帳號:guest(18.217.80.65)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳德庭
作者(外文):Chen, Te-Ting
論文名稱(中文):BRCA1/BARD1及OLA1生化特性之探討
論文名稱(外文):Biochemical Characterization of The Interplay of BRCA1/BARD1 and OLA1
指導教授(中文):鄭惠春
指導教授(外文):Cheng, Hui-Chun
口試委員(中文):呂平江
傅化文
口試委員(外文):Lyu, Ping-Chiang
Fu, Hua-Wen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:104080579
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:59
中文關鍵詞:乳癌相關蛋白1中心體乳癌泛素化修飾
外文關鍵詞:BRCA1BARD1OLA1centrosomebreast cancerubiquitination
相關次數:
  • 推薦推薦:0
  • 點閱點閱:49
  • 評分評分:*****
  • 下載下載:12
  • 收藏收藏:0
BRCA1 (乳癌相關蛋白1)為一種乳癌及卵巢癌專一性的抑制因子,且基因上的突變會大幅提升女性得到乳癌及卵巢癌的機率。研究發現BRCA1及BARD1 藉由RING 結構域之間的交互作用形成異源二聚體,進而參與脫氧核醣核酸的損傷修復、中心體及轉錄的調控。中心體為動物細胞內主要的微管組織中心,當調控異常時會導致中心體不正常增生及分裂。研究發現BRCA1/BARD1 的RING 結構域具有E3 泛素連接酶的活性,能促使中心體內 -微管蛋白進行泛素化修飾,抑制微管生成及調控中心體數目。在細胞週期中的任一時期BRCA1/BARD1皆在中心體中,且在試管實驗中發現BRCA1/BARD1進行自我泛素化修飾,可能導致蛋白質降解。目前對於如何調控E3 泛素連接酶仍然還是未知。有趣的是,在中心體中BRCA1/BARD1被發現能與蛋白OLA1結合,同時也發現 OLA1基因表現減量會導致中心體不正常增生及過度活化微管生成。因此,我的論文主要探討BRCA1/BARD1是否調控OLA1酵素活性及OLA1是否調控BRCA1/BARD1 E3泛素連接酶的活性。實驗數據顯示BRCA1/BARD1刺激OLA1的酵素活性但不調控BRCA1/BARD1的自我泛素化,此外我們發現BRCA1/BARD1能泛素化OLA1。因此,藉由酵素活性實驗及泛素化實驗,我們提供了一個新的見解來解釋BRCA1/BARD1及OLA1的功能。
BRCA1 (breast cancer associated gene 1) is a breast- and ovary-specific tumor suppressor. Germline mutations of this protein increase woman's risk of breast and ovarian cancers. BRCA1 is involved in DNA repair, centrosome regulation and transcription. Centrosomes are the major microtubule-organizing center (MTOC) in animal cells and misregulation of centrosomes leads to centrosome amplification and abnormal cell division. The RING domains of BRCA1 and BARD1 (BRCA1-associated RING domain protein 1) form a heterodimer and function as an E3 ligase. The BRCA1/BARD1 complex ubiquitinates K48 of -tubulin, a major microtubule-nucleating component of centrosomes, to inhibit microtubule aster formation and regulate centrosome number during cell division. However, BRCA1/BARD1 localizes at the centrosome throughout the cell cycle. In addition, BRCA1/BARD has been observed to ubiquitinate itself in vitro and in cells and may promote its proteasomal degradation. The regulatory mechanism of BRCA1/BARD1 E3 ligase is still unknown. The previous study showed that Obg-like ATPase 1 (OLA1) interacts with the RING domain of BRCA1 and BARD1 BRCT domain in the centrosome. Knockdown of OLA1 causes centrosome amplification and hyperactive microtubule nucleation. To understand the biochemical and functional interplay between BRCA1/BARD1 with OLA1, we asked whether BRCA1/BARD1 can regulate the ATPase activity of OLA1 and whether OLA1 can regulate the E3 ligase activity of BRCA1/BARD1. Our data revealed that BRCA1/BARD1 stimulates the ATPase activity of OLA1, but OLA1 has no specific effect on the auto-ubiquitination of BRCA1/BARD1. Interestingly, OLA1 is ubiquitinated by BRCA1/BARD1 in vitro. These data provides a new insight to the regulation of OLA1 by BRCA1/BARD1.

中文摘要 II
Abstract III
Contents VI
Abbreviation 1
Chapter 1. Introduction 3
Chapter 2. Materials and methods 9
Chapter 3. Result 20
Chapter 4. Conclusion & Discussion 27
Reference 31
Figure 4
Supplementary data 52

1. Antoniou, A., et al., Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet, 2003. 72(5): p. 1117-30.
2. Parvin, J.D., Overview of history and progress in BRCA1 research: the first BRCA1 decade. Cancer Biol Ther, 2004. 3(6): p. 505-8.
3. Doxsey, S., Re-evaluating centrosome function. Nat Rev Mol Cell Biol, 2001. 2(9): p. 688-98.
4. Lingle, W.L., et al., Centrosome hypertrophy in human breast tumors: implications for genomic stability and cell polarity. Proc Natl Acad Sci U S A, 1998. 95(6): p. 2950-5.
5. Sankaran, S., et al., Centrosomal microtubule nucleation activity is inhibited by BRCA1-dependent ubiquitination. Mol Cell Biol, 2005. 25(19): p. 8656-68.
6. Starita, L.M., et al., BRCA1-dependent ubiquitination of gamma-tubulin regulates centrosome number. Mol Cell Biol, 2004. 24(19): p. 8457-66.
7. Bochar, D.A., et al., BRCA1 is associated with a human SWI/SNF-related complex: linking chromatin remodeling to breast cancer. Cell, 2000. 102(2): p. 257-65.
8. Wang, Y., et al., BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev, 2000. 14(8): p. 927-39.
9. Zhong, Q., et al., Association of BRCA1 with the hRad50-hMre11-p95 complex and the DNA damage response. Science, 1999. 285(5428): p. 747-50.
10. Deng, C.X. and S.G. Brodie, Roles of BRCA1 and its interacting proteins. Bioessays, 2000. 22(8): p. 728-37.
11. Sankaran, S., et al., Identification of domains of BRCA1 critical for the ubiquitin-dependent inhibition of centrosome function. Cancer Res, 2006. 66(8): p. 4100-7.
12. Brzovic, P.S., et al., Structure of a BRCA1-BARD1 heterodimeric RING-RING complex. Nat Struct Biol, 2001. 8(10): p. 833-7.
13. Weissman, A.M., Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol, 2001. 2(3): p. 169-78.
14. Hashizume, R., et al., The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J Biol Chem, 2001. 276(18): p. 14537-40.
15. Brzovic, P.S., et al., Binding and recognition in the assembly of an active BRCA1/BARD1 ubiquitin-ligase complex. Proc Natl Acad Sci U S A, 2003. 100(10): p. 5646-51.
16. Birrane, G., et al., Crystal structure of the BARD1 BRCT domains. Biochemistry, 2007. 46(26): p. 7706-12.
17. Monteiro, A.N., A. August, and H. Hanafusa, Evidence for a transcriptional activation function of BRCA1 C-terminal region. Proc Natl Acad Sci U S A, 1996. 93(24): p. 13595-9.
18. Huen, M.S., S.M. Sy, and J. Chen, BRCA1 and its toolbox for the maintenance of genome integrity. Nat Rev Mol Cell Biol, 2010. 11(2): p. 138-48.
19. Bourne, H.R., D.A. Sanders, and F. McCormick, The GTPase superfamily: a conserved switch for diverse cell functions. Nature, 1990. 348(6297): p. 125-32.
20. Vetter, I.R. and A. Wittinghofer, The guanine nucleotide-binding switch in three dimensions. Science, 2001. 294(5545): p. 1299-304.
21. Bos, J.L., H. Rehmann, and A. Wittinghofer, GEFs and GAPs: critical elements in the control of small G proteins. Cell, 2007. 129(5): p. 865-77.
22. Leipe, D.D., et al., Classification and evolution of P-loop GTPases and related ATPases. J Mol Biol, 2002. 317(1): p. 41-72.
23. Becker, M., et al., The 70S ribosome modulates the ATPase activity of Escherichia coli YchF. RNA Biol, 2012. 9(10): p. 1288-301.
24. Cheung, M.Y., et al., ATP binding by the P-loop NTPase OsYchF1 (an unconventional G protein) contributes to biotic but not abiotic stress responses. Proc Natl Acad Sci U S A, 2016. 113(10): p. 2648-53.
25. Teplyakov, A., et al., Crystal structure of the YchF protein reveals binding sites for GTP and nucleic acid. J Bacteriol, 2003. 185(14): p. 4031-7.
26. Koller-Eichhorn, R., et al., Human OLA1 defines an ATPase subfamily in the Obg family of GTP-binding proteins. J Biol Chem, 2007. 282(27): p. 19928-37.
27. Matsuzawa, A., et al., The BRCA1/BARD1-interacting protein OLA1 functions in centrosome regulation. Mol Cell, 2014. 53(1): p. 101-14.
28. Gibson, D.G., et al., Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods, 2009. 6(5): p. 343-5.
29. Webb, M.R., A continuous spectrophotometric assay for inorganic phosphate and for measuring phosphate release kinetics in biological systems. Proc Natl Acad Sci U S A, 1992. 89(11): p. 4884-7.
30. Schneider, C.A., W.S. Rasband, and K.W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis. Nat Methods, 2012. 9(7): p. 671-5.
31. Prior, I.A., P.D. Lewis, and C. Mattos, A comprehensive survey of Ras mutations in cancer. Cancer Res, 2012. 72(10): p. 2457-67.
32. Hunter, J.C., et al., Biochemical and Structural Analysis of Common Cancer-Associated KRAS Mutations. Mol Cancer Res, 2015. 13(9): p. 1325-35.
33. Deshaies, R.J. and C.A. Joazeiro, RING domain E3 ubiquitin ligases. Annu Rev Biochem, 2009. 78: p. 399-434.
34. Chen, A., et al., Autoubiquitination of the BRCA1*BARD1 RING ubiquitin ligase. J Biol Chem, 2002. 277(24): p. 22085-92.
35. Christensen, D.E., P.S. Brzovic, and R.E. Klevit, E2-BRCA1 RING interactions dictate synthesis of mono- or specific polyubiquitin chain linkages. Nat Struct Mol Biol, 2007. 14(10): p. 941-8.
36. Au, W.W. and B.R. Henderson, The BRCA1 RING and BRCT domains cooperate in targeting BRCA1 to ionizing radiation-induced nuclear foci. J Biol Chem, 2005. 280(8): p. 6993-7001.
37. Gradia, D.F., et al., Characterization of a novel Obg-like ATPase in the protozoan Trypanosoma cruzi. Int J Parasitol, 2009. 39(1): p. 49-58.
38. Endicott, J.A., M.E. Noble, and L.N. Johnson, The structural basis for control of eukaryotic protein kinases. Annu Rev Biochem, 2012. 81: p. 587-613.
39. Burnstock, G., Historical review: ATP as a neurotransmitter. Trends Pharmacol Sci, 2006. 27(3): p. 166-76.
40. Uchida, C. and M. Kitagawa, RING-, HECT-, and RBR-type E3 Ubiquitin Ligases: Involvement in Human Cancer. Curr Cancer Drug Targets, 2016. 16(2): p. 157-74.
41. Metzger, M.B., V.A. Hristova, and A.M. Weissman, HECT and RING finger families of E3 ubiquitin ligases at a glance. J Cell Sci, 2012. 125(Pt 3): p. 531-7.
42. Liu, Z., et al., CPLM: a database of protein lysine modifications. Nucleic Acids Res, 2014. 42(Database issue): p. D531-6.
43. Wagner, S.A., et al., A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol Cell Proteomics, 2011. 10(10): p. M111 013284.
44. Kim, W., et al., Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell, 2011. 44(2): p. 325-40.
45. Tzu-Chen Liao, Structure-Function Characterization of BARD1/BRCA1/OLA1 Complex. Thesis (National Tsing Hua University, Institute of Bioinformatics and Structural Biology), 2016.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *