenter, B.S., Barry, R.L., Verhey, K.J., andAllen, B.L. (2015). The heterotrimeric kinesin-2 complex interacts with and regulates GLI protein function. J. Cell Sci. 128, 1034–1050.
Chen, D., Wilkinson, C.R.M., Watt, S., Penkett, C.J., Toone, W.M., Jones, N., andBähler, J. (2007). High-Resolution Crystal Structure and In Vivo Function of a Kinesin-2 Homologue in Giardia intestinalis. Mol. Biol. Cell 19, 308–317.
Delling, M., DeCaen, P.G., Doerner, J.F., Febvay, S., andClapham, D.E. (2013). Primary cilia are specialized calcium signalling organelles. Nature 504, 311–314.
Derose, R., Miyamoto, T., andInoue, T. (2013). Manipulating signaling at will: Chemically-inducible dimerization (CID) techniques resolve problems in cell biology. Pflugers Arch. Eur. J. Physiol. 465, 409–417.
Fliegauf, M., Benzing, T., andOmran, H. (2007). When cilia go bad: cilia defects and ciliopathies. Nat. Rev. Mol. Cell Biol. 8, 880–893.
Fouquet, J. ‐P, Kann, M. ‐L, Edde, B., Wolff, A., Desbruyeres, E., andDenoulet, P. (1994). Differential distribution of glutamylated tubulin during spermatogenesis in mammalian testis. Cell Motil. Cytoskeleton 27, 49–58.
Gaertig, J., andWloga, D. (2008). Chapter 4 Ciliary Tubulin and Its Post-Translational Modifications. Curr. Top. Dev. Biol. 85, 83–113.
Gagnon, C., White, D., Cosson, J., Huitorel, P., Eddé, B., Desbruyères, E., Paturle-Lafanechère, L., Multigner, L., Job, D., andCibert, C. (1996). The polyglutamylated lateral chain of alpha-tubulin plays a key role in flagellar motility. J. Cell Sci. 109 ( Pt 6): 1545–1553.
Ghossoub, R., Hu, Q., Failler, M., Rouyez, M.-C., Spitzbarth, B., Mostowy, S., Wolfrum, U., Saunier, S., Cossart, P., James Nelson, W., et al. (2013). Septins 2, 7 and 9 and MAP4 colocalize along the axoneme in the primary cilium and control ciliary length. J. Cell Sci. 126, 2583–2594.
Hao, L., andScholey, J.M. (2009). Intraflagellar transport at a glance. J. Cell Sci. 122, 889–892.
He, M., Subramanian, R., Bangs, F., Omelchenko, T., Liem Jr, K.F., Kapoor, T.M., andAnderson, K.V. (2014). The kinesin-4 protein Kif7 regulates mammalian Hedgehog signalling by organizing the cilium tip compartment. Nat. Cell Biol. 16, 663–672.
Hsiao, Y.-C., Tuz, K., andFerland, R.J. (2012). Trafficking in and to the primary cilium. Cilia 1, 4.
Ikegami, K., andSetou, M. (2010). Unique post-translational modifications in specialized microtubule architecture. Cell Struct. Funct. 35, 15–22.
Ikegami, K., Mukai, M., Tsuchida, J.I., Heier, R.L., MacGregor, G.R., andSetou, M. (2006). TTLL7 is a mammalian β-tubulin polyglutamylase required for growth of MAP2-positive neurites. J. Biol. Chem. 281, 30707–30716.
Ikegami, K., Heier, R.L., Taruishi, M., Takagi, H., Mukai, M., Shimma, S., Taira, S., Hatanaka, K., Morone, N., Yao, I., et al. (2007). Loss of α-tubulin polyglutamylation in ROSA22 mice is associated with abnormal targeting of KIF1A and modulated synaptic function. Proc. Natl. Acad. Sci. 104, 3213–3218.
Ikegami, K., Sato, S., Nakamura, K., Ostrowski, L.E., andSetou, M. (2010). Tubulin polyglutamylation is essential for airway ciliary function through the regulation of beating asymmetry. Proc. Natl. Acad. Sci. 107, 10490–10495.
Janke, C. (2005). Tubulin Polyglutamylase Enzymes Are Members of the TTL Domain Protein Family. Science 308, 1758–1762.
Janke, C. (2014). The tubulin code: Molecular components, readout mechanisms, functions. J. Cell Biol. 206, 461–472.
Janke, C., andChloë Bulinski, J. (2011). Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat. Rev. Mol. Cell Biol. 12, 773–786.
Janke, C., Rogowski, K., andvanDijk, J. (2008). Polyglutamylation: a fine-regulator of protein function? “Protein Modifications: Beyond the Usual Suspects” Review Series. EMBO Rep. 9, 636–641.
Julkowska, D., andBastin, P. (2009). Tools for analyzing intraflagellar transport in trypanosomes. Methods Cell Biol. 93, 59–80.
Keady, B.T., Samtani, R., Tobita, K., Tsuchya, M., San Agustin, J.T., Follit, J.A., Jonassen, J.A., Subramanian, R., Lo, C.W., andPazour, G.J. (2012). IFT25 Links the Signal-Dependent Movement of Hedgehog Components to Intraflagellar Transport. Dev. Cell 22, 940–951.
Kimura, Y., Kurabe, N., Ikegami, K., Tsutsumi, K., Konishi, Y., Kaplan, O.I., Kunitomo, H., Iino, Y., Blacque, O.E., andSetou, M. (2010). Identification of tubulin deglutamylase among Caenorhabditis elegans and mammalian cytosolic carboxypeptidases (CCPs). J. Biol. Chem. 285, 22936–22941.
Kodani, A., Salomé Sirerol-Piquer, M., Seol, A., Manuel Garcia-Verdugo, J., andReiter, J.F. (2013). Kif3a interacts with Dynactin subunit p150Glued to organize centriole subdistal appendages. EMBO J. 32, 597–607.
Lechtreck, K.F., andGeimer, S. (2000). Distribution of polyglutamylated tubulin in the flagellar apparatus of green flagellates. Cell Motil. Cytoskeleton 47, 219–235.
Lee, J.E., Silhavy, J.L., Zaki, M.S., Schroth, J., Bielas, S.L., Marsh, S.E., Olvera, J., Brancati, F., Iannicelli, M., Ikegami, K., et al. (2012). CEP41 is mutated in Joubert syndrome and is required for tubulin glutamylation at the cilium. Nat. Genet. 44, 193–199.
Lehman, J.M., Michaud, E.J., Schoeb, T.R., Aydin-Son, Y., Miller, M., andYoder, B.K. (2008). The Oak Ridge Polycystic Kidney mouse: Modeling ciliopathies of mice and men. Dev. Dyn. 237, 1960–1971.
Lin, Y.-C., Niewiadomski, P., Lin, B., Nakamura, H., Phua, S.C., Jiao, J., Levchenko, A., Inoue, T., Rohatgi, R., andInoue, T. (2013). Chemically inducible diffusion trap at cilia reveals molecular sieve–like barrier. Nat. Chem. Biol. 9, 437–443.
Lyons, P.J., Sapio, M.R., andFricker, L.D. (2013). Zebrafish cytosolic carboxypeptidases 1 and 5 are essential for embryonic development. J. Biol. Chem. 288, 30454–30462.
Marszalek, J.R., Ruiz-Lozano, P., Roberts, E., Chien, K.R., andGoldstein, L.S.B. (1999). Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-II. Proc. Natl. Acad. Sci. U. S. A. 96, 5043–5048.
Mitchell, D.R. (2012). Polyglutamylation : The Glue that makes Microtubules Sticky. 20, 2010–2013.
Miyamoto, T., DeRose, R., Suarez, A., Ueno, T., Chen, M., Sun, T., Wolfgang, M.J., Mukherjee, C., Meyers, D.J., andInoue, T. (2012). Rapid and orthogonal logic gating with a gibberellin-induced dimerization system. Nat. Chem. Biol. 8, 465–470.
Nonaka, S., Tanaka, Y., Okada, Y., Takeda, S., Harada, A., Kanai, Y., Kido, M., andHirokawa, N. (1998). Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95, 829–837.
O’Hagan, R., andBarr, M. (2012). Regulation of tubulin glutamylation plays cell-specific roles in the function and stability of sensory cilia. Worm 1, 4–8.
Ocbina, P.J.R., Eggenschwiler, J.T., Moskowitz, I., andAnderson, K.V (2011). Complex interactions between genes controlling trafficking in primary cilia. Nat. Genet. 43, 547–553.
OE, B., S, C., andOI, K. (2008). Intraflagellar transport: from molecular characterisation to mechanism. Front Biosci 13, 2633–2652.
Olmsted, J.B. (1986). Microtubule-associated proteins. Annu. Rev. Cell Biol. 2, 421–457.
Ounjai, P., Kim, K.D., Liu, H., Dong, M., Tauscher, A.N., Witkowska, H.E., andDowning, K.H. (2013). Architectural insights into a ciliary partition. Curr. Biol. 23, 339–344.
Pathak, N.H., andDrummond, I.A. (2009). Polyglutamylation and the fleer gene. Methods Cell Biol. 94, 317–332.
Pathak, N., Obara, T., Mangos, S., Liu, Y., andDrummond, I.A. (2007). The Zebrafish fleer Gene Encodes an Essential Regulator of Cilia Tubulin Polyglutamylation. Mol. Biol. Cell 18, 4353–4364.
Pathak, N., Austin, C.A., andDrummond, I.A. (2011). Tubulin tyrosine ligase-like genes ttll3 and ttll6 maintain zebrafish cilia structure and motility. J. Biol. Chem. 286, 11685–11695.
Pathak, N., Austin-Tse, C.A., Liu, Y., Vasilyev, A., andDrummond, I.A. (2014). Cytoplasmic carboxypeptidase 5 regulates tubulin glutamylation and zebrafish cilia formation and function. Mol. Biol. Cell 25, 1836–1844.
Pedersen, L.B., andChristensen, S.T. (2012). Regulating intraflagellar transport. Nat Cell Biol 14, 904–906.
Pedersen, L.B., andRosenbaum, J.L. (2008). Chapter Two Intraflagellar Transport (IFT). Role in Ciliary Assembly, Resorption and Signalling. Curr. Top. Dev. Biol. 85, 23–61.
Phua, S.C., Chiba, S., Suzuki, M., Su, E., Roberson, E.C., Pusapati, G.V., Setou, M., Rohatgi, R., Reiter, J.F., Ikegami, K., et al. (2017). Dynamic Remodeling of Membrane Composition Drives Cell Cycle through Primary Cilia Excision. Cell 168, 264–279.e15.
Putyrski, M., andSchultz, C. (2012). Protein translocation as a tool: The current rapamycin story. FEBS Lett. 586, 2097–2105.
Qin, J., Lin, Y., Norman, R.X., Ko, H.W., andEggenschwiler, J.T. (2011). Intraflagellar transport protein 122 antagonizes Sonic Hedgehog signaling and controls ciliary localization of pathway components. Proc. Natl. Acad. Sci. 108, 1456–1461.
Regnard, C., Desbruyères, E., Huet, J.C., Beauvallet, C., Pernollet, J.C., andEddé, B. (2000). Polyglutamylation of nucleosome assembly proteins. J. Biol. Chem. 275, 15969–15976.
Rogowski, K., vanDijk, J., Magiera, M.M., Bosc, C., Deloulme, J.C., Bosson, A., Peris, L., Gold, N.D., Lacroix, B., Grau, M.B., et al. (2010). A family of protein-deglutamylating enzymes associated with neurodegeneration. Cell 143, 564–578.
Roll-Mecak, A. (2015). Intrinsically disordered tubulin tails: Complex tuners of microtubule functions? Semin. Cell Dev. Biol. 37, 11–19.
Sarpal, R., Todi, S.V., Sivan-Loukianova, E., Shirolikar, S., Subramanian, N., Raff, E.C., Erickson, J.W., Ray, K., andEberl, D.F. (2003). Drosophila KAP Interacts with the Kinesin II Motor Subunit KLP64D to Assemble Chordotonal Sensory Cilia, but Not Sperm Tails. Curr. Biol. 13, 1687–1696.
Satir, P., andChristensen, S.T. (2007). Overview of Structure and Function of Mammalian Cilia. Annu. Rev. Physiol. 69, 377–400.
Satir, P., Pedersen, L.B., andChristensen, S.T. (2010). The primary cilium at a glance. J. Cell Sci. 123, 499–503.
Sharma, N., Bryant, J., Wloga, D., Donaldson, R., Davis, R.C., Jerka-Dziadosz, M., andGaertig, J. (2007). Katanin regulates dynamics of microtubules and biogenesis of motile cilia. J. Cell Biol. 178, 1065–1079.
Singla, V. (2006). The Primary Cilium as the Cell’s Antenna: Signaling at a Sensory Organelle. Science 313, 629–633.
Sirajuddin, M., Rice, L.M., andVale, R.D. (2014). Regulation of microtubule motors by tubulin isotypes and post-translational modifications. Nat. Cell Biol. 16, 335–344.
Sloboda, R.D. (2009). Posttranslational Protein Modifications in Cilia and Flagella. pp. 347–363.
Stepanek, L., andPigino, G. (2016). Microtubule doublets are double-track railways for intraflagellar transport trains. Science 352, 721–724.
Takeda, S., Yonekawa, Y., Tanaka, Y., Okada, Y., Nonaka, S., andHirokawa, N. (1999). Left-right asymmetry and kinesin superfamily protein KIF3a: New insights in determination of laterality and mesoderm induction by KIF3A(-/-) mice analysis. J. Cell Biol. 145, 825–836.
Thorn, K.S., Ubersax, J.A., andVale, R.D. (2000). Engineering the processive run length of the kinesin motor. J. Cell Biol. 151, 1093–1100.
Vemu, A., Garnham, C.P., Lee, D.Y., andRoll-Mecak, A. (2014). Generation of differentially modified microtubules using in vitro enzymatic approaches. Methods Enzymol. 540, 149–166.
Witman, G.B. (2012). Dynein and intraflagellar transport. In Dyneins, pp. 394–421.
Wloga, D., Dave, D., Meagley, J., Rogowski, K., Jerka-Dziadosz, M., andGaertig, J. (2010). Hyperglutamylation of tubulin can either stabilize or destabilize microtubules in the same cell. Eukaryot. Cell 9, 184–193.
Wren, K.N., Craft, J.M., Tritschler, D., Schauer, A., Patel, D.K., Smith, E.F., Porter, M.E., Kner, P., andLechtreck, K.F. (2013). A differential cargo-loading model of ciliary length regulation by IFT. Curr. Biol. 23, 2463–2471.
Yu, I., Garnham, C.P., andRoll-Mecak, A. (2015). Writing and reading the tubulin code. J. Biol. Chem. 290, 17163–17172.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *