帳號:guest(3.141.193.126)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張樹瑄
作者(外文):Chang, Shu-Hsuan
論文名稱(中文):視網膜退化B基因調控果蠅的壽命及老化伴隨的運動能力衰退
論文名稱(外文):retinal degeneration B regulates lifespan and age-related locomotor decline in Drosophila
指導教授(中文):汪宏達
指導教授(外文):Wang, Horng-Dar
口試委員(中文):桑自剛
詹智強
口試委員(外文):Sang, Tzu-Kang
Chan, Chih-Chiang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:104080570
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:63
中文關鍵詞:果蠅老化長壽
外文關鍵詞:Drosophilaaginglongevity
相關次數:
  • 推薦推薦:0
  • 點閱點閱:24
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
視網膜退化B基因(rdgB)在果蠅的光訊號傳導中扮演重要的角色。它在磷脂酸肌醇循環(PI cycle)中負責運送磷脂酸肌醇(PI)。我們實驗室在之前的研究中發現降低另一個同樣參與磷脂酸肌醇循環的視網膜退化A基因 (rdgA)基因的表現量會延長果蠅的壽命。然而,rdgB是否也會在壽命的調控中扮演著某些角色目前依然是未知的。在這一篇論文當中,我們發現rdgB的突變株rdgBB27337 和 rdgBEP1520 顯示出延長的壽命。在神經中降低rdgB的表現量同樣會使得壽命增加。但是在肌肉中降低rdgB的表現量卻會使得壽命減少。藉由西方墨點法,我們發現rdgBB27337 和 rdgBEP1520 的磷酸化S6激酶(P-S6K)的量會下降。除此之外,餵食雷帕黴素標靶蛋白質(Target of rapamycin, TOR)的抑制劑雷帕黴素(rapamycin)並不會使rdgBB27337 和 rdgBEP1520延長的壽命更進一步地增加。這些結果顯示了降低rdgB的表現量是透過減弱雷帕黴素標靶蛋白質訊號傳遞路徑而延長壽命。此外,rdgBB27337 和 rdgBEP1520 也顯示出了減緩的爬行能力年老衰退與增強的氧化壓力抗性。總合來說,這些數據顯示了在神經中減少rdgB的表現量會使得果蠅的壽命及健康時限延長。
retinal degeneration B (rdgB) plays an important role in Drosophila phototransduction. It functions as phosphatidylinositol (PI) transporter in PI cycle. We pervious found that knockdown of retinal degeneration A (rdgA), also a gene in PI cycle, extends lifespan in Drosophila. Whether rdgB can also play a role in lifespan regulation remains unknown. Here, we report rdgB mutant lines, rdgBB27337 and rdgBEP1520, exhibit lifespan extension. Knockdown of rdgB in neuron also able to extend lifespan. However, knockdown of rdgB in muscle exhibits shortened lifespan. Western blotting data showed p-S6K levels were reduced in rdgBB27337 and rdgBEP1520. Furthermore, the treatment of TOR inhibitor rapamycin does not further enhance the extended lifespan of rdgBB27337 and rdgBEP1520. These data suggest that reduced rdgB expression increases lifespan via reducing TOR signaling. Moreover, rdgBB27337 and rdgBEP1520 also attenuate the climbing ability decline with age and enhance oxidative stress tolerance. Together, these data indicate that reduced rdgB expression in neuron augments lifespan and healthspan in Drosophila.
Abstract ii
中文摘要 ii
致謝 iii
Introduction 3
Materials and methods 7
Fly strains and maintenance 7
Lifespan survival assay 7
Oxidative stress test 7
Starvation stress test 7
Climbing ability assay 8
RNA extraction and Reverse transcription 8
Real-time PCR (Q-PCR) 9
Western blots 9
Results 10
rdgBB27337 and rdgBEP1520 mutants exhibit lifespan extension 10
Knockdown of rdgB in neurons extends lifespan in Drosophila 10
rdgBB27337 and rdgBEP1520 show better oxidative stress tolerance than control 11
RNAi knockdown of rdgB ubiquitously or in neuron or muscle does not display better oxidative stress tolerance 12
rdgB mutants do not exhibit better starvation tolerance 13
Knockdown of rdgB in neuron and eye display starvation tolerance enhancement in male 13
rdgBB27337 and rdgBEP1520 attenuate the decline of climbing ability with age 14
Knockdown of rdgB in neuron attenuates the decline of climbing ability with age 14
Mutations of rdgB extend lifespan via TOR signaling 15
Discussion 16
Figures 19
Tables 43
Appendix 57
References 60
Allemand, R., Cohet, Y., & David, J. (1973). Increase in the longevity of adult Drosophila melanogaster kept in permanent darkness. Exp Gerontol, 8(5), 279-283.
Avogaro, A., de Kreutzenberg, S. V., & Fadini, G. P. (2010). Insulin signaling and life span. Pflugers Arch, 459(2), 301-314. doi: 10.1007/s00424-009-0721-8
Bjedov, I., Toivonen, J. M., Kerr, F., Slack, C., Jacobson, J., Foley, A., & Partridge, L. (2010). Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab, 11(1), 35-46. doi: 10.1016/j.cmet.2009.11.010
Cockcroft, S. (2012). The diverse functions of phosphatidylinositol transfer proteins. Curr Top Microbiol Immunol, 362, 185-208. doi: 10.1007/978-94-007-5025-8_9
Cockcroft, S., & Raghu, P. (2016). Topological organisation of the phosphatidylinositol 4,5-bisphosphate-phospholipase C resynthesis cycle: PITPs bridge the ER-PM gap. Biochem J, 473(23), 4289-4310. doi: 10.1042/BCJ20160514C
de Brouwer, A. P., Bouma, B., van Tiel, C. M., Heerma, W., Brouwers, J. F., Bevers, L. E., . . . Wirtz, K. W. (2001). The binding of phosphatidylcholine to the phosphatidylcholine transfer protein: affinity and role in folding. Chem Phys Lipids, 112(2), 109-119.
Fang, Y., Vilella-Bach, M., Bachmann, R., Flanigan, A., & Chen, J. (2001). Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science, 294(5548), 1942-1945. doi: 10.1126/science.1066015
Fischer, J. A., Giniger, E., Maniatis, T., & Ptashne, M. (1988). GAL4 activates transcription in Drosophila. Nature, 332(6167), 853-856. doi: 10.1038/332853a0
Foster, D. A. (2009). Phosphatidic acid signaling to mTOR: signals for the survival of human cancer cells. Biochim Biophys Acta, 1791(9), 949-955. doi: 10.1016/j.bbalip.2009.02.009
Gatt, M. K., & Glover, D. M. (2006). The Drosophila phosphatidylinositol transfer protein encoded by vibrator is essential to maintain cleavage-furrow ingression in cytokinesis. J Cell Sci, 119(Pt 11), 2225-2235. doi: 10.1242/jcs.02933
Hatfield, I., Harvey, I., Yates, E. R., Redd, J. R., Reiter, L. T., & Bridges, D. (2015). The role of TORC1 in muscle development in Drosophila. Sci Rep, 5, 9676. doi: 10.1038/srep09676
Heilbronn, L. K., & Ravussin, E. (2003). Calorie restriction and aging: review of the literature and implications for studies in humans. Am J Clin Nutr, 78(3), 361-369.
Iwata, R., Oda, S., Kunitomo, H., & Iino, Y. (2011). Roles for class IIA phosphatidylinositol transfer protein in neurotransmission and behavioral plasticity at the sensory neuron synapses of Caenorhabditis elegans. Proc Natl Acad Sci U S A, 108(18), 7589-7594. doi: 10.1073/pnas.1016232108
Johnson, S. C., Rabinovitch, P. S., & Kaeberlein, M. (2013). mTOR is a key modulator of ageing and age-related disease. Nature, 493(7432), 338-345. doi: 10.1038/nature11861
Kapahi, P., Zid, B. M., Harper, T., Koslover, D., Sapin, V., & Benzer, S. (2004). Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol, 14(10), 885-890. doi: 10.1016/j.cub.2004.03.059
Katz, B., & Minke, B. (2009). Drosophila photoreceptors and signaling mechanisms. Front Cell Neurosci, 3, 2. doi: 10.3389/neuro.03.002.2009
Kawli, T., Wu, C., & Tan, M. W. (2010). Systemic and cell intrinsic roles of Gqalpha signaling in the regulation of innate immunity, oxidative stress, and longevity in Caenorhabditis elegans. Proc Natl Acad Sci U S A, 107(31), 13788-13793. doi: 10.1073/pnas.0914715107
Keinan, O., Kedan, A., Gavert, N., Selitrennik, M., Kim, S., Karn, T., . . . Lev, S. (2014). The lipid-transfer protein Nir2 enhances epithelial-mesenchymal transition and facilitates breast cancer metastasis. J Cell Sci, 127(Pt 21), 4740-4749. doi: 10.1242/jcs.155721
Krauss, M., & Haucke, V. (2007). Phosphoinositides: regulators of membrane traffic and protein function. FEBS Lett, 581(11), 2105-2111. doi: 10.1016/j.febslet.2007.01.089
Kuintzle, R. C., Chow, E. S., Westby, T. N., Gvakharia, B. O., Giebultowicz, J. M., & Hendrix, D. A. (2017). Circadian deep sequencing reveals stress-response genes that adopt robust rhythmic expression during aging. Nat Commun, 8, 14529. doi: 10.1038/ncomms14529
Lin, Y. H., Chen, Y. C., Kao, T. Y., Lin, Y. C., Hsu, T. E., Wu, Y. C., . . . Wang, H. D. (2014). Diacylglycerol lipase regulates lifespan and oxidative stress response by inversely modulating TOR signaling in Drosophila and C. elegans. Aging Cell, 13(4), 755-764. doi: 10.1111/acel.12232
Liscovitch, M., & Cantley, L. C. (1995). Signal transduction and membrane traffic: the PITP/phosphoinositide connection. Cell, 81(5), 659-662.
Liu, Y., Wang, W., Shui, G., & Huang, X. (2014). CDP-diacylglycerol synthetase coordinates cell growth and fat storage through phosphatidylinositol metabolism and the insulin pathway. PLoS Genet, 10(3), e1004172. doi: 10.1371/journal.pgen.1004172
Liu, Y. L., Lu, W. C., Brummel, T. J., Yuh, C. H., Lin, P. T., Kao, T. Y., . . . Wang, H. D. (2009). Reduced expression of alpha-1,2-mannosidase I extends lifespan in Drosophila melanogaster and Caenorhabditis elegans. Aging Cell, 8(4), 370-379. doi: 10.1111/j.1474-9726.2009.00471.x
Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. Cell, 153(6), 1194-1217. doi: 10.1016/j.cell.2013.05.039
Miquel, J., Lundgren, P. R., Bensch, K. G., & Atlan, H. (1976). Effects of temperature on the life span, vitality and fine structure of Drosophila melanogaster. Mech Ageing Dev, 5(5), 347-370.
Paetkau, D. W., Elagin, V. A., Sendi, L. M., & Hyde, D. R. (1999). Isolation and characterization of Drosophila retinal degeneration B suppressors. Genetics, 151(2), 713-724.
Payrastre, B., Missy, K., Giuriato, S., Bodin, S., Plantavid, M., & Gratacap, M. (2001). Phosphoinositides: key players in cell signalling, in time and space. Cell Signal, 13(6), 377-387.
Risson, V., Mazelin, L., Roceri, M., Sanchez, H., Moncollin, V., Corneloup, C., . . . Gangloff, Y. G. (2009). Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy. J Cell Biol, 187(6), 859-874. doi: 10.1083/jcb.200903131
Sharples, A. P., Hughes, D. C., Deane, C. S., Saini, A., Selman, C., & Stewart, C. E. (2015). Longevity and skeletal muscle mass: the role of IGF signalling, the sirtuins, dietary restriction and protein intake. Aging Cell, 14(4), 511-523. doi: 10.1111/acel.12342
Stanfel, M. N., Shamieh, L. S., Kaeberlein, M., & Kennedy, B. K. (2009). The TOR pathway comes of age. Biochim Biophys Acta, 1790(10), 1067-1074. doi: 10.1016/j.bbagen.2009.06.007
Sykiotis, G. P., & Bohmann, D. (2008). Keap1/Nrf2 signaling regulates oxidative stress tolerance and lifespan in Drosophila. Dev Cell, 14(1), 76-85. doi: 10.1016/j.devcel.2007.12.002
Toschi, A., Lee, E., Xu, L., Garcia, A., Gadir, N., & Foster, D. A. (2009). Regulation of mTORC1 and mTORC2 complex assembly by phosphatidic acid: competition with rapamycin. Mol Cell Biol, 29(6), 1411-1420. doi: 10.1128/MCB.00782-08
Trivedi, D., & Padinjat, R. (2007). RdgB proteins: functions in lipid homeostasis and signal transduction. Biochim Biophys Acta, 1771(6), 692-699. doi: 10.1016/j.bbalip.2007.04.014
Wang, C. T., Chen, Y. C., Wang, Y. Y., Huang, M. H., Yen, T. L., Li, H., . . . Wang, H. D. (2012). Reduced neuronal expression of ribose-5-phosphate isomerase enhances tolerance to oxidative stress, extends lifespan, and attenuates polyglutamine toxicity in Drosophila. Aging Cell, 11(1), 93-103. doi: 10.1111/j.1474-9726.2011.00762.x
Wang, H. D., Kazemi-Esfarjani, P., & Benzer, S. (2004). Multiple-stress analysis for isolation of Drosophila longevity genes. Proc Natl Acad Sci U S A, 101(34), 12610-12615. doi: 10.1073/pnas.0404648101
Willett, M., Cowan, J. L., Vlasak, M., Coldwell, M. J., & Morley, S. J. (2009). Inhibition of mammalian target of rapamycin (mTOR) signalling in C2C12 myoblasts prevents myogenic differentiation without affecting the hyperphosphorylation of 4E-BP1. Cell Signal, 21(10), 1504-1512. doi: 10.1016/j.cellsig.2009.05.009
Willmund, R., & Fischbach, K. F. (1977). Light induced modification of phototactic behaviour of Drosophila melanogaster wildtype and some mutants in the visual system. Journal of Comparative Physiology, 118(2), 261-271.
Wu, Y.-C. (2017). The study of retinal degeneration B in Drosophila lifespan regulation. Bachelor's thesis.
You, J. S., Lincoln, H. C., Kim, C. R., Frey, J. W., Goodman, C. A., Zhong, X. P., & Hornberger, T. A. (2014). The role of diacylglycerol kinase zeta and phosphatidic acid in the mechanical activation of mammalian target of rapamycin (mTOR) signaling and skeletal muscle hypertrophy. J Biol Chem, 289(3), 1551-1563. doi: 10.1074/jbc.M113.531392

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *