帳號:guest(3.21.246.75)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝萬聖
作者(外文):Hsieh, Wan-Sheng
論文名稱(中文):海棲熱袍菌磷酸轉運膜蛋白的表現、分離純化及晶體培養
論文名稱(外文):Expression, isolation, and crystallization of phosphate transporter from Thermotoga maritima
指導教授(中文):孫玉珠
指導教授(外文):Sun, Yuh-Ju
口試委員(中文):蕭傳鐙
翁秉霖
口試委員(外文):Hsiao, Chwan-Deng
Ong, Ping-Lin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:104080578
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:56
中文關鍵詞:結晶學
外文關鍵詞:crystallization
相關次數:
  • 推薦推薦:0
  • 點閱點閱:20
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
磷酸轉運蛋白扮演維持胞內磷酸平衡的重要角色以維持細胞功能,例如參與蛋白質的磷酸化修飾以及血液中的緩衝溶液。Solute carrier family (SLC) 共有52個族群,其中的SLC20家族為一群將鈉與磷協同運輸的磷酸轉運蛋白,具有兩種異構型SLC20A1/ PiT1和SLC20A2/PiT2,並被報導指出它們都具有一個共同序列GANDVANA。為了簡化及聚焦在磷酸轉運功能的研究,我們挑選一種叫做海棲熱袍菌的細菌中與HsPiT有同源關係的磷酸轉運蛋白(TmPiT: Thermotoga maritima phosphate transporter)作為研究主題。我們已經成功的利用酵母菌異源表現系統大量表現TmPiT,並以加熱法(Hot solve method)來溶出蛋白、鎳離子親和性管柱(nickel affinity column)、粒徑管柱層析法(size exclusion chromatography)來獲得高純度的蛋白並進行結構生物學的研究。為了增加蛋白的產量及增進膜蛋白TmPiT的純度,我們更換用於酵母菌異源表現的培養基,並使用改良的加熱法(modified hot solve method) 去除雜蛋白。然而,在粒徑管柱層析法(size exclusion chromatography)的實驗中我們發現TmPiT在detergent n-Dodecyl-β-D-Maltoside (DDM)或7-Cyclohexyl-1-Heptyl-β-D-Maltoside (Cymal-7)的包覆下具有兩種形式。最近我們以蒸汽擴散法(vapor diffusion)得到一個適合TmPiT長晶的條件 然而X-光繞射的解析度並不夠用於建構蛋白結構。我們亦嘗試另一種界面活性劑n-Decyl-β-D-Maltoside來包覆TmPiT並用於結晶學研究。
Phosphate transporter plays an important role to maintain intracellular phosphate homeostasis for cell functions, such as protein phosphorylation and buffer solution in blood. The solute carrier (SLC) families contain 52 groups and PiTs belong to SLC20 are Na+-coupled Pi cotransporters which have two isoforms, PiT1/SLC20A1 and PiT2/SLC20A2, and they have been reported to have a consensus sequence GANDVANA. To simplify and focus on phosphate transport function, we selected a protein called TmPiT, a homologous of HsPiT from a bacteria called Thermotoga maritima, to study. We have successfully overexpressed TmPiT by yeast heterologous expression system, and the hot solve method during solubilization, nickel affinity column and size exclusion chromatography (SEC) are utilized to obtain pure protein to study structural biology. To enlarge the yield and improve the purity of TmPiT membrane protein, we change the yeast cultural medium and exploit a modified hot solve method to remove non-target protein. However, TmPiT exists two forms from the SEC via detergent n-Dodecyl-β-D-Maltoside (DDM) and 7-Cyclohexyl-1-Heptyl-β-D-Maltoside (Cymal-7). Recently, we have obtained a condition that is suitable for TmPiT crystallization by vapor diffusion. The native crystal dataset was collected; however, the quality of the dataset is not good for structural determination. The other detergent n-Decyl-β-D-Maltoside (DM) is applied to improve the TmPiT for crystallization.
Contents
1. Abstract: 1
2. 中文摘要: 2
3. 誌謝 3
4. Introduction: 4
Phosphorus 4
Phosphate transporter 4
Phosphate transporter in Human 5
Eukaryotic phosphate transporter, PiPT 7
Phosphate transporter in archaea 8
Phosphate transporter in prokaryote 8
Phosphate transporter in Thermotoga maritima 8
5. Material & Method: 10
Yeast transformation and Protein expression 10
Preparation of S. cerevisiae microsome 11
Microsome quantification 11
Hot solve solubilization and purification with nickel column 12
Protein purification with size-exclusion column 13
SDS-PAGE 14
Protein crystallization 14
Analytical ultracentrifugation (AUC) analysis 15
6. Results: 16
Sequence alignment and topology of TmPiT 16
Purification of TmPiT by hot solve and IMAC 17
SDS-PAGE analysis 18
Size exclusion chromatography of TmPiT 19
Dimer and oligomer forms of TmPiT 19
Different condition test for TmPiT 21
TmPiT in DDM for crystallization 22
Different detergent embedded TmPiT 24
TmPiT in Cymal-7 for crystallization 25
TmPiT in DM 26
Analytical ultracentrifugation (AUC) analysis of TmPiT 27
7. Conclusion 29
8. Figures& Table: 30
(n-Decyl-β-D-Maltoside) 32
9. Reference: 52
1. Chung, C.C., S.P. Hwang, and J. Chang, Identification of a high-affinity phosphate transporter gene in a prasinophyte alga, Tetraselmis chui, and its expression under nutrient limitation. Appl Environ Microbiol, 2003. 69(2): p. 754-9.
2. Zheng, J.J., et al., Physiological Roles of the Dual Phosphate Transporter Systems in Low and High Phosphate Conditions and in Capsule Maintenance of Streptococcus pneumoniae D39. Front Cell Infect Microbiol, 2016. 6: p. 63.
3. Forster, I.C., et al., Phosphate transporters of the SLC20 and SLC34 families. Mol Aspects Med, 2013. 34(2-3): p. 386-95.
4. Collins, J.F., L. Bai, and F.K. Ghishan, The SLC20 family of proteins: dual functions as sodium-phosphate cotransporters and viral receptors. Pflugers Arch, 2004. 447(5): p. 647-52.
5. Bottger, P. and L. Pedersen, Mapping of the minimal inorganic phosphate transporting unit of human PiT2 suggests a structure universal to PiT-related proteins from all kingdoms of life. BMC Biochem, 2011. 12: p. 21.
6. Salaun, C., P. Rodrigues, and J.M. Heard, Transmembrane topology of PiT-2, a phosphate transporter-retrovirus receptor. J Virol, 2001. 75(12): p. 5584-92.
7. Bottger, P. and L. Pedersen, Evolutionary and experimental analyses of inorganic phosphate transporter PiT family reveals two related signature sequences harboring highly conserved aspartic acids critical for sodium-dependent phosphate transport function of human PiT2. FEBS J, 2005. 272(12): p. 3060-74.
8. Pedersen, B.P., et al., Crystal structure of a eukaryotic phosphate transporter. Nature, 2013. 496(7446): p. 533-6.
9. McCarthy, S., et al., Role of an archaeal PitA transporter in the copper and arsenic resistance of Metallosphaera sedula, an extreme thermoacidophile. J Bacteriol, 2014. 196(20): p. 3562-70.
10. Remonsellez, F., A. Orell, and C.A. Jerez, Copper tolerance of the thermoacidophilic archaeon Sulfolobus metallicus: possible role of polyphosphate metabolism. Microbiology, 2006. 152(Pt 1): p. 59-66.
11. van Veen, H.W., Phosphate transport in prokaryotes: molecules, mediators and mechanisms. Antonie Van Leeuwenhoek, 1997. 72(4): p. 299-315.
12. Hsieh, Y.J. and B.L. Wanner, Global regulation by the seven-component Pi signaling system. Curr Opin Microbiol, 2010. 13(2): p. 198-203.
13. Frock, A.D., J.S. Notey, and R.M. Kelly, The genus Thermotoga: recent developments. Environ Technol, 2010. 31(10): p. 1169-81.
14. Nesbo, C.L., et al., Phylogenetic analyses of two "archaeal" genes in thermotoga maritima reveal multiple transfers between archaea and bacteria. Mol Biol Evol, 2001. 18(3): p. 362-75.
15. Lopez-Marques, R.L., et al., Large-scale purification of the proton pumping pyrophosphatase from Thermotoga maritima: a "Hot-Solve" method for isolation of recombinant thermophilic membrane proteins. Biochim Biophys Acta, 2005. 1716(1): p. 69-76.
16. Chou, C.Y., Y.H. Hsieh, and G.G. Chang, Applications of analytical ultracentrifugation to protein size-and-shape distribution and structure-and-function analyses. Methods, 2011. 54(1): p. 76-82.
17. Kalipatnapu, S. and A. Chattopadhyay, Membrane protein solubilization: recent advances and challenges in solubilization of serotonin1A receptors. IUBMB Life, 2005. 57(7): p. 505-12.
18. Rath, A., et al., Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. Proc Natl Acad Sci U S A, 2009. 106(6): p. 1760-5.
19. Hashimoto, K. and A.R. Panchenko, Mechanisms of protein oligomerization, the critical role of insertions and deletions in maintaining different oligomeric states. Proc Natl Acad Sci U S A, 2010. 107(47): p. 20352-7.
20. Ali, M.H. and B. Imperiali, Protein oligomerization: how and why. Bioorg Med Chem, 2005. 13(17): p. 5013-20.
21. Salaun, C., et al., Pit2 assemblies at the cell surface are modulated by extracellular inorganic phosphate concentration. J Virol, 2002. 76(9): p. 4304-11.
22. Walden, H., et al., Tiny TIM: a small, tetrameric, hyperthermostable triosephosphate isomerase. J Mol Biol, 2001. 306(4): p. 745-57.
23. Katebi, A.R. and R.L. Jernigan, The critical role of the loops of triosephosphate isomerase for its oligomerization, dynamics, and functionality. Protein Sci, 2014. 23(2): p. 213-28.
24. Russell, L.M. and H. Rosenberg, Linked transport of phosphate, potassium ions and protons in Escherichia coli. Biochem J, 1979. 184(1): p. 13-21.
25. Russell, L.M. and H. Rosenberg, The nature of the link between potassium transport and phosphate transport in Escherichia coli. Biochem J, 1980. 188(3): p. 715-23.
26. Biber, J., N. Hernando, and I. Forster, Phosphate transporters and their function. Annu Rev Physiol, 2013. 75: p. 535-50.
27. Figler, R.A., et al., Use of chemical chaperones in the yeast Saccharomyces cerevisiae to enhance heterologous membrane protein expression: high-yield expression and purification of human P-glycoprotein. Arch Biochem Biophys, 2000. 376(1): p. 34-46.
28. Chien, M.L., et al., The amphotropic murine leukemia virus receptor gene encodes a 71-kilodalton protein that is induced by phosphate depletion. J Virol, 1997. 71(6): p. 4564-70.
29. Chien, M.L., E. O'Neill, and J.V. Garcia, Phosphate depletion enhances the stability of the amphotropic murine leukemia virus receptor mRNA. Virology, 1998. 240(1): p. 109-17.
30. Gulick, A.M., et al., Pentaerythritol propoxylate: a new crystallization agent and cryoprotectant induces crystal growth of 2-methylcitrate dehydratase. Acta Crystallogr D Biol Crystallogr, 2002. 58(Pt 2): p. 306-9.
31. Rife, C.L., et al., Crystal structure of a genomically encoded fosfomycin resistance protein (FosA) at 1.19 A resolution by MAD phasing off the L-III edge of Tl(+). J Am Chem Soc, 2002. 124(37): p. 11001-3.
32. Schultz-Heienbrok, R., et al., Crystallization and preliminary characterization of three different crystal forms of human saposin C heterologously expressed in Pichia pastoris. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2006. 62(Pt 2): p. 117-20.
33. Kubiak, R.L. and H.M. Holden, Structural studies of AntD: an N-Acyltransferase involved in the biosynthesis of D-Anthrose. Biochemistry, 2012. 51(4): p. 867-78.
34. Delmar, J.A., et al., Crystallization of membrane proteins by vapor diffusion. Methods Enzymol, 2015. 557: p. 363-92.
35. Prive, G.G., Detergents for the stabilization and crystallization of membrane proteins. Methods, 2007. 41(4): p. 388-97.
36. Newstead, S., S. Ferrandon, and S. Iwata, Rationalizing alpha-helical membrane protein crystallization. Protein Sci, 2008. 17(3): p. 466-72.
37. Chaikuad, A., S. Knapp, and F. von Delft, Defined PEG smears as an alternative approach to enhance the search for crystallization conditions and crystal-quality improvement in reduced screens. Acta Crystallographica Section D-Structural Biology, 2015. 71: p. 1627-1639.
38. Ebel, C., Sedimentation velocity to characterize surfactants and solubilized membrane proteins. Methods, 2011. 54(1): p. 56-66.
39. Salvay, A.G., et al., Analytical ultracentrifugation sedimentation velocity for the characterization of detergent-solubilized membrane proteins Ca++-ATPase and ExbB. J Biol Phys, 2007. 33(5-6): p. 399-419.
40. Fleming, K.G., et al., Thermodynamics of glycophorin A transmembrane helix dimerization in C14 betaine micelles. Biophys Chem, 2004. 108(1-3): p. 43-9.
41. le Maire, M., P. Champeil, and J.V. Moller, Interaction of membrane proteins and lipids with solubilizing detergents. Biochim Biophys Acta, 2000. 1508(1-2): p. 86-111.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *